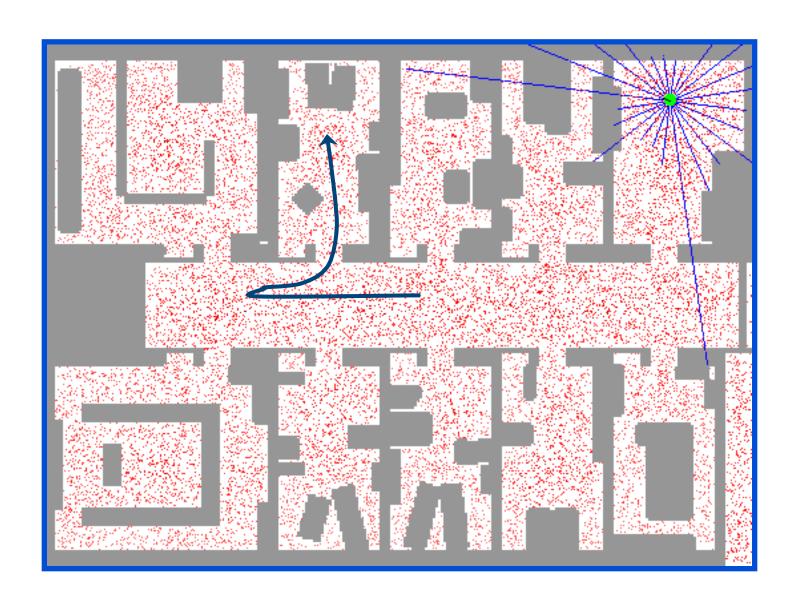
Probabilistic Robotics

Bayes Filter Implementations

Particle filters

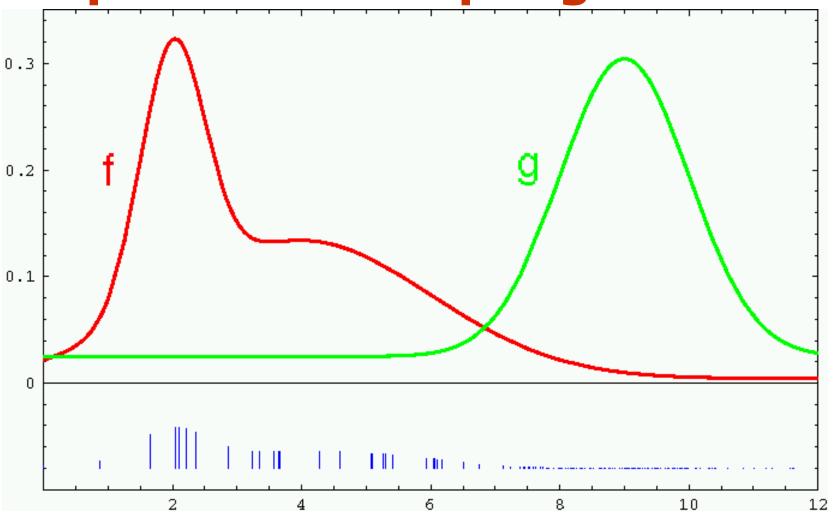
Sample-based Localization (sonar)



Particle Filters

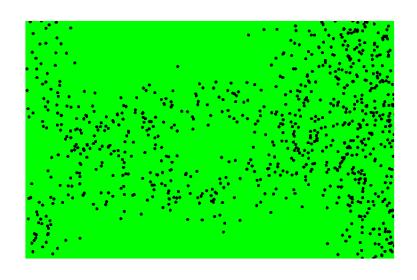
- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Monte Carlo filter, Survival of the fittest,
 Condensation, Bootstrap filter, Particle filter
- Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]
- Computer vision: [Isard and Blake 96, 98]
- Dynamic Bayesian Networks: [Kanazawa et al., 95]d

Importance Sampling

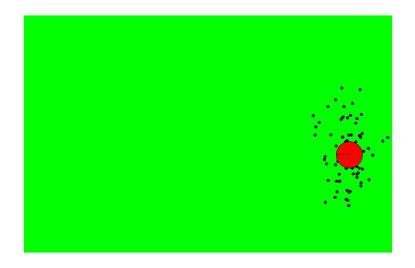


Weight samples: w = f/g

Importance Sampling with Resampling

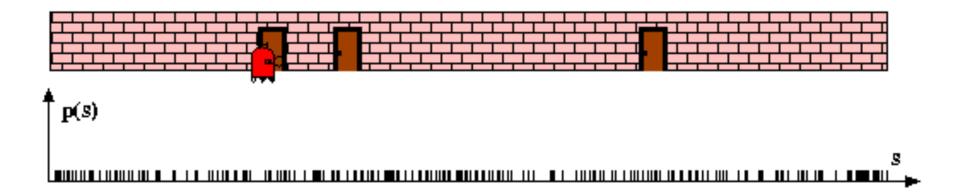


Weighted samples



After resampling

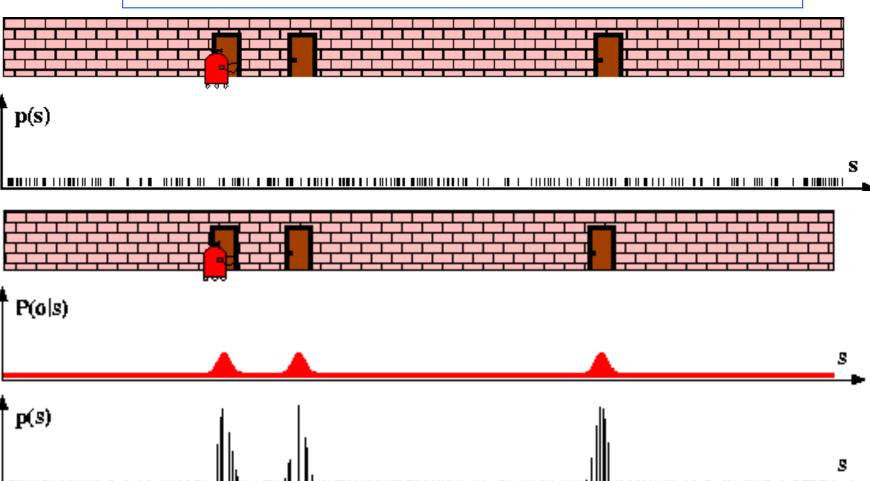
Particle Filters



Sensor Information: Importance Sampling

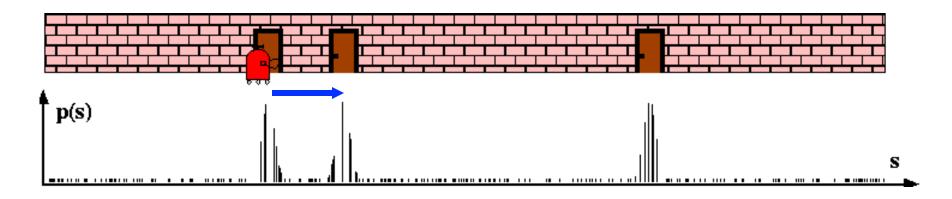
$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

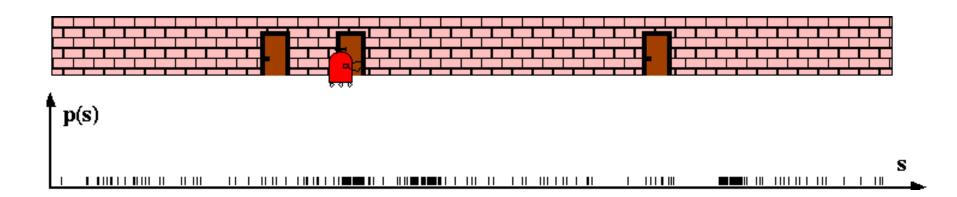
$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$



Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$

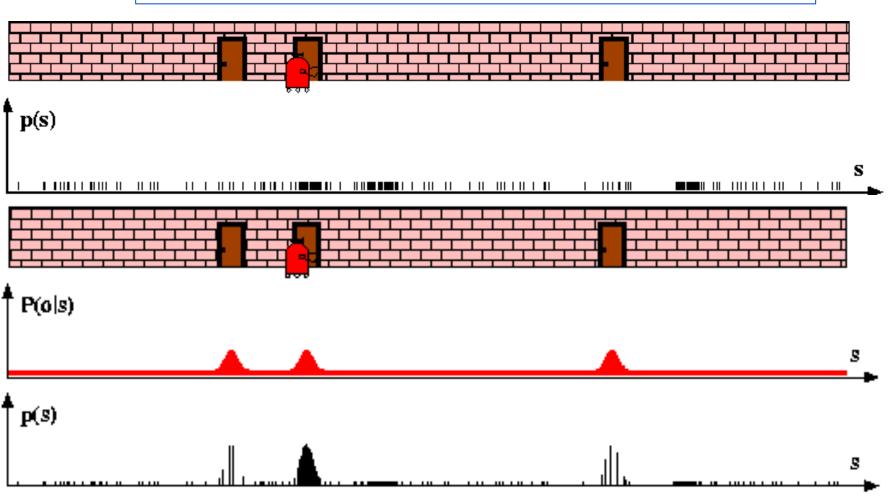




Sensor Information: Importance Sampling

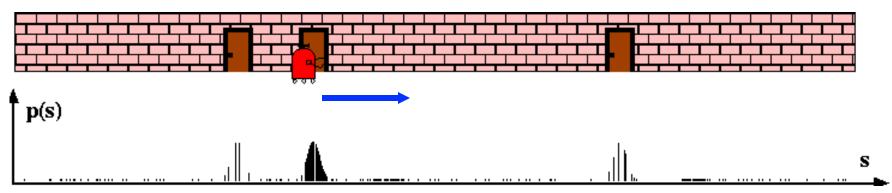
$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$



