Probabilistic Robotics

Bayes Filter Implementations

Particle filters

Sample-based Localization (sonar)

Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Monte Carlo filter, Survival of the fittest,
 Condensation, Bootstrap filter, Particle filter
- Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]
- Computer vision: [Isard and Blake 96, 98]
- Dynamic Bayesian Networks: [Kanazawa et al., 95]d

Importance Sampling

Weight samples: w = f/g

Importance Sampling with Resampling

Weighted samples

After resampling

Particle Filters

Sensor Information: Importance Sampling

$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$

Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$

Sensor Information: Importance Sampling

$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$

Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$

Particle Filter Algorithm

Resampling

Given: Set S of weighted samples.

• Wanted: Random sample, where the probability of drawing x_i is given by w_i .

 Typically done n times with replacement to generate new sample set S'.

Resampling

- Roulette wheel
- Binary search, n log n

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Motion Model Reminder

Proximity Sensor Model Reminder

Laser sensor

Sonar sensor

Sample-based Localization (sonar)

Initial Distribution

After Incorporating Ten Ultrasound Scans

After Incorporating 65 Ultrasound Scans

Estimated Path

Using Ceiling Maps for Localization

Vision-based Localization

Under a Light

Measurement z:

Next to a Light

Measurement z:

P(z|x):

Elsewhere

Measurement z:

Global Localization Using Vision

Robots in Action: Albert

Application: Rhino and Albert Synchronized in Munich and Bonn

Localization for AIBO robots

Limitations

- The approach described so far is able to
 - track the pose of a mobile robot and to
 - globally localize the robot.
- How can we deal with localization errors (i.e., the kidnapped robot problem)?

Approaches

- Randomly insert samples (the robot can be teleported at any point in time).
- Insert random samples proportional to the average likelihood of the particles (the robot has been teleported with higher probability when the likelihood of its observations drops).

Random Samples Vision-Based Localization

936 Images, 4MB, .6secs/image Trajectory of the robot:

Odometry Information

Image Sequence

Resulting Trajectories

Position tracking:

Resulting Trajectories

Global localization:

Global Localization

Kidnapping the Robot

Recovery from Failure

Summary

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples.
- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.