CS 4758: Logistic Regression

Ashutosh Saxena

Cornell University

CS 4758 announcements

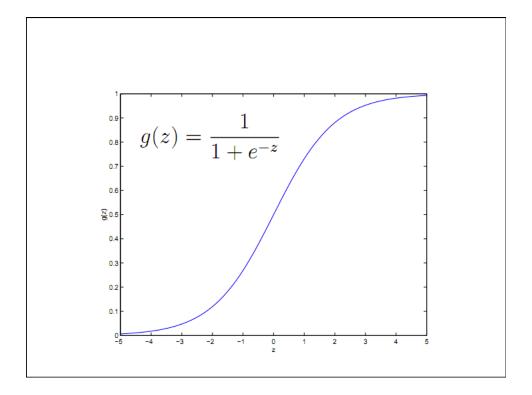
- HW1 due in class this Thursday.
- Project proposal due Feb 15 (or earlier).
 - See template on the webpage.
- Project sprint 1 report/presentation on Mar 4.

Lecture overview

- Basics: Robot Kinematics.
- Algorithms:
 - Gradient descent (different variants).Newton (today)
- Learning algorithms
 - K-NN
 - Supervised learning setting
 - Training/testing/cross-validation data-set. Overfitting. Importance of data-set.
 - Linear regression
 - Logistic Regression (today)
 - 3D Features (Feb 9)
- Software
 - ROS
 - PCL (Feb 14)
- · Markov Chains, MDP, reinforcement learning. (Feb 16 onwards)

Classification

- $Y = \{0,1\}$
- E.g., spam vs non-spam
- Chair vs no-chair.
- Pickable object vs not.

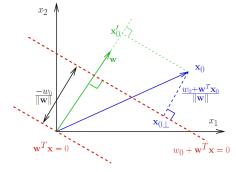


• Values of θ (or w) change the location of transition and its sharpness.

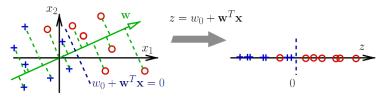
$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}},$$

Review: linear classification

• Linear projections



ullet Linear classification \Leftrightarrow 1-D dimensionality reduction



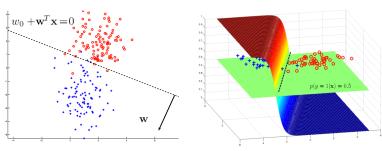
Review: logistic regression model

- ullet Binary classification, $\mathcal{Y}=\{0,1\}$
- Model the posterior

$$p(y = 1 \mid \mathbf{x}) = g(w_0 + \mathbf{w}^T \mathbf{x}) = \frac{1}{1 + \exp(-w_0 - \mathbf{w}^T \mathbf{x})}$$

• Linear decision boundary:

$$\hat{y} = 1 \Leftrightarrow g(w_0 + \mathbf{w}^T \mathbf{x}) > \frac{1}{2} \Leftrightarrow w_0 + \mathbf{w}^T \mathbf{x} = 0$$



Likelihood under the logistic model

- Regression: observe values, measure residuals under the model.
- Logistic regression: observe labels, measure their probability under the model.

$$p(y_i | \mathbf{x}_i; \mathbf{w}) = \begin{cases} g(w_0 + \mathbf{w}^T \mathbf{x}_i) & \text{if } y_i = 1, \\ 1 - g(w_0 + \mathbf{w}^T \mathbf{x}_i) & \text{if } y_i = 0 \end{cases}$$

Likelihood under the logistic model

- Regression: observe values, measure residuals under the model.
- Logistic regression: observe labels, measure their probability under the model.

$$p(y_i | \mathbf{x}_i; \mathbf{w}) = \begin{cases} g(w_0 + \mathbf{w}^T \mathbf{x}_i) & \text{if } y_i = 1, \\ 1 - g(w_0 + \mathbf{w}^T \mathbf{x}_i) & \text{if } y_i = 0 \end{cases}$$
$$= g(w_0 + \mathbf{w}^T \mathbf{x}_i)^{y_i} (1 - g(w_0 + \mathbf{w}^T \mathbf{x}_i))^{1-y_i}.$$

Likelihood under the logistic model

- Regression: observe values, measure residuals under the model.
- Logistic regression: observe labels, measure their probability under the model.