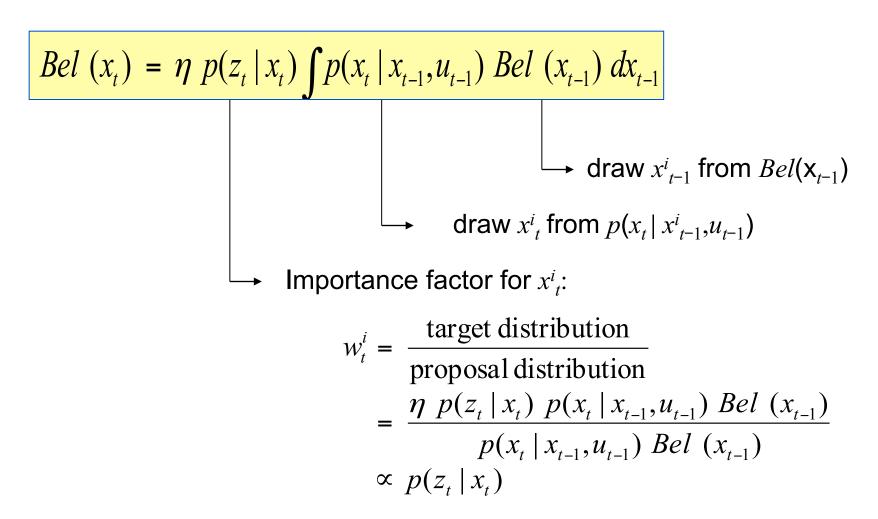
Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$





Particle Filter Algorithm



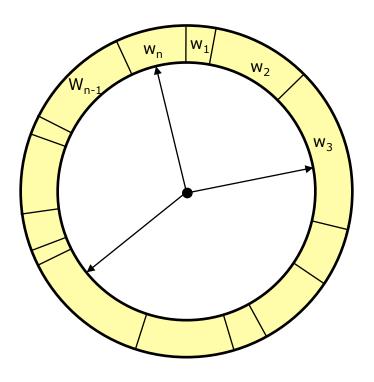
Resampling

Given: Set S of weighted samples.

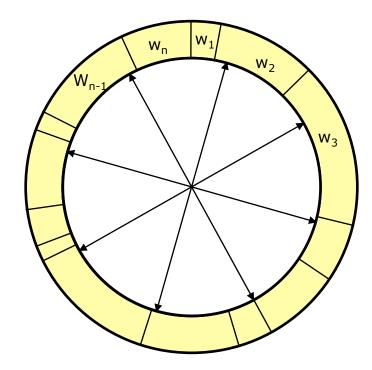
• Wanted: Random sample, where the probability of drawing x_i is given by w_i .

 Typically done n times with replacement to generate new sample set S'.

Resampling

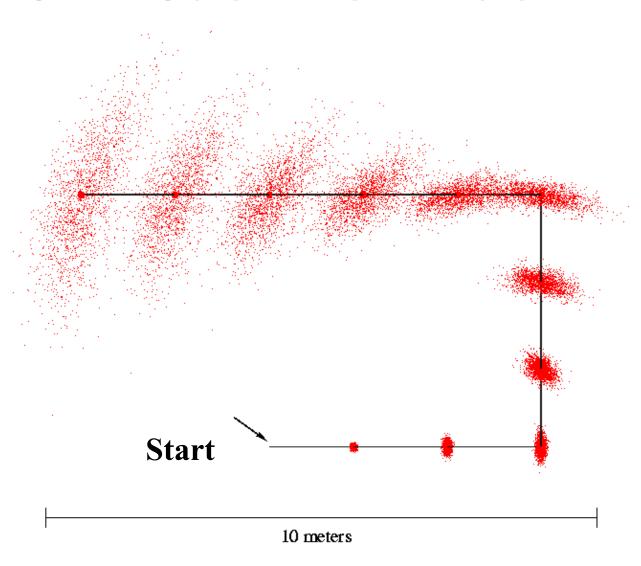


- Roulette wheel
- Binary search, n log n

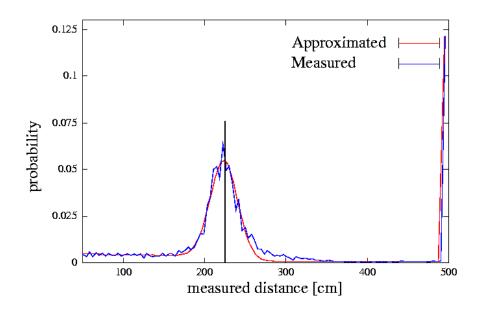


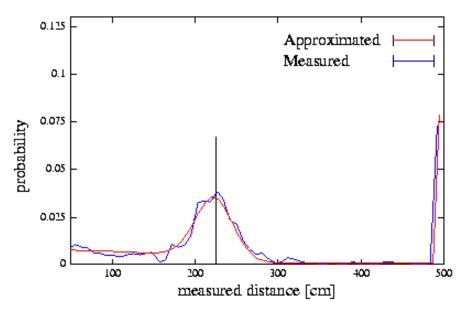
- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Motion Model Reminder



