Supervised Learning

- Given training data $\left\{\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{N}, \mathbf{y}_{N}\right)\right\}$
- N input/output pairs; \mathbf{x}_{i} - input, $\mathbf{y}_{\boldsymbol{i}}$ - output/label

Supervised Learning

- Given training data $\left\{\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{N}, \mathbf{y}_{N}\right)\right\}$
- N input/output pairs; \mathbf{x}_{i} - input, $\mathbf{y}_{\boldsymbol{i}}$ - output/label
- x_{i} is a vector consisting of D features
- Also called attributes or dimensions
- Features can be discrete or continuous
- $x_{i m}$ denotes the m-th feature of \mathbf{x}_{i}

Supervised Learning

- Given training data $\left\{\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{N}, \mathbf{y}_{N}\right)\right\}$
- N input/output pairs; \mathbf{x}_{i} - input, \mathbf{y}_{i} - output/label
- x_{i} is a vector consisting of D features
- Also called attributes or dimensions
- Features can be discrete or continuous
- $x_{i m}$ denotes the m-th feature of \mathbf{x}_{i}
- Forms of the output:
- $\mathbf{y}_{i} \in\{1, \ldots, C\}$ for classification; a discrete variable
- $\mathbf{y}_{i} \in \mathbb{R}$ for regression; a continuous (real-valued) variable

Supervised Learning

- Given training data $\left\{\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{N}, \mathbf{y}_{N}\right)\right\}$
- N input/output pairs; \mathbf{x}_{i} - input, \mathbf{y}_{i} - output/label
- x_{i} is a vector consisting of D features
- Also called attributes or dimensions
- Features can be discrete or continuous
- $x_{i m}$ denotes the m-th feature of \mathbf{x}_{i}
- Forms of the output:
- $\mathbf{y}_{i} \in\{1, \ldots, C\}$ for classification; a discrete variable
- $\mathbf{y}_{i} \in \mathbb{R}$ for regression; a continuous (real-valued) variable
- Goal: predict the output \mathbf{y} for an unseen test example \mathbf{x}
- This lecture: Two intuitive methods
- K-Nearest-Neighbors
- Decision Trees

K-Nearest Neighbor (K-NN)

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{N}, \mathbf{y}_{N}\right)\right\}$ and a test point
- Prediction Rule: Look at the K most similar training examples

K-Nearest Neighbor (K-NN)

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{N}, \mathbf{y}_{N}\right)\right\}$ and a test point
- Prediction Rule: Look at the K most similar training examples

- For classification: assign the majority class label (majority voting)
- For regression: assign the average response

K-Nearest Neighbor (K-NN)

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{N}, \mathbf{y}_{N}\right)\right\}$ and a test point
- Prediction Rule: Look at the K most similar training examples

- For classification: assign the majority class label (majority voting)
- For regression: assign the average response
- The algorithm requires:
- Parameter K : number of nearest neighbors to look for
- Distance function: To compute the similarities between examples

K-Nearest Neighbor (K-NN)

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{N}, \mathbf{y}_{N}\right)\right\}$ and a test point
- Prediction Rule: Look at the K most similar training examples

- For classification: assign the majority class label (majority voting)
- For regression: assign the average response
- The algorithm requires:
- Parameter K : number of nearest neighbors to look for
- Distance function: To compute the similarities between examples
- Special Case: 1-Nearest Neighbor

K-Nearest Neighbors Algorithm

- Compute the test point's distance from each training point

K-Nearest Neighbors Algorithm

- Compute the test point's distance from each training point
- Sort the distances in ascending (or descending) order

K-Nearest Neighbors Algorithm

- Compute the test point's distance from each training point
- Sort the distances in ascending (or descending) order
- Use the sorted distances to select the K nearest neighbors

K-Nearest Neighbors Algorithm

- Compute the test point's distance from each training point
- Sort the distances in ascending (or descending) order
- Use the sorted distances to select the K nearest neighbors
- Use majority rule (for classification) or averaging (for regression)

K-Nearest Neighbors Algorithm

- Compute the test point's distance from each training point
- Sort the distances in ascending (or descending) order
- Use the sorted distances to select the K nearest neighbors
- Use majority rule (for classification) or averaging (for regression)

Note: K-Nearest Neighbors is called a non-parametric method

- Unlike other supervised learning algorithms, K-Nearest Neighbors doesn't learn an explicit mapping f from the training data

K-Nearest Neighbors Algorithm

- Compute the test point's distance from each training point
- Sort the distances in ascending (or descending) order
- Use the sorted distances to select the K nearest neighbors
- Use majority rule (for classification) or averaging (for regression)

Note: K-Nearest Neighbors is called a non-parametric method

- Unlike other supervised learning algorithms, K-Nearest Neighbors doesn't learn an explicit mapping f from the training data
- It simply uses the training data at the test time to make predictions