$$p(y_i | \mathbf{x}_i; \mathbf{w}) = \begin{cases} g(w_0 + \mathbf{w}^T \mathbf{x}_i) & \text{if } y_i = 1, \\ 1 - g(w_0 + \mathbf{w}^T \mathbf{x}_i) & \text{if } y_i = 0 \end{cases}$$
$$= g(w_0 + \mathbf{w}^T \mathbf{x}_i)^{y_i} (1 - g(w_0 + \mathbf{w}^T \mathbf{x}_i))^{1 - y_i}.$$

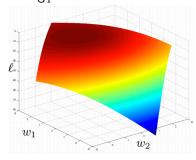
• The log-likelihood of w:

$$\begin{split} \log p(Y|X;\mathbf{w}) &= \sum_{i=1}^{N} \log p\left(y_i \,|\, \mathbf{x}_i;\, \mathbf{w}\right) \\ &= \sum_{i=1}^{N} y_i \log \, \mathsf{g}(w_0 + \mathbf{w}^T \mathbf{x}_i) + (1 - y_i) \log \left(1 - \mathsf{g}\left(w_0 + \mathbf{w}^T \mathbf{x}_i\right)\right) \end{split}$$

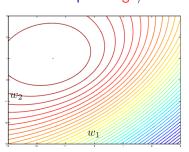
Visualizing the log-likelihood surface

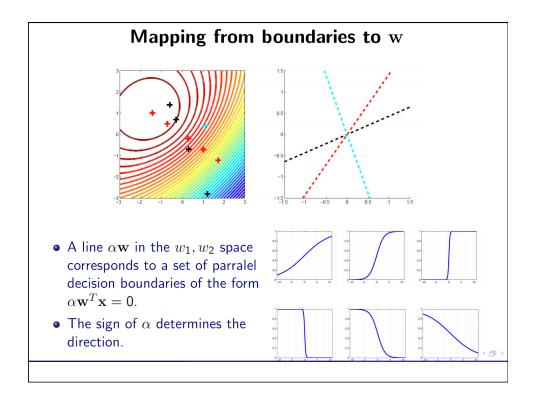
• We will look at a 2D example, and assume $w_0 = 0$, i.e. our model will be $\hat{p}(y = 1|\mathbf{x}) = \sigma(w_1x_1 + w_2x_2)$.

 $\log p$ as a function of \mathbf{w}



Contour plot: high/low





Derivation of g'(z)

(On blackboard.)

Update rule

$$\mathbf{w}_{j} := \mathbf{w}_{j} + \alpha \left(y^{(i)} - h_{\mathbf{w}}(x^{(i)}) \right) x_{j}^{(i)}$$

Generalized additive models

 As with regression we can extend this framework to arbitrary features (basis functions):

$$p(y = 1 | \mathbf{x}) = g(w_0 + \phi_1(\mathbf{x}) + ... + \phi_m(\mathbf{x})).$$

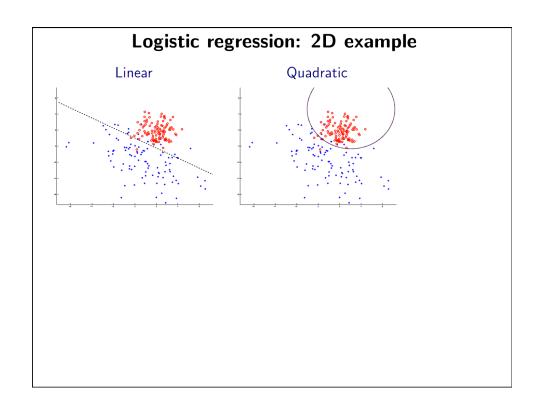
• Example: quadratic logistic regression in 2D

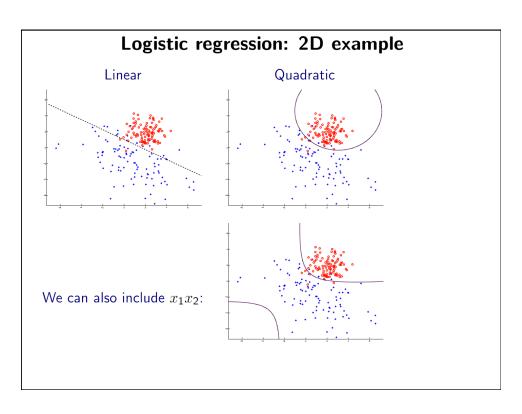
$$p(y = 1 | \mathbf{x}) = g(w_0 + w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_2^2).$$

• Decision boundary of this classifier:

$$w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2 = 0,$$

i.e. it's a quadratic decision boundary.