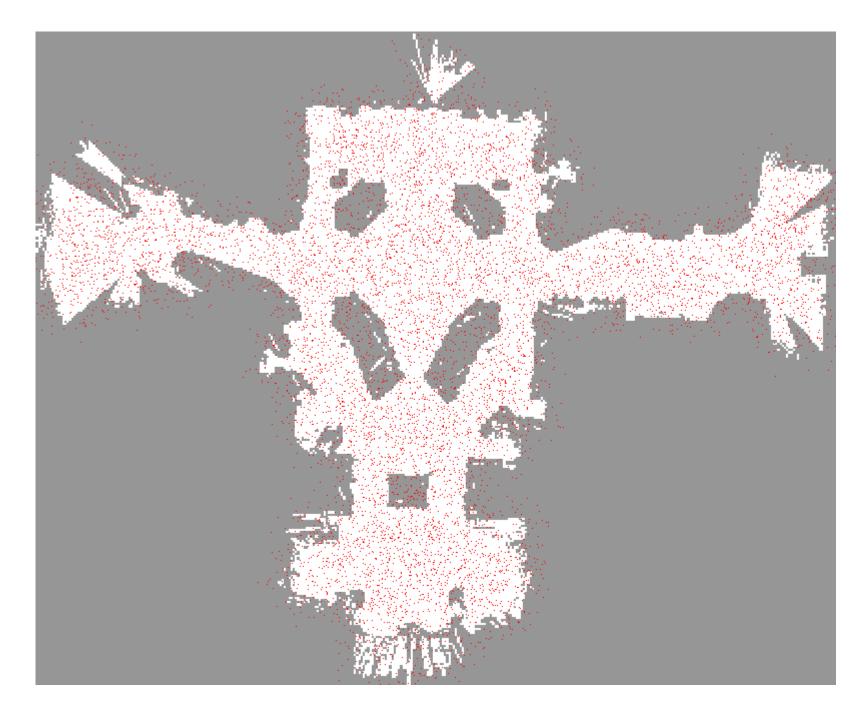
Proximity Sensor Model Reminder

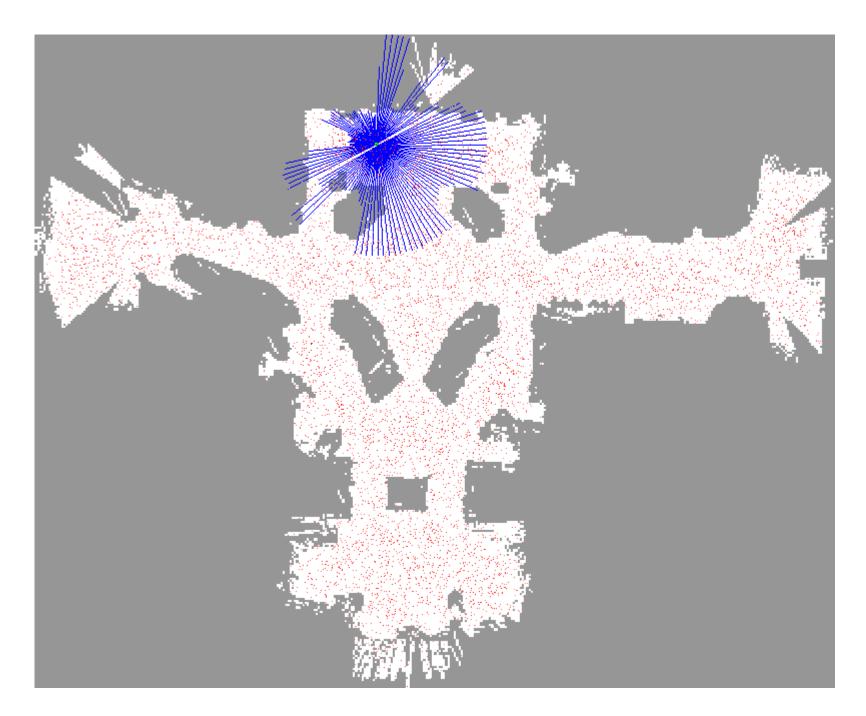


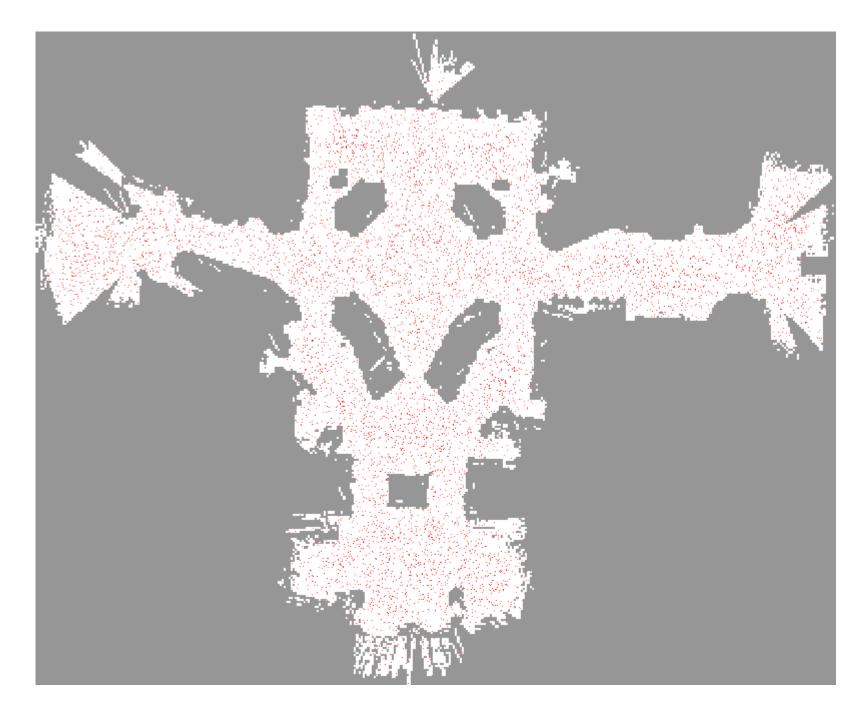


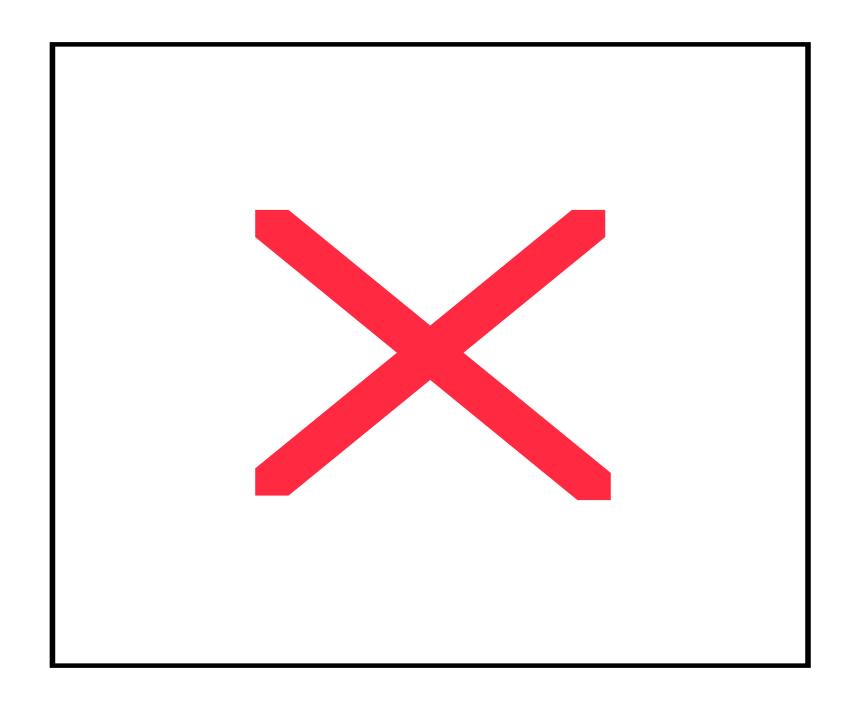
Laser sensor

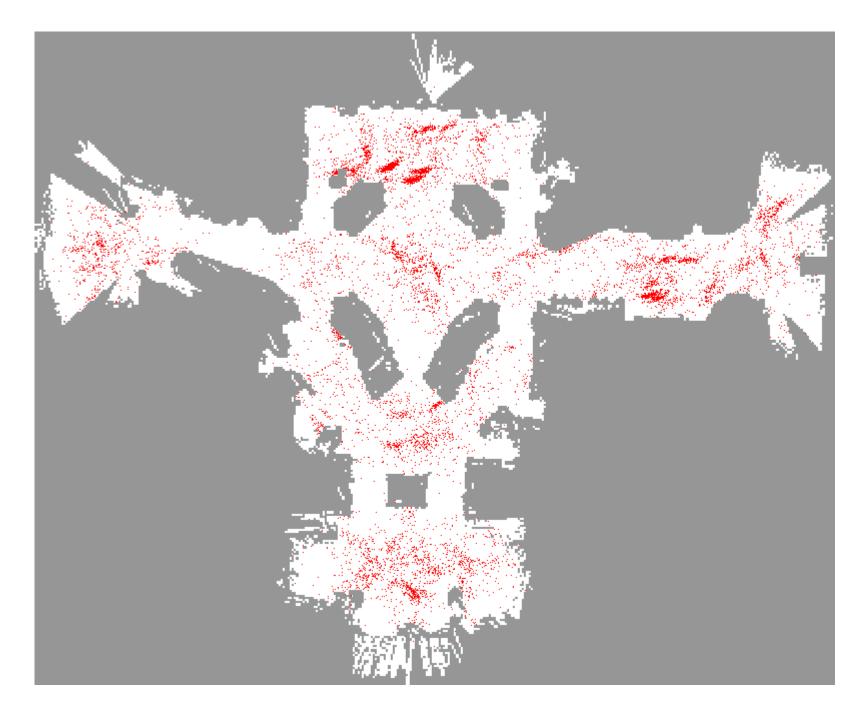
Sonar sensor

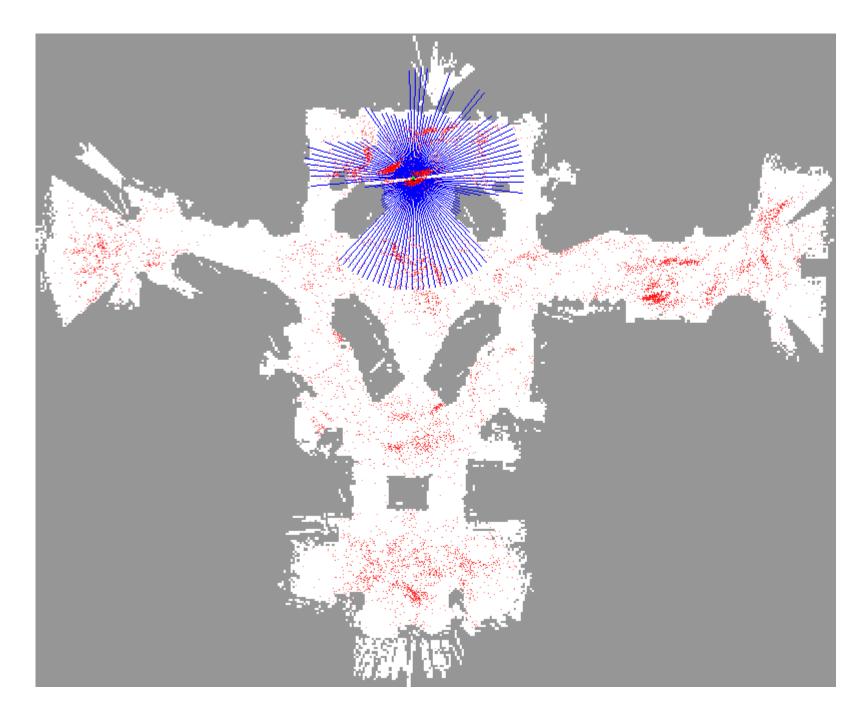


