
Probabilistic Robotics 

Bayes Filter Implementations 
 

Particle filters 



Sample-based Localization (sonar) 



§  Represent belief by random samples 
§  Estimation of non-Gaussian, nonlinear processes 

§  Monte Carlo filter, Survival of the fittest, 
Condensation, Bootstrap filter, Particle filter 

§  Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96] 

§  Computer vision: [Isard and Blake 96, 98]  
§  Dynamic Bayesian Networks: [Kanazawa et al., 95]d 

Particle Filters 



Weight samples: w = f / g  

Importance Sampling 



Importance Sampling with 
Resampling 

Weighted samples After resampling 



Particle Filters 
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Sensor Information: Importance Sampling 
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Robot Motion 
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Sensor Information: Importance Sampling 



Robot Motion 
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Importance factor for xi
t: 
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Particle Filter Algorithm 



Resampling 

• Given: Set S of weighted samples. 

• Wanted : Random sample, where the 
probability of drawing xi is given by wi. 

• Typically done n times with replacement to 
generate new sample set S’. 
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Resampling 
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•  Roulette wheel 
•  Binary search, n log n 

•  Stochastic universal sampling 
•  Systematic resampling 

•  Linear time complexity 
•  Easy to implement, low variance 



Start 

Motion Model  Reminder 



Proximity Sensor Model Reminder 

Laser sensor Sonar sensor 
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Sample-based Localization (sonar) 
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Initial Distribution 
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After Incorporating Ten 
Ultrasound Scans 
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After Incorporating 65 
Ultrasound Scans 
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Estimated Path 



Using Ceiling Maps for Localization 



Vision-based Localization 

P(z|x) 

h(x) 

z 



Under a Light 

Measurement z: P(z|x): 



Next to a Light 

Measurement z: P(z|x): 



Elsewhere 

Measurement z: P(z|x): 



Global Localization Using Vision 
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Robots in Action: Albert 
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Application: Rhino and Albert 
Synchronized in Munich and 
Bonn 

[Robotics And Automation Magazine, to appear] 



Localization for AIBO 
robots 
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Limitations 

• The approach described so far is able 
to  
•  track the pose of a mobile robot and to 
• globally localize the robot. 

• How can we deal with localization 
errors (i.e., the kidnapped robot 
problem)? 
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Approaches 

• Randomly insert samples (the robot 
can be teleported at any point in 
time). 

• Insert random samples proportional 
to the average likelihood of the 
particles (the robot has been 
teleported with higher probability 
when the likelihood of its observations 
drops).  



51 

Random Samples 
Vision-Based Localization 
936 Images, 4MB, .6secs/image 
Trajectory of the robot: 
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Odometry Information 
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Image Sequence 



54 

Resulting Trajectories 

Position tracking: 
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Resulting Trajectories 

Global localization: 
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Global Localization 
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Kidnapping the Robot 



Recovery from Failure 
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Summary 

•  Particle filters are an implementation of 
recursive Bayesian filtering 

•  They represent the posterior by a set of 
weighted samples. 

•  In the context of localization, the particles 
are propagated according to the motion 
model. 

•  They are then weighted according to the 
likelihood of the observations. 

•  In a re-sampling step, new particles are 
drawn with a probability proportional to 
the likelihood of the observation.  