Overfitting with logistic regression

- We can get the same decision boundary with an infinite number of settings for w.
- When the data are *separable* by $w_0 + \alpha \mathbf{w}^T \mathbf{x} = 0$, what's the best choice for α ?

$$p(y = 1 \mid \mathbf{x}) = \sigma(w_0 + \alpha \mathbf{w}^T \mathbf{x}).$$

- With $\alpha \to \infty$, we have $p(y_i|\mathbf{x}; w_0, \alpha \mathbf{w}) \to 1$.
- With $\alpha = \infty$ there is a continuum of w_0 that reach perfect separation.
- When the data are not separable, similar effect is present but more subtle.

MAP for logistic regression

• Instead of log $p(Y|X; \mathbf{w})$ the objective function (under the Gaussian prior) becomes:

$$\log \tilde{p}(Y|X, \mathbf{w}; \sigma) = \log p(Y|X, \mathbf{w}) + \log p(\mathbf{w}; \sigma)$$
$$= \sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i; \mathbf{w}) - \frac{1}{2\sigma^2} (w_1^2 + w_2^2) + \text{const}(\mathbf{w}).$$

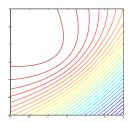
- This is a penalized log-likelihood (or log-posterior).
- Note that $w_1^2 + w_2^2 = ||\mathbf{w}||^2$.
- Setting σ^2 will affect the penalty we impose for a particular value of $\|\mathbf{w}\|$.

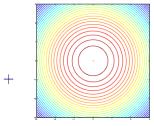
Penalized likelihood surface

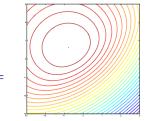
 $\log p(Y|X;\mathbf{w})$

 $\log p(\mathbf{w}; \sigma)$

 $\log \tilde{p}(Y|X,\mathbf{w};\sigma)$



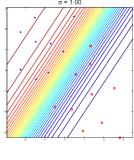


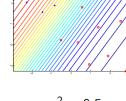


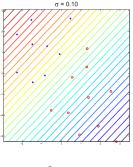
- This is our objective function, and we can find its peak by gradient descent as before.
 - Need to modify the calculation of gradient and Hessian.

The effect of regularization: separable data

$$\log \tilde{p}(Y|X, \mathbf{w}; \sigma) = \sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i; \mathbf{w}) - \frac{1}{2\sigma^2} ||\mathbf{w}||$$







$$\sigma^2 = 1$$

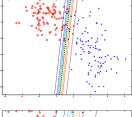
$$\sigma^2 = 0.5$$

$$\sigma^2 = 0.1$$

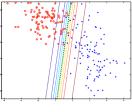
The effect of regularization

$$\log \tilde{p}(Y|X; \mathbf{w}, \sigma) = \sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i; \mathbf{w}) - \frac{1}{2\sigma^2} ||\mathbf{w}||$$

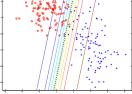
ML



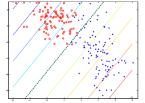
$$\sigma^2 = 1$$



$$\sigma^2 = 0.1$$



$$\sigma^2 = 0.01$$



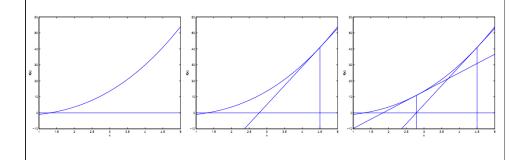
How to optimize the objective function?

- Gradient descent
 - Coordinate descent
 - Stochastic gradient descent
 - Batch gradient descent
- Newton's method.

Newton's method

• Find zero of a function $f(\theta) = 0$

$$\theta := \theta - \frac{f(\theta)}{f'(\theta)}.$$



Newton's method

- Maximize some function $I(\theta)$
- $f(\theta) = I'(\theta)$

$$\theta := \theta - \frac{\ell'(\theta)}{\ell''(\theta)}.$$

$$\theta := \theta - H^{-1} \nabla_{\theta} \ell(\theta).$$

$$H_{ij} = \frac{\partial^2 \ell(\theta)}{\partial \theta_i \partial \theta_j}.$$

Softmax regression

- $Y = \{1, 2, ..., K\}$
- E.g., objects: {chair, table, monitor, none}.
- E.g., activities: {cooking, drinking, eating, none}.