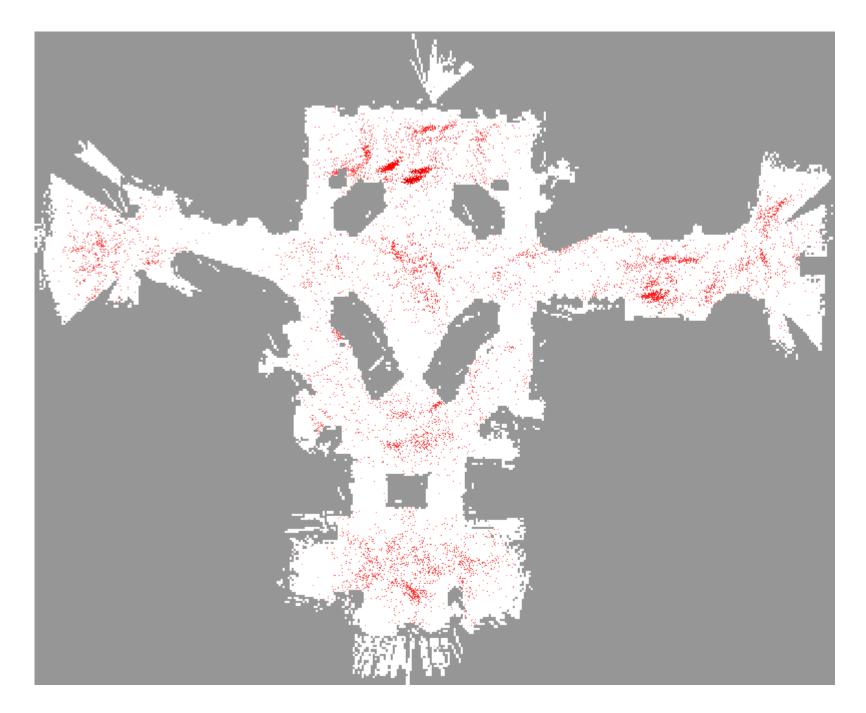


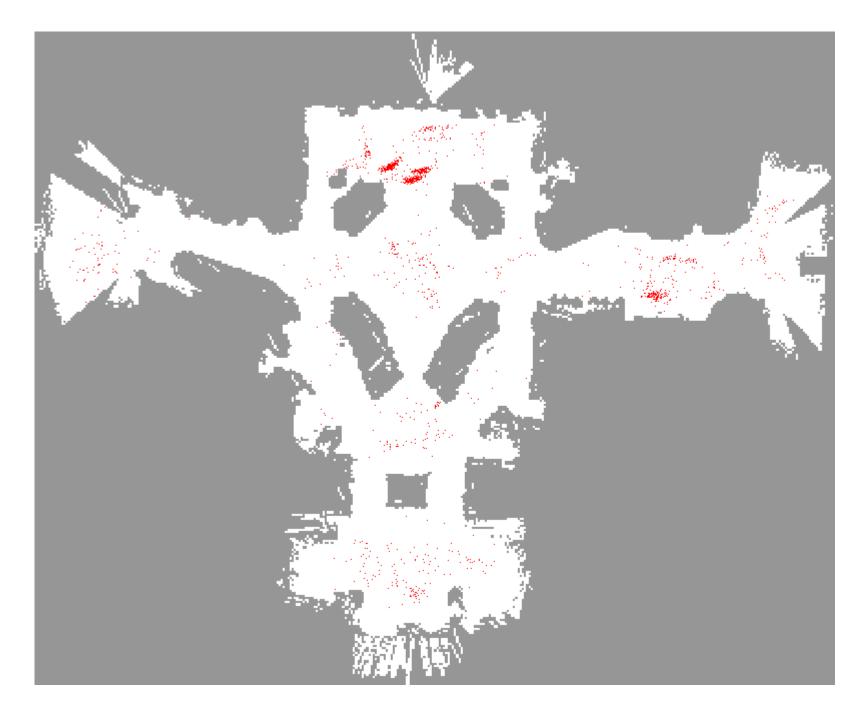


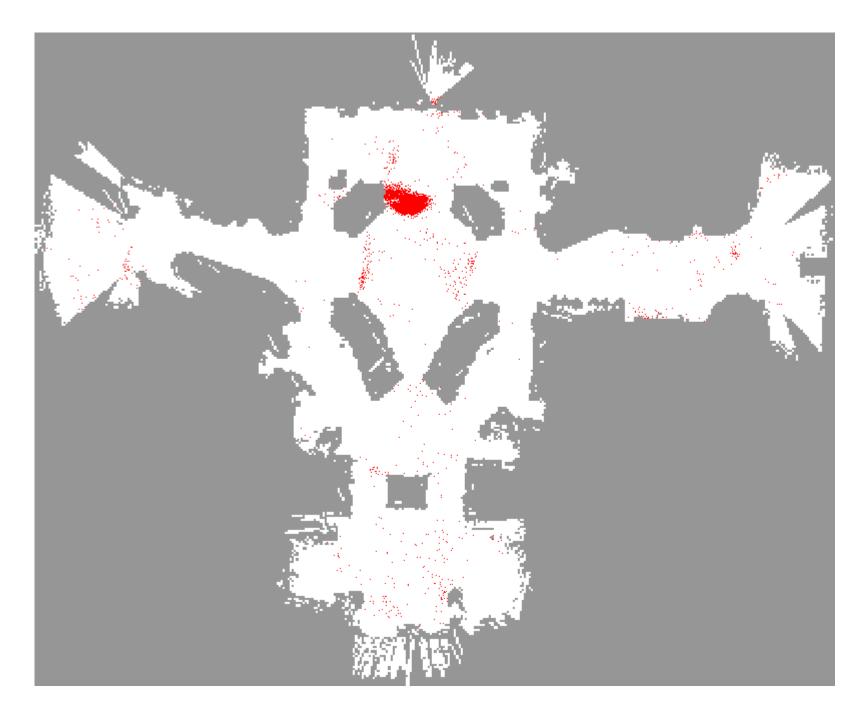


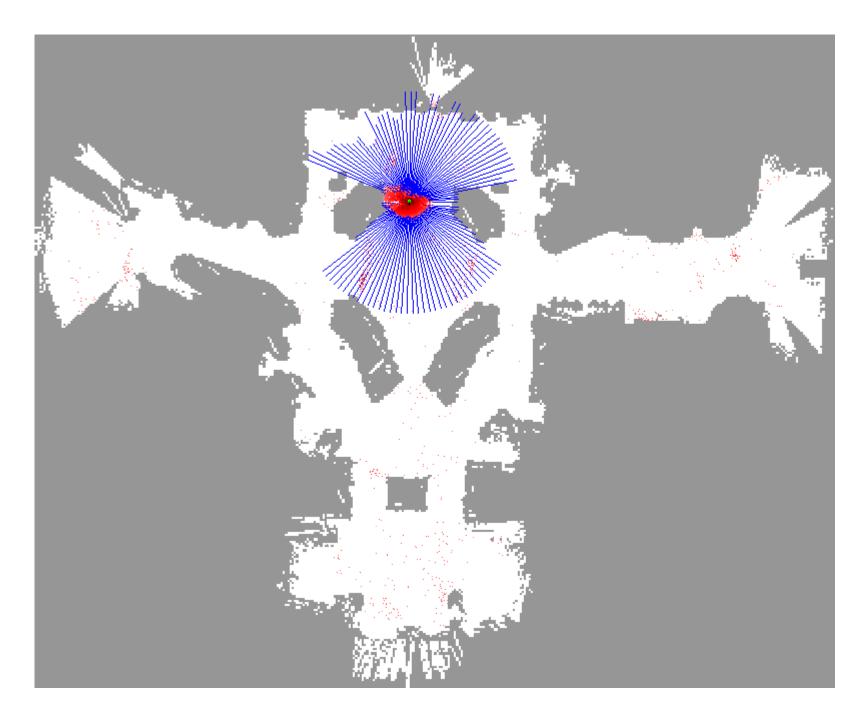


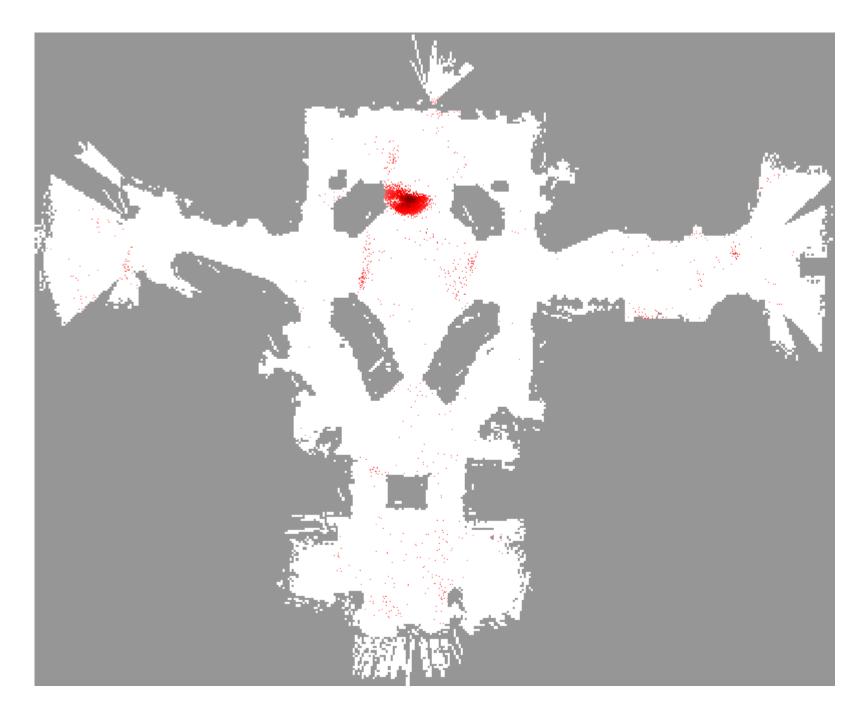


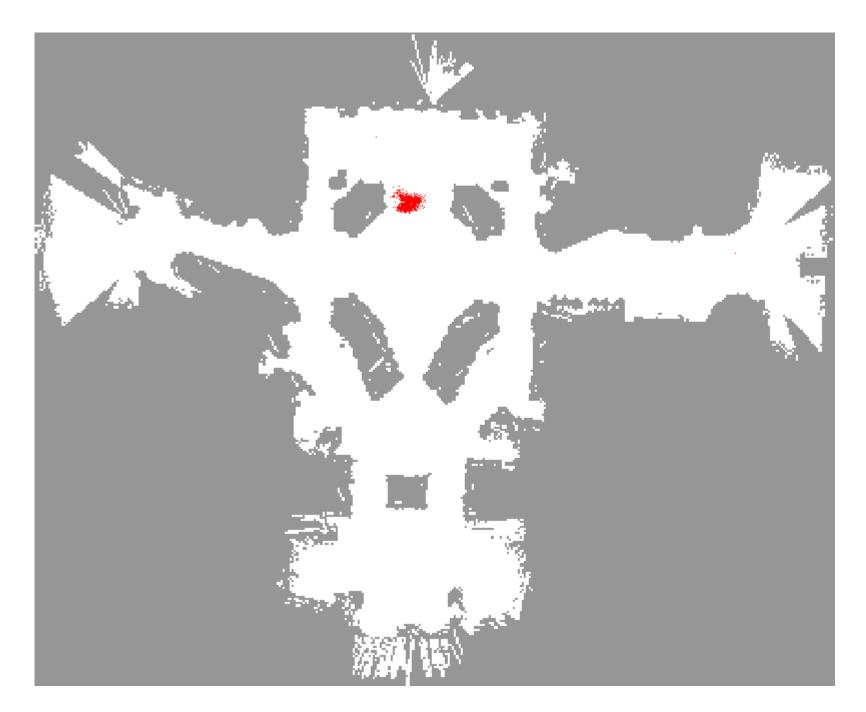


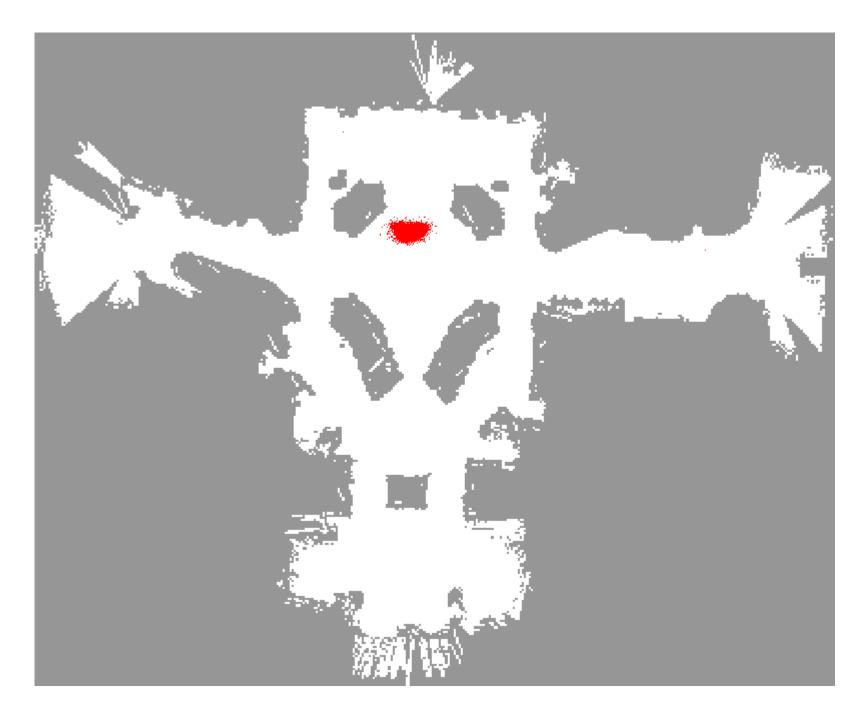


