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Goals encoded as a Cost Function

* Which areas on the road are good?
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Optimizing cost function:
Descent Methods

* General descent algorithm
» Generalization to multiple dimensions

* Problems of descent methods, possible
improvements.

e Fixes
e Local Minima

Ashutosh Saxena

2/6/12



Ashutosh Saxena

Gradient Descent

Minimum of a function is found by following the slope of the function
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Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied
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Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied
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Direction: downhill

Ashutosh Saxena

2/6/12



Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied
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Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied
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Now you are here
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Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied
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Stop when “close”

from minimum
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Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied

guess =X

direction = -f'(x)
step=h>0
x:=x—hf(x)
f(x)~0
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Example of 2D gradient: pic of the MATLAB demo

lllustration of the gradient in 2D

Example of 2D gradient: pic of the MATLAB demo

lllustration of the gradient in 2D
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Example of 2D gradient: pic of the MATLAB demo

lllustration of the gradient in 2D

Example of 2D gradient: pic of the MATLAB demo

Definition of the gradient in 2D

of (x,y)

Viy) =1 ol

This is just a genaralization of the derivative in two dimensions.

This can be generalized to any dimension.

2/6/12

10



Example of 2D gradient: pic of the MATLAB demo

Gradient descent works in 2D

25

Generalization to multiple dimensions

Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied

Direction: downhill
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Generalization to multiple dimensions

Start with a point (guess) guess =X
Repeat
Determine a descent direction direction = -f(x)
Choose a step step=h>0
Update x:=x-h Vf(x)
Until stopping criterion is satisfied Vf' (x)~0

10,

-10.-L
30 -

el e

Multiple dimensions

Everything that you have seen with derivatives can be generalized
with the gradient.

For the descent method, f(x) can be replaced by

df (x.y)

Vi y) = aft,

dy

In two dimensions, and by
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in N dimensions.
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Problem 1: choice of the step
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When updating the current computation:
- small steps: inefficient
- large steps: potentially bad results

f(x)

Too many steps:
takes too long to converge
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Problem 1: choice of the step

—h
—
o

N W h O O N O O

When updating the current computation:
- small steps: inefficient
- large steps: potentially bad results
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Solution to step size

 Back-tracking line search.

o Step-size = step-size / 2
> Until new function value gets smaller.
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Problem 2: « ping pong effect »
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[S. Boyd, L. Vandenberghe, Convex Convex Optimization lect. Notes, Stanford Univ. 2004 ]
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Problem 2: « ping pong effect »
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backtracking line search exact line search

[S. Boyd, L. Vandenberghe, Convex Convex Optimization lect. Notes, Stanford Univ. 2004 ]

Fixes

Several methods exist to address this problem
- Line search methods, in particular

- Backtracking line search

- Exact line search

- Normalized steepest descent

- Newton steps

Fundamental problem of the method: local minima
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converge to a local minimum
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