K-NN: Computing the distances

- The K-NN algorithm requires computing distances of the test example from each of the training examples

K-NN: Computing the distances

- The K-NN algorithm requires computing distances of the test example from each of the training examples
- Several ways to compute distances
- The choice depends on the type of the features in the data

K-NN: Computing the distances

- The K-NN algorithm requires computing distances of the test example from each of the training examples
- Several ways to compute distances
- The choice depends on the type of the features in the data
- Real-valued features $\left(\mathbf{x}_{i} \in \mathbb{R}^{D}\right)$: Euclidean distance is commonly used

$$
d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sqrt{\sum_{m=1}^{D}\left(x_{i m}-x_{j m}\right)^{2}}=\sqrt{\left\|\mathbf{x}_{i}\right\|^{2}+\left\|\mathbf{x}_{j}\right\|^{2}-2 \mathbf{x}_{i}^{T} \mathbf{x}_{j}}
$$

K-NN: Computing the distances

- The K-NN algorithm requires computing distances of the test example from each of the training examples
- Several ways to compute distances
- The choice depends on the type of the features in the data
- Real-valued features $\left(\mathbf{x}_{i} \in \mathbb{R}^{D}\right)$: Euclidean distance is commonly used

$$
d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sqrt{\sum_{m=1}^{D}\left(x_{i m}-x_{j m}\right)^{2}}=\sqrt{\left\|\mathbf{x}_{i}\right\|^{2}+\left\|\mathbf{x}_{j}\right\|^{2}-2 \mathbf{x}_{i}^{T} \mathbf{x}_{j}}
$$

- Generalization of the distance between points in 2 dimensions

K-NN: Computing the distances

- The K-NN algorithm requires computing distances of the test example from each of the training examples
- Several ways to compute distances
- The choice depends on the type of the features in the data
- Real-valued features $\left(x_{i} \in \mathbb{R}^{D}\right)$: Euclidean distance is commonly used

$$
d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sqrt{\sum_{m=1}^{D}\left(x_{i m}-x_{j m}\right)^{2}}=\sqrt{\left\|\mathbf{x}_{i}\right\|^{2}+\left\|\mathbf{x}_{j}\right\|^{2}-2 \mathbf{x}_{i}^{T} \mathbf{x}_{j}}
$$

- Generalization of the distance between points in 2 dimensions
- $\left\|\mathbf{x}_{i}\right\|=\sqrt{\sum_{m=1}^{D} x_{i m}^{2}}$ is called the norm of \mathbf{x}_{i}
- Norm of a vector \mathbf{x} is also its length

K-NN: Computing the distances

- The K-NN algorithm requires computing distances of the test example from each of the training examples
- Several ways to compute distances
- The choice depends on the type of the features in the data
- Real-valued features $\left(x_{i} \in \mathbb{R}^{D}\right)$: Euclidean distance is commonly used

$$
d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sqrt{\sum_{m=1}^{D}\left(x_{i m}-x_{j m}\right)^{2}}=\sqrt{\left\|\mathbf{x}_{i}\right\|^{2}+\left\|\mathbf{x}_{j}\right\|^{2}-2 \mathbf{x}_{i}^{T} \mathbf{x}_{j}}
$$

- Generalization of the distance between points in 2 dimensions
- $\left\|\mathbf{x}_{i}\right\|=\sqrt{\sum_{m=1}^{D} x_{i m}^{2}}$ is called the norm of \mathbf{x}_{i}
- Norm of a vector \mathbf{x} is also its length
- $\mathbf{x}_{i}^{T} \mathbf{x}_{j}=\sum_{m=1}^{D} x_{i m} x_{j m}$ is called the dot (or inner) product of \mathbf{x}_{i} and \mathbf{x}_{j}
- Dot product measures the similarity between two vectors (orthogonal vectors have dot product $=0$, parallel vectors have high dot product)

K-NN: Feature Normalization

- Note: Features should be on the same scale
- Example: if one feature has its values in millimeters and another has in centimeters, we would need to normalize

K-NN: Feature Normalization

- Note: Features should be on the same scale
- Example: if one feature has its values in millimeters and another has in centimeters, we would need to normalize
- One way is:
- Replace $x_{i m}$ by $z_{i m}=\frac{\left(x_{i m}-\overline{x_{m}}\right)}{\sigma_{m}}$ (make them zero mean, unit variance)

K-NN: Feature Normalization

- Note: Features should be on the same scale
- Example: if one feature has its values in millimeters and another has in centimeters, we would need to normalize
- One way is:
- Replace $x_{i m}$ by $z_{i m}=\frac{\left(x_{i m}-\overline{x_{m}}\right)}{\sigma_{m}}$ (make them zero mean, unit variance)
- $\overline{x_{m}}=\frac{1}{N} \sum_{i=1}^{N} x_{i m}$: empirical mean of $m^{t h}$ feature
- $\sigma_{m}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i m}-\overline{x_{m}}\right)^{2}$: empirical variance of $m^{\text {th }}$ feature