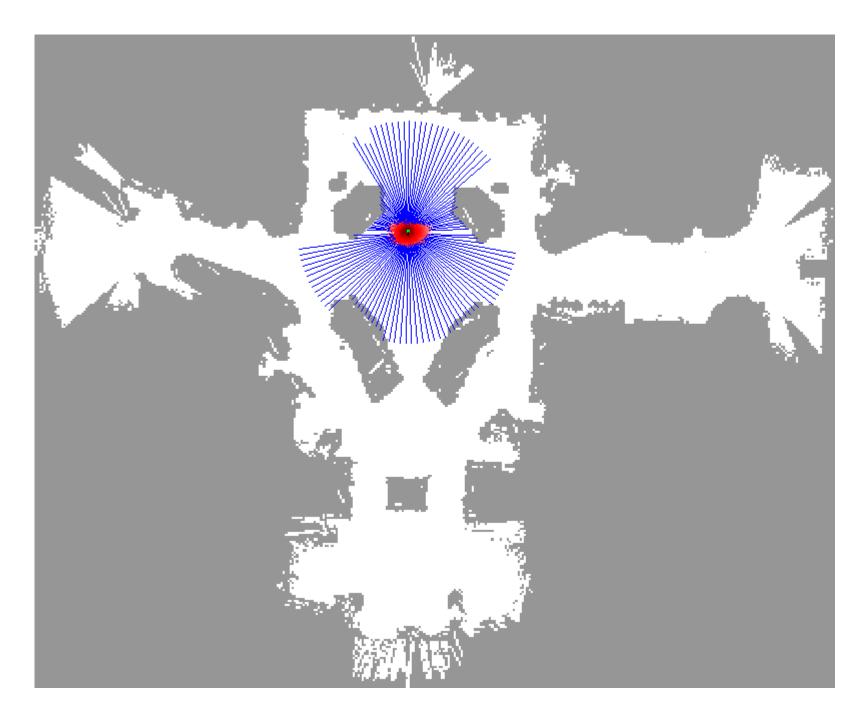


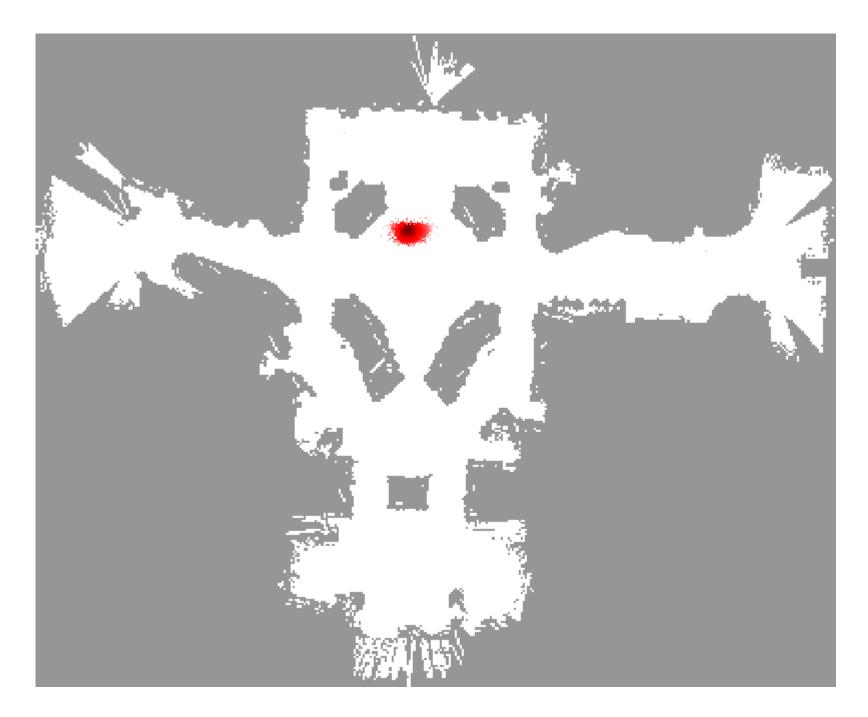


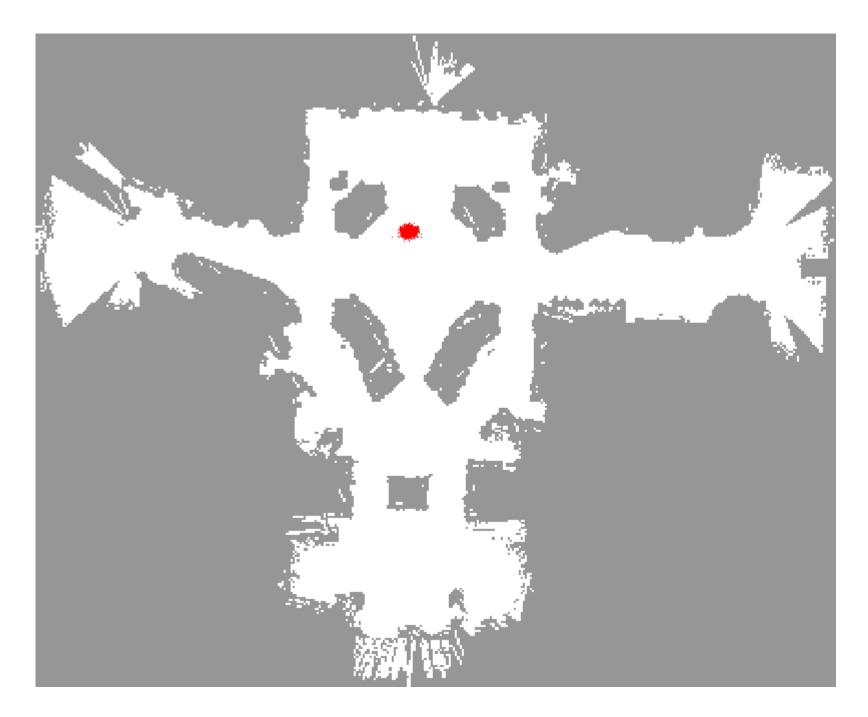


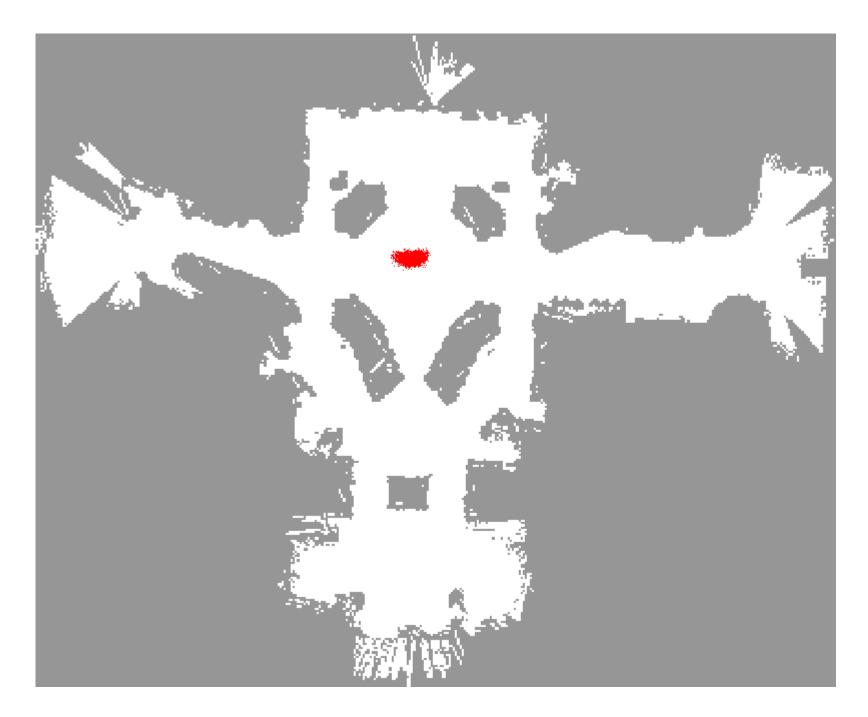


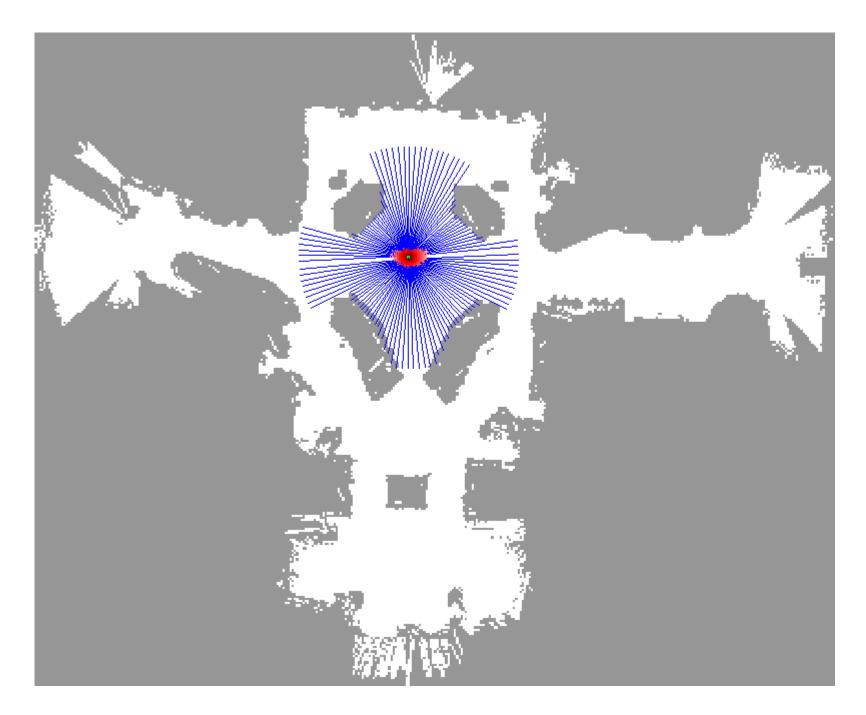


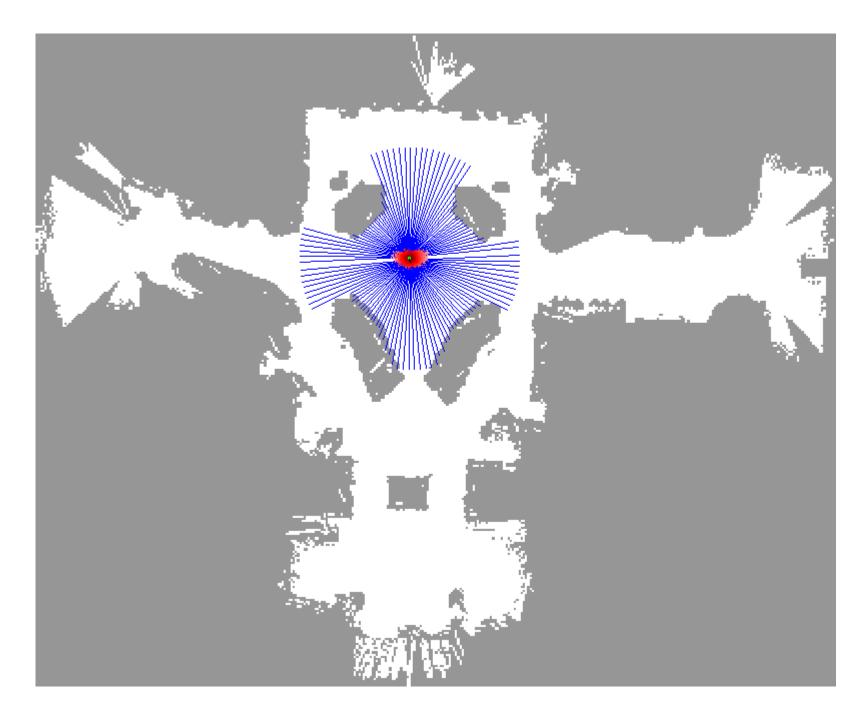




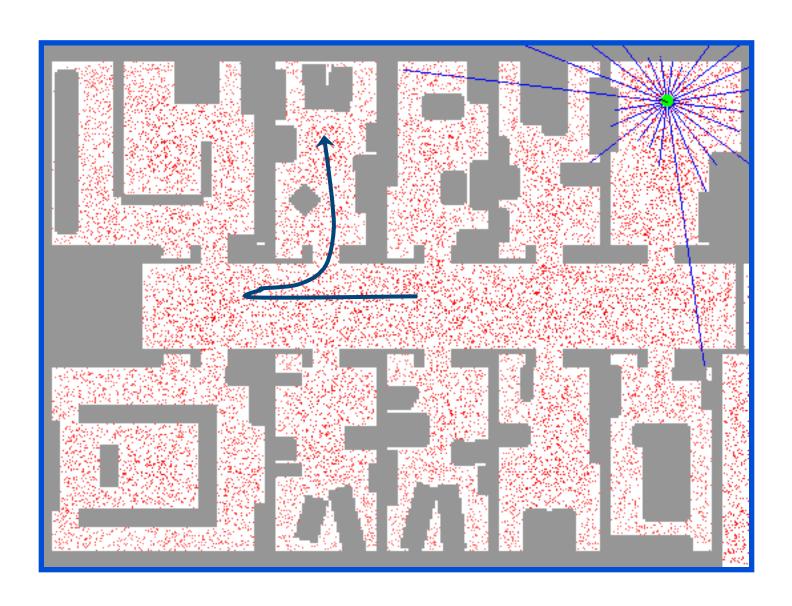




