CS 4758: Logistic Regression

Ashutosh Saxena

Cornell University

CS 4758 announcements

* HW1 due in class this Thursday.

* Project proposal due Feb 15 (or earlier).
— See template on the webpage.

* Project sprint 1 report/presentation on Mar 4.
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Lecture overview

Basics: Robot Kinematics.
Algorithms:
— Gradient descent (different variants).
— Newton (today)
Learning algorithms
— K-NN
— Supervised learning setting

— Training/testing/cross-validation data-set. Overfitting. Importance of data-set.

— Linear regression

— Logistic Regression (today)

— 3D Features (Feb 9)
Software

— ROS

— PCL (Feb 14)

Markov Chains, MDP, reinforcement learning. (Feb 16 onwards)

Classification

Y ={0,1}
E.g., spam vs non-spam
Chair vs no-chair.

Pickable object vs not.
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* Values of 6 (or w) change the location of
transition and its sharpness.

1
ho(z) = g(67x) = ————,




Review: linear classification

@ Linear projections

@ Linear classification < 1-D dimensionality reduction

z =Wy +wlx

I

Review: logistic regression model

e Binary classification, Y = {0,1}
@ Model the posterior
1
1+ exp(—wo — wlx)

p(y=1|x) :g(w0+wa) =

@ Linear decision boundary:

g=1 @g(w0+wa)>% s wy+wlix =0

i 82% @0 o
! o

o o oo

/

/

/

plu=1p) =03

2/7/12



Likelihood under the logistic model

@ Regression: observe values, measure residuals under the model.
o Logistic regression: observe labels, measure their probability under the
model.

p(yilxsw) = {

g (wo +w'x;) ify; =1,
1—g(wo +WTXi) ify; =0

Likelihood under the logistic model

@ Regression: observe values, measure residuals under the model.
@ Logistic regression: observe labels, measure their probability under the
model.

‘g (wo + WTXl') ify; =1,
p(yi|xiw) = T .
1—g(wp+w'x;) ify; =0

1-y:

g (wo + WTxi)yi (1 —g(wo + WTXZ'))
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Likelihood under the logistic model

@ Regression: observe values, measure residuals under the model.
@ Logistic regression: observe labels, measure their probability under the
model.
g (wo + wlx;) ify; =1,
p(yi|xiiw) = o
1—g(wo+w'x;) ify; =0

= g (wo + wlx;)¥ (1—g(wo+ WTxi))l_yi .
@ The log-likelihood of w:
N
log p(Y|X; w) = > logp (yi | xi; W)

i=1

N

= Z yilog g(wo + wix;) + (1 —y;)log (1 — g (wo + W' x;))
i=1

Visualizing the log-likelihood surface

@ We will look at a 2D example, and assume wg = 0, i.e. our model will
be p(y = 1|x) = o(wiz1 + wox2).

log p as a function of w Contour plot: high/low
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Mapping from boundaries to w
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@ A line aw in the wy, wy space . - .
corresponds to a set of parralel [ .

decision boundaries of the form
awlx = 0.

@ The sign of o determines the ‘ N
direction. i Zf‘ L

Derivation of g’(z)

(On blackboard.)




Update rule

wi =W 4 Q (?J(i) —h m(-”(i))) 'Tg'i)

Generalized additive models

@ As with regression we can extend this framework to arbitrary features
(basis functions):

py=1]x) = g (wo+d1(x) + ...+ om(x)).

@ Example: quadratic logistic regression in 2D

p(y=1|x) = & (wo + w1z + woxo + 11)315% + w4:r2) )

e Decision boundary of this classifier:
wo + W11 + w2 + ng% + u;4x§ =0,

i.e. it's a quadratic decision boundary.
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Logistic regression: 2D example

Linear

Quadratic

Logistic regression: 2D example

Linear

Quadratic

We can also include z125:
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Overfitting with logistic regression

@ We can get the same decision boundary with an infinite number of
settings for w.

@ When the data are separable by wy + awx = 0, what's the best
choice for a?
p(y=1|x) = o(wo + aw’x).

e With a — oo, we have p(y;|x; wo, aw) — 1.
@ With o = o there is a continuum of wg that reach perfect separation.

@ When the data are not separable, similar effect is present but more
subtle.

MAP for logistic regression

o Instead of log p(Y'|X; w) the objective function (under the Gaussian
prior) becomes:

log p(Y|X,w;0) = logp(Y|X,w) + logp(w; o)

1

N
= Z logp (vi | xi; W) — ﬁ(u'% + w3) + const(w).
i=1

This is a penalized log-likelihood (or log-posterior).

Note that w? + w3 = ||w|°.

Setting o2 will affect the penalty we impose for a particular value of
[[wll.
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Penalized likelihood surface

logp(Y|X; w) log p(w; o)

@ This is our objective function, and we can find its peak by gradient
descent as before.

e Need to modify the calculation of gradient and Hessian.

The effect of regularization: separable data

N
) 1
log (Y| X, wio) = > _logp (yi|xi;w) — 5wl
i=1

6 =1.00
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ML

0?2 =0.1

The effect of regularization

log (Y| X;w,0) Z'ng Yi | xi;w) — —HWH

o2 =0.01

How to optimize the objective
function?

e Gradient descent

— Coordinate descent

— Stochastic gradient descent

— Batch gradient descent

* Newton’s method.
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Newton’s method

* Find zero of a function f(6) =0

Newton’s method

* Maximize some function I(0)
* £(6)=1"(0)

_ )
0i=0= Zar
0:=0— H'Vl(0).
()
}J?] B é?@ié?ﬁj'
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Softmax regression

* Y={1,2,..,K}

* E.g., objects: {chair, table, monitor, none}.

* E.g., activities: {cooking, drinking, eating,
none}.

Softmax idea

* Logistic regression, y={0,1}. h(x) was scalar.

1
ho(z) = g(6T2) = ———,
l@) = 9(67x) =

p(yi|xiw) = {

g (wo + wlx;) ify; =1,
1—g(wo +wlx;) ify; =0

* Now, it would be a vector. 4,. L 0,_; € R

ply =ilz;6) = o;
6771'

Z];":l e’

6Tz

e

Zl]ﬁ_‘zl eH‘IT:c
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Softmax details (optional)

1
Or..... Op_1 € R*
ply =ilz;6) = o [ exp(bfx)
el Z§=1 exp(é‘}—z)
= —F— exp(63 z)
Zj=l e hg (7;) — Z§=1 exp(6] )
T2 .
e :
= P oT exp(HZ_lz)
Zj:l e’ L §=1 exp(QjTl‘) i

o) = Zlogp(y(i)].r(i):@)
i=1

m k pg[TI(i) 1y =1}
- ZlogH Zk 0T 2 (D)

i=1 1=1 j=1¢"

break
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Markov Chains

ey b

* Vector of probabilities at each step Lfl
o, . ope I_jn = .

* Transition probability :
pij = Prob( State n + 1 is S; | State n is S Pr
oy " . pPun P12 - Pir

* Transition probability matrix [1)21 P - Par

DPr1 DPrr

Go from one steptonext: 5 _, = Pp,.

0.8

0.4
State 1 State 2

Sunny Cloudy

0.4
State 1 State 2

Sunny Cloudy
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State 2

Cloudy

e That’s all.
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