K-NN: Some other distance measures

- Binary-valued features
- Use Hamming distance: $d\left(x_{i}, x_{j}\right)=\sum_{m=1}^{D} \mathbb{I}\left(x_{i m} \neq x_{j m}\right)$
- Hamming distance counts the number of features where the two examples disagree
- Mixed feature types (some real-valued and some binary-valued)?
- Can use mixed distance measures
- E.g., Euclidean for the real part, Hamming for the binary part
- Can also assign weights to features: $d\left(x_{i}, x_{j}\right)=\sum_{m=1}^{D} w_{m} d\left(x_{i m}, x_{j m}\right)$

Choice of K - Neighborhood Size

- Small K
- Creates many small regions for each class
- May lead to non-smooth) decision boundaries and overfit

Choice of K - Neighborhood Size

- Small K
- Creates many small regions for each class
- May lead to non-smooth) decision boundaries and overfit
- Large K
- Creates fewer larger regions
- Usually leads to smoother decision boundaries (caution: too smooth decision boundary can underfit)

Choice of K - Neighborhood Size

- Small K
- Creates many small regions for each class
- May lead to non-smooth) decision boundaries and overfit
- Large K
- Creates fewer larger regions
- Usually leads to smoother decision boundaries (caution: too smooth decision boundary can underfit)
- Choosing K
- Often data dependent and heuristic based
- Or using cross-validation (using some held-out data)
- In general, a K too small or too big is bad!

K-Nearest Neighbor: Properties

- What's nice
- Simple and intuitive; easily implementable

K-Nearest Neighbor: Properties

- What's nice
- Simple and intuitive; easily implementable
- Asymptotically consistent (a theoretical property)
- With infinite training data and large enough $K, K-\mathrm{NN}$ approaches the best possible classifier (Bayes optimal)

K-Nearest Neighbor: Properties

- What's nice
- Simple and intuitive; easily implementable
- Asymptotically consistent (a theoretical property)
- With infinite training data and large enough K, K-NN approaches the best possible classifier (Bayes optimal)
- What's not so nice..
- Store all the training data in memory even at test time
- Can be memory intensive for large training datasets
- An example of non-parametric, or memory/instance-based methods
- Different from parametric, model-based learning models

K-Nearest Neighbor: Properties

- What's nice
- Simple and intuitive; easily implementable
- Asymptotically consistent (a theoretical property)
- With infinite training data and large enough $K, K-N N$ approaches the best possible classifier (Bayes optimal)
- What's not so nice..
- Store all the training data in memory even at test time
- Can be memory intensive for large training datasets
- An example of non-parametric, or memory/instance-based methods
- Different from parametric, model-based learning models
- Expensive at test time: $O(N D)$ computations for each test point
- Have to search through all training data to find nearest neighbors
- Distance computations with N training points (D features each)

K-Nearest Neighbor: Properties

- What's nice
- Simple and intuitive; easily implementable
- Asymptotically consistent (a theoretical property)
- With infinite training data and large enough $K, K-N N$ approaches the best possible classifier (Bayes optimal)
- What's not so nice..
- Store all the training data in memory even at test time
- Can be memory intensive for large training datasets
- An example of non-parametric, or memory/instance-based methods
- Different from parametric, model-based learning models
- Expensive at test time: $O(N D)$ computations for each test point
- Have to search through all training data to find nearest neighbors
- Distance computations with N training points (D features each)
- Sensitive to noisy features

K-Nearest Neighbor: Properties

- What's nice
- Simple and intuitive; easily implementable
- Asymptotically consistent (a theoretical property)
- With infinite training data and large enough K, K-NN approaches the best possible classifier (Bayes optimal)
- What's not so nice..
- Store all the training data in memory even at test time
- Can be memory intensive for large training datasets
- An example of non-parametric, or memory/instance-based methods
- Different from parametric, model-based learning models
- Expensive at test time: $O(N D)$ computations for each test point
- Have to search through all training data to find nearest neighbors
- Distance computations with N training points (D features each)
- Sensitive to noisy features
- May perform badly in high dimensions (curse of dimensionality)
- In high dimensions, distance notions can be counter-intuitive!

Not Covered (Further Readings)

- Computational speed-ups (don't want to spend $O(N D)$ time)
- Improved data structures for fast nearest neighbor search
- Even if approximately nearest neighbors, yet may be good enough
- Efficient Storage (don't want to store all the training data)
- E.g., subsampling the training data to retain "prototypes"
- Leads to computational speed-ups too!
- Metric Learning: Learning the "right" distance metric for a given dataset