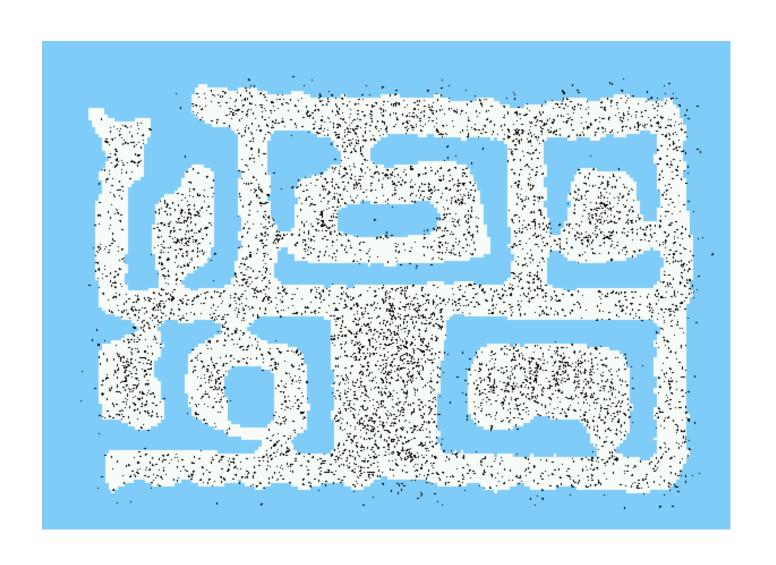




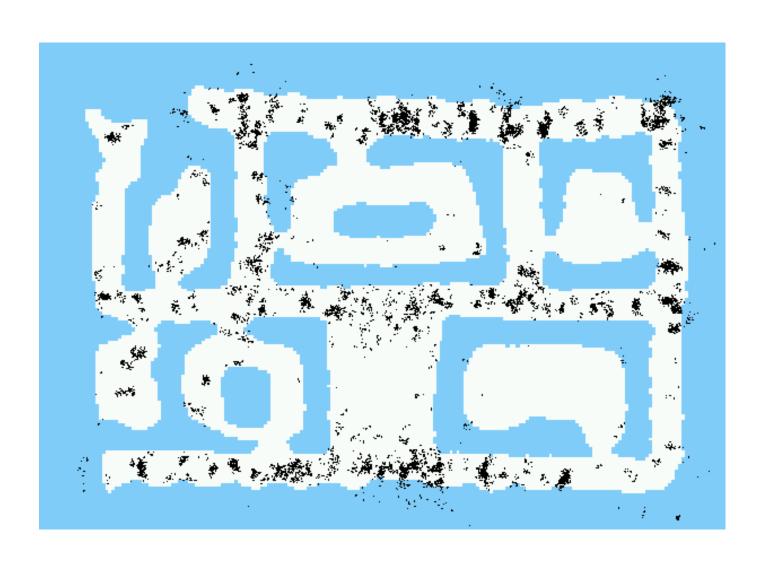
Sample-based Localization (sonar)



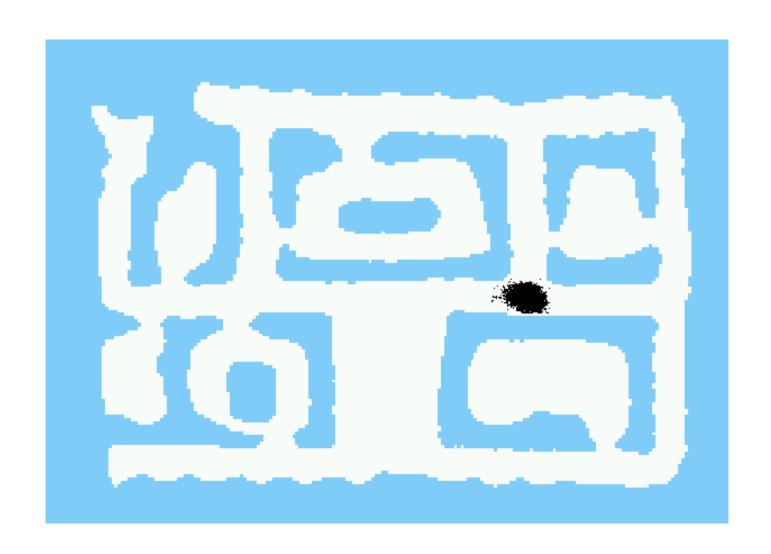
Initial Distribution



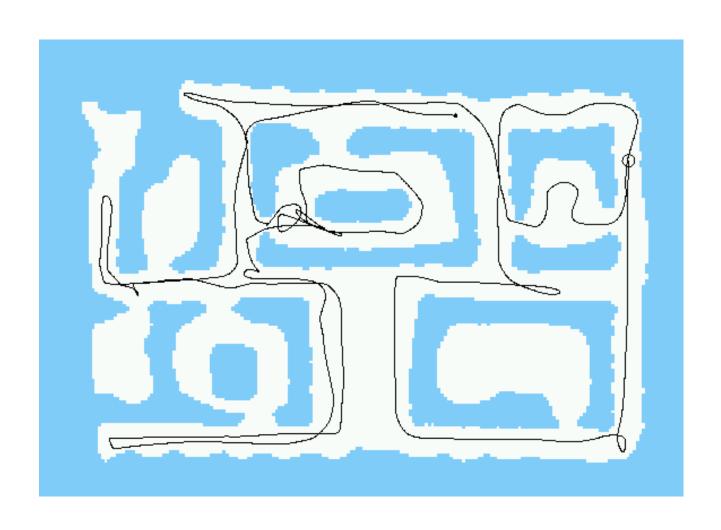
After Incorporating Ten Ultrasound Scans



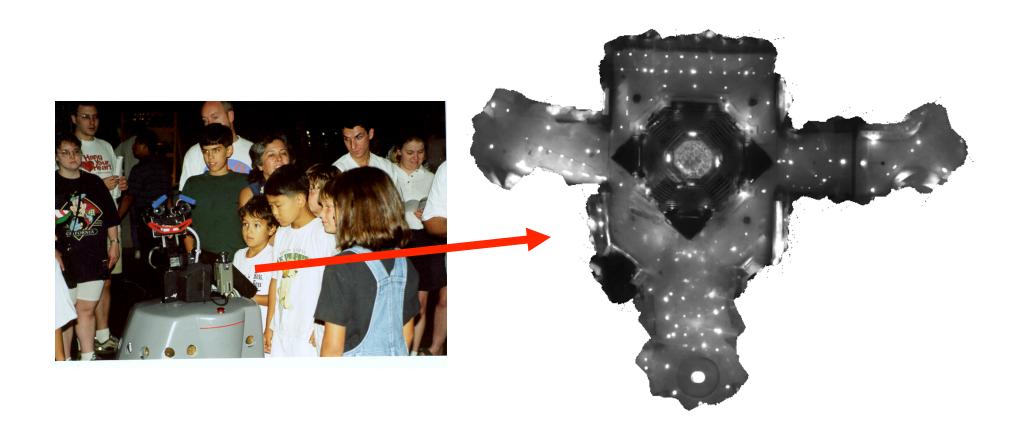
