Probabilistic Robotics

Bayes Filter Implementations

Particle filters



mple-based Localization (sonar)




Particle Filters

Represent belief by random samples
Estimation of non-Gaussian, nonlinear processes

Monte Carlo filter, Survival of the fittest,
Condensation, Bootstrap filter, Particle filter

Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]
Computer vision: [Isard and Blake 96, 98]
Dynamic Bayesian Networks: [Kanazawa et al., 95]d



Importance Sampling

Weight samples: w =f/g



Importance Sampling with
Resampling

Weighted samples After resampling



Particle Filters




Sensor Information: Importance Sampling
Bel(x) < a p(z|x) Bel (x)
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Robot Motion
Bel (x) < fp(x|u,x')Bel(x') dx'
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Sensor Information: Importance Sampling

Bel(x) < a p(z|x) Bel (x)

" < “P(;L’?ie)l_(x) = a p(z|x)
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Robot Motion

Bel (x) < fp(x|u,x')Bel(x') dx'
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Particle Filter Algorithm

Bel (x,) = n p(z,|x,) f px, | x,_,u,) Bel (x,_,) dx,_,

— draw x/,_, from Bel(X,_,)

— draw x/, from p(x,| x' _,,u,_,)

— Importance factor for x';:

; target distribution

W, =

proposal distribution

n p(zlx) p(x |x_,u_) Bel (x,_,)
p(x, | x,_,u, ) Bel (x,_,)

< p(z,]x,)




Resampling

® Given: Set S of weighted samples.
e Wanted : Random sample, where the

probability of drawing Xx; is given by w;,.

e Typically done n times with replacement to
generate new sample set S’.



Resampling

® Stochastic universal sampling
® Roulette wheel e Systematic resampling
® Binary search, n log n ® Linear time complexity
® Easy to implement, low variance



Motion Model Reminder

Start " 3

10 meters
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mple-based Localization (sonar)
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| Distribution
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After Incorporating Ten
Ultrasound Scans
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After Incorporating 65
Ultrasound Scans
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Estimated Path




Using Ceiling Maps for Localization




Vision-based Localization

P(z|x)
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Under a Light

Measurement z: P(z|x):




Next to a Light

Measurement z: P(z|x):




Elsewhere

Measurement z: P(z|x):




Global Localization Using Vision




Robots in Action: Albert
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Application: Rhino and Albert
Synchronized in Munich and
Bonn

[Robotics And Automation Magazine, to appe4a7r]



Localization for AIBO
robots
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Limitations

® The approach described so far is able
to

e track the pose of a mobile robot and to
e globally localize the robot.

® How can we deal with localization
errors (i.e., the kidnapped robot
problem)?
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Approaches

® Randomly insert samples (the robot
can be teleported at any point in
time).

® Insert random samples proportional
to the average likelihood of the
particles (the robot has been
teleported with higher probability

when the likelihood of its observations
drops).
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Random Samples
Vision-Based Localization &
9036 Images, 4MB, .6secs/image
Trajectory of the robot:
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Odometry Information
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Image Sequence
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Resulting Trajectories

Position tracking:
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Resulting Trajectories

Global localization:
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Global Localization
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Kidnapping the Robot
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Recovery from Failure




Summary

Particle filters are an implementation of
recursive Bayesian filtering

They represent the posterior by a set of
weighted samples.

In the context of localization, the particles
are rlopagated according to the motion
model.

They are then weighted according to the
likelihood of the observations.

In a re-sampling step, new particles are
drawn with a probability proportional to
the likelihood of the observation.

59