Softmax idea

• Logistic regression, y={0,1}. h(x) was scalar.

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}},$$

$$p(y_i | \mathbf{x}_i; \mathbf{w}) = \begin{cases} \mathbf{g}(w_0 + \mathbf{w}^T \mathbf{x}_i) & \text{if } y_i = 1, \\ 1 - \mathbf{g}(w_0 + \mathbf{w}^T \mathbf{x}_i) & \text{if } y_i = 0 \end{cases}$$

• Now, it would be a vector. $heta_1,\dots, heta_{k-1}\in\mathbb{R}^{n+1}$

$$\begin{aligned} p(y = i | x; \theta) &= \phi_i \\ &= \frac{e^{\eta_i}}{\sum_{j=1}^k e^{\eta_j}} \\ &= \frac{e^{\theta_i^T x}}{\sum_{j=1}^k e^{\theta_j^T x}} \end{aligned}$$

Softmax details (optional)

$$\begin{aligned} \theta_{1}, \dots, \theta_{k-1} &\in \mathbb{R}^{n+1} \\ p(y = i | x; \theta) &= \phi_{i} \\ &= \frac{e^{\eta_{i}}}{\sum_{j=1}^{k} e^{\eta_{j}}} \\ &= \frac{e^{\theta_{i}^{T} x}}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x}} \end{aligned} \qquad h_{\theta}(x) = \begin{bmatrix} \frac{\exp(\theta_{i}^{T} x)}{\sum_{j=1}^{k} \exp(\theta_{j}^{T} x)} \\ \frac{\exp(\theta_{i}^{T} x)}{\sum_{j=1}^{k} \exp(\theta_{j}^{T} x)} \\ \vdots \\ \frac{\exp(\theta_{k-1}^{T} x)}{\sum_{j=1}^{k} \exp(\theta_{j}^{T} x)} \end{bmatrix}$$

$$\ell(\theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)$$

$$= \sum_{i=1}^{m} \log \prod_{l=1}^{k} \left(\frac{e^{\theta_{l}^{T} x^{(i)}}}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x^{(i)}}} \right)^{1\{y^{(i)} = l\}}$$

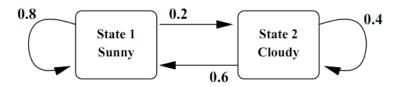
break

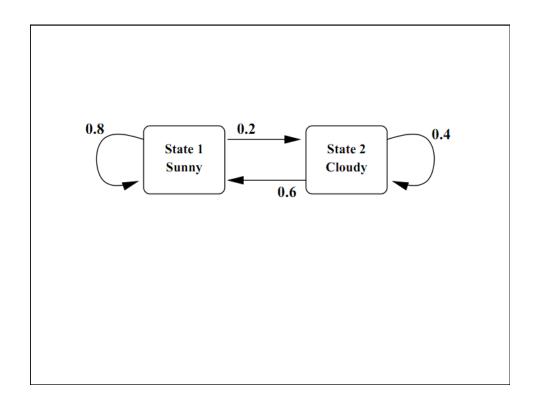
Markov Chains

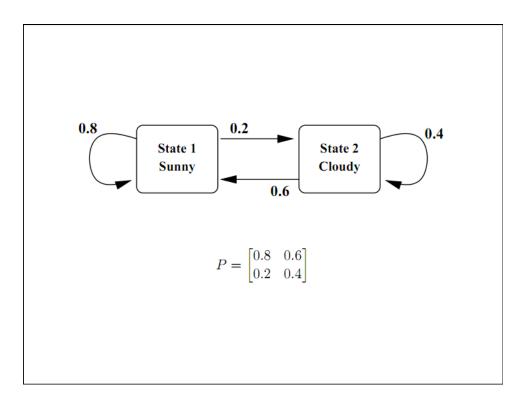
- Vector of probabilities at each step
- Transition probability

$$p_{ij} = \text{Prob}(\text{ State } n+1 \text{ is } S_i \mid \text{ State } n \text{ is } S_j$$

- Transition probability matrix $P = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1r} \\ p_{21} & p_{22} & \cdots & p_{2r} \\ \vdots & & \ddots & \\ p_{r1} & & & p_{rr} \end{bmatrix}$
- Go from one step to next: $\vec{p}_{n+1} = P\vec{p}_n$.







• That's all.