After Incorporating 65 Ultrasound Scans



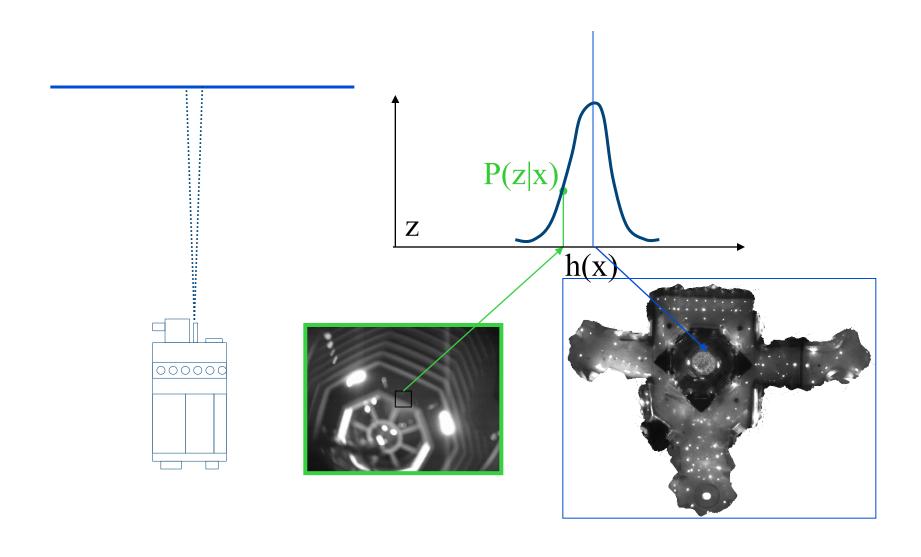
Estimated Path



Using Ceiling Maps for Localization

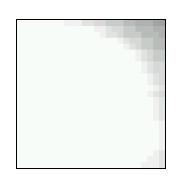


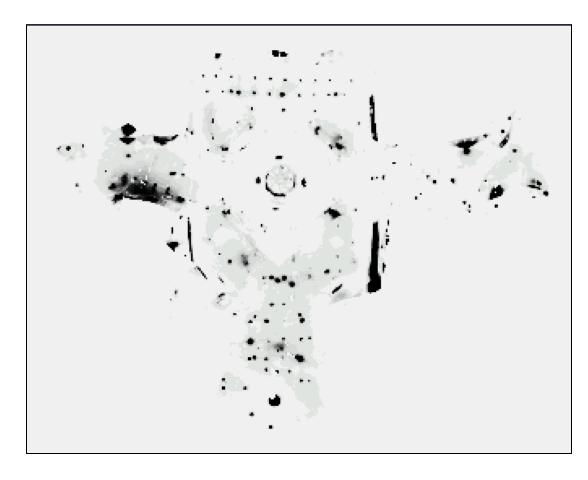
Vision-based Localization



Under a Light

Measurement z:

