CS 4758/6758 Homework 1

Due: Feb. 15 2013

Please attach any code written to your submission.
Be sure to include your netid on your submission.

1 Kinematics (60 pts.)

1.1 Planar Arm Forward Kinematics (15 pts.)

Figure 1 shows the schematic of a robot arm lying in the X - Y plane. The robot has three
links each of length [; = 60 cm, I3 = 40 cm, I3 = 30cm. The first link of the robot is located
at point (0,0) on the X - Y plane. The angles at each of these joints are 6;,0,, and 03
Given 6y,0,, and 63, compute the position of the robot’s hand (Xpand, Yaand). (2) Make
rotation matrix for each of these links. (b) Write the homogenous transformation matrices
T, Ty, and T?. (3x3 matrix: rotation matrix appended with translation) (c) Write the
expression for obtaining(Xnand, Yaand) as a function of homogenous tranformation matrices.
(d) Evaluate the expression for §; = 30°, 60y = 45°, 03 = 45° and report the (Xpand, Yrand)-

(Xkami,Yhand)

Lilg,,

h ©O

Figure 1: A planar robot arm with three links

1.2 PR2 Forward Kinematics (Programming, 15 pts.)

We will now use ROS to run forward kinematics PR2’s arm. This arm is much more
complex - it consists of 7 degrees of freedom (specified as r_shoulder_pan, r_shoulder_lift,
r_upper_arm roll, r_elbow_flex, r_forearm roll, r_wrist_flex, r_wrist_roll). So, we’ll use ROS’s
pr2_kinematics stack to compute the forward kinematics for us.

The tutorial at: http://www.ros.org/wiki/pr2_kinematics/Tutorials/Tutorial %203 will
probably be useful for this part. Give end-effector coordinates in the form z,y, z, and orien-

tations in quaternion form (the form output by ROS’s forward kinematics) of the r_wrist_roll
link.

Compute the gripper cartesian position and orientation in torso_lift_link frame for fol-
lowing value:

r_shoulder_pan: -0.3
r_shoulder_lift: O
r_upper_arm_roll: -1.5
r_elbow_flex: -0.9
r_forearm_roll: 3.1
r_wrist_flex: -0.5
r_wrist_roll: -1.6

1.3 PR2 Inverse Kinematics (Programming, 30 pts.)

Now, write a program which performs inverse kinematics for PR2. For this question, we will
ignore gripper orientation, so that the goal is merely to find a set of joint parameters, as
specified above, which position the gripper r_wrist_roll link at a set of xyz coordinates.

You are not allowed to use any existing inverse kinematics code, but you also don’t need
to solve the inverse kinematics for PR2 directly. Instead, you can use data taken from your
forward kinematics program in the previous part and the nearest-neighbor algorithm to find
joint angles for a particular point.

In detail, your program could use your forward-kinematics code from the previous part
to compute and record the gripper position for a series of arm configurations. Then, when
you want to find joint parameters for a new set of end-effector ones, you could find the
nearest neighbor to the given position in the recorded data, and use its corresponding joint
parameters as a starting point for gradient descent to fine-tune the solution (using numerical
methods since we don’t have an analytical form for the gradient).

Give the cartesian position of r_wrist_roll in torso_lift_link frame given below. Verify
that these parameters give the desired position using your forward kinematics code from the
previous part.

a) 0.821,-0.188,0

b) 0.742415,-0.155112,0.0177867
c) -0.0174545,0.429794,0.436441
d) 0.182538,-0.188,-0.628473

e) 0.324203,-0.453238,0.61856

2 Classification, Regression, and Generalization (40 pts.)

2.1 Classification (15 pts.)

For the following set of points, where X’s indicate positive cases and 0’s negative, draw
decision boundaries for logistic regression and nearest neighbors with k=1 and k=3 (you can
do this on the plots below, or use the attached .png image in your report).

What do you notice about the performance of each algorithm? Which one do you think
would generalize better to new cases for this data?

Logistic
x
2
of %9
o] 0 00
X x o°
0 00 | 0 04 X
X x 0 o X x
0 0o o
X X éo X X
- X o o X X G
X X 0 X
X X X X
X Xxixx X
X X X X
X X
X X ‘X X
X X
Y x X
x x
2 2
A %o od %o
o © 00 o © 00
X x 0 x X x o7 «x
0 90 | 0 04 X 0 90 | 0 0 X
X x o 0 o X x X oy o 0 o X X
o o
x 0 3 © X X x 0 x 30 X X
- X o] o) X X X > - X o)) X X - -
X 0 X 1 X [0} X 1
X X X X X X X X
X Xx;LXX X X XX)LXX X
X X X X
x X X « x X X .
X X ‘x X X X ‘x X
X‘r X X‘ X
X X X X

2.2 Regression (Programming, 25 pts.)

Suppose we have some data x; and zo taken from two sensors and y is an output value,
unknown at runtime. For this problem, the training data is given in trainData.txt as 100
points of the form 1, x5, y. The hold-out testing data in testData.txt is in the same format
and taken from the same distribution.

Your goal is to estimate the value of y given x; and z5. Write a program which fits
polynomials of degrees 1, 2, and 3 to the data (z1,z5) to compute y. You can do this by
computing each power of each z up to the given degree as an input feature and then running
linear regression from these features to y. Be sure to include a constant bias term as well.

Run your program for the first k£ data points from the training set, for k& from 5 to 100
in increments of 5. Plot the mean squared error (total squared error divided by number of

points) for estimating y on the training and testing sets vs. k for polynomials of order 1,2,
and 3.

What do you notice about the error and fits for each order of polynomial and how they
change as we increase the number of data points?