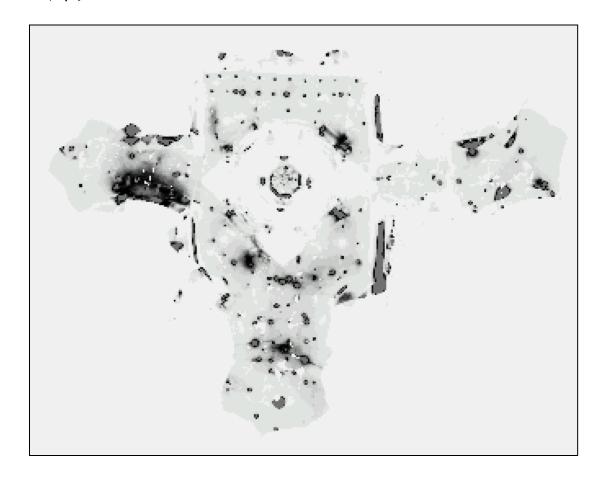




Next to a Light

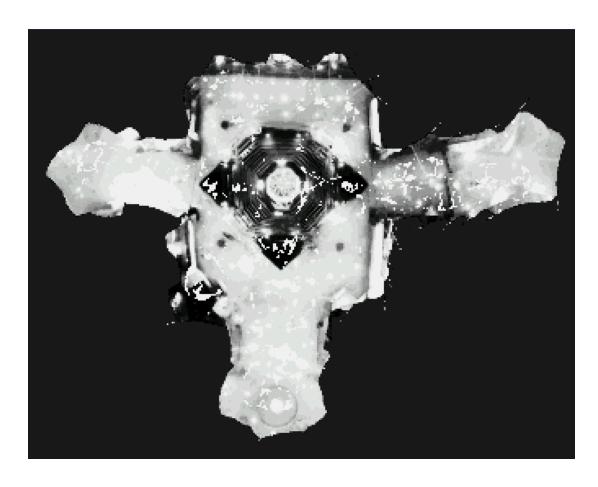
Measurement z:

P(z|x):

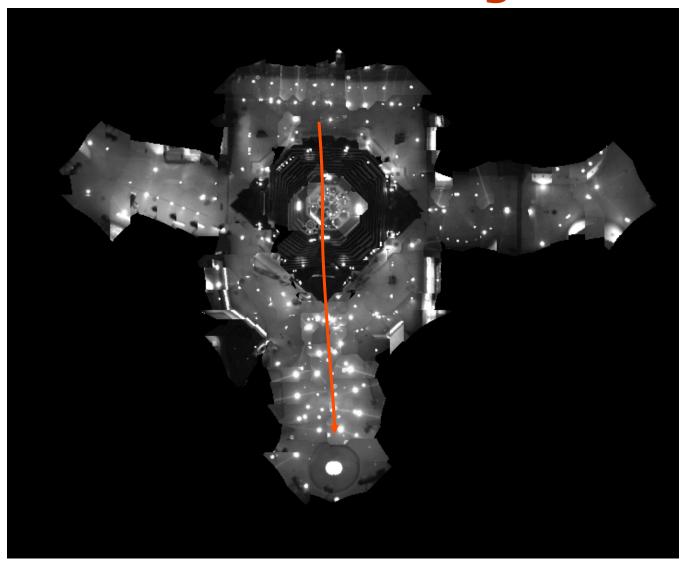


Elsewhere

Measurement z:

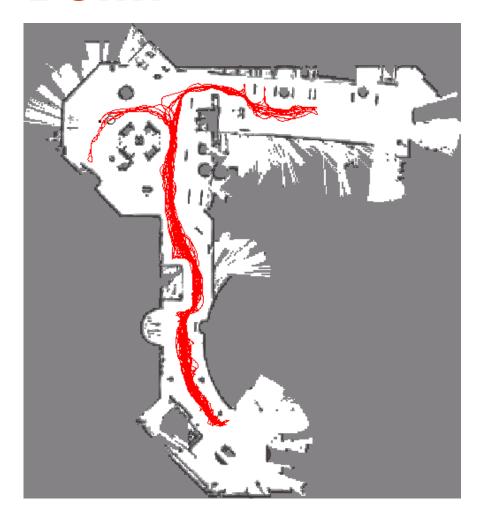


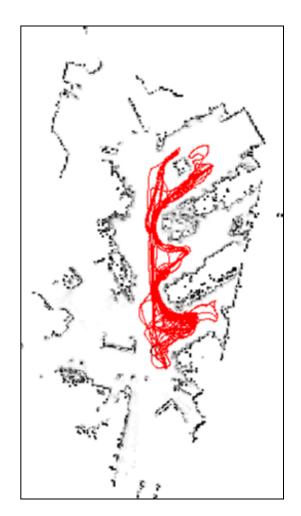
Global Localization Using Vision



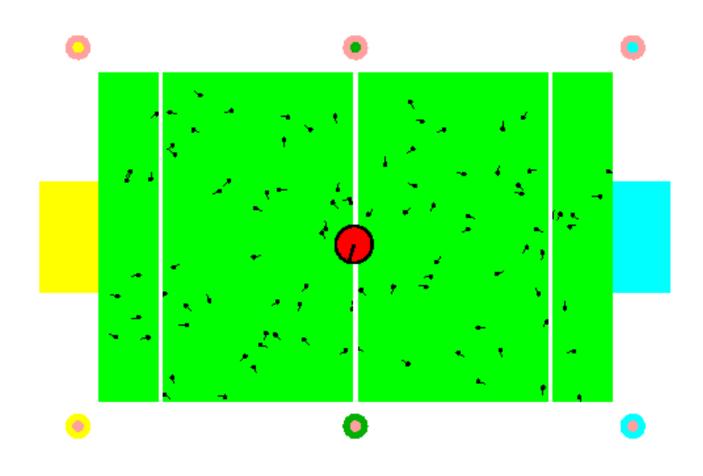
Robots in Action: Albert

Application: Rhino and Albert Synchronized in Munich and Bonn





Localization for AIBO robots



Limitations

- The approach described so far is able to
 - track the pose of a mobile robot and to
 - globally localize the robot.
- How can we deal with localization errors (i.e., the kidnapped robot problem)?

Approaches

- Randomly insert samples (the robot can be teleported at any point in time).
- Insert random samples proportional to the average likelihood of the particles (the robot has been teleported with higher probability when the likelihood of its observations drops).

Random Samples Vision-Based Localization

936 Images, 4MB, .6secs/image Trajectory of the robot:

Odometry Information

Image Sequence

Resulting Trajectories

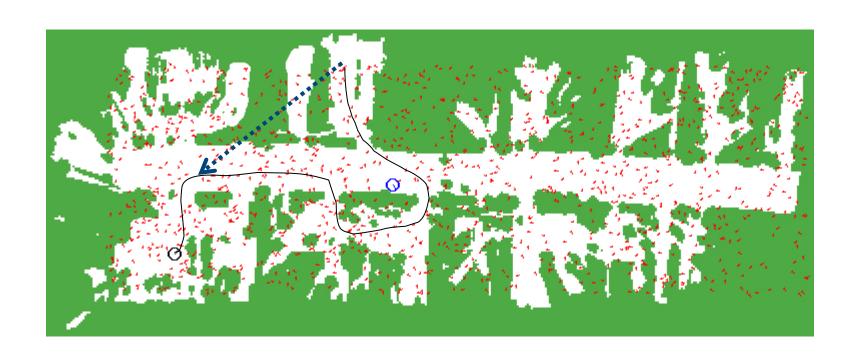
Position tracking:

Resulting Trajectories

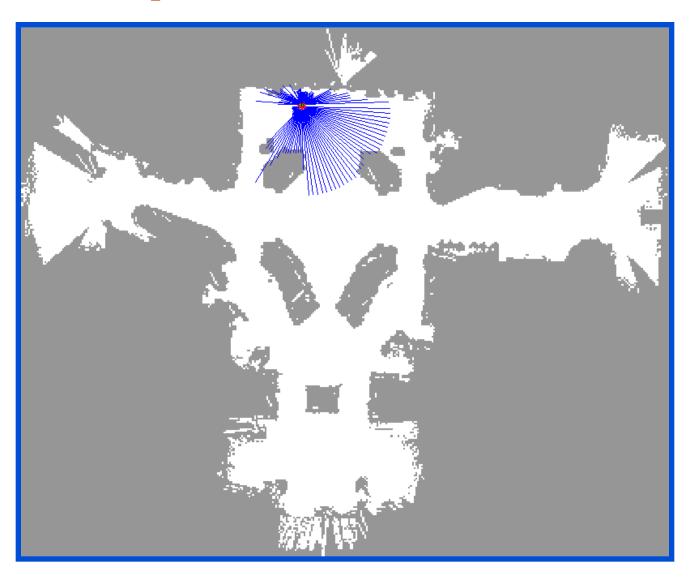
Global localization:

Global Localization

Kidnapping the Robot



Recovery from Failure



Summary

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples.
- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.