Hidden Markov Models

CS4758: Robot Learning

Ashutosh Saxena

Lecture 14

L ecture slides also taken from Eric
Sudderth and Andrew Moore.
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Radar-based tracking Visual tracking of

of multiple targets articulated objects
(L. Sigal et. al., 2006)

» Estimate motion of targets in 3D world from
indirect, potentially noisy measurements



Robot Navigation: SLAM

Simultaneous Localization and Mapping

D%, Landmark PRERgFEs g N
e SLAM e (el | TRIEAY
(E.Nebot, | e o SN

Victoria Park) = v ( ) R

CAD
Map

(S. Thrun,
San Jose Tech Museum)

Estimated
Map

* As robot moves, estimate its
pose & world geometry



Financial Forecasting
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* Predict future market behavior from historical
data, news reports, expert opinions, ...



Outline

Introduction to Temporal Processes
» Markov chains
» Hidden Markov models
Discrete-State HMMs
» Inference: Filtering, smoothing, Viterbi, classification
» Learning: EM algorithm
Continuous-State HMMs

» Linear state space models: Kalman filters

» Nonlinear dynamical systems: Particle filters

Applications and Extensions
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A Markov System

Has N states, called s, 5, .. 5,

There are discrete timesteps,
=0, t=1, ...
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Cument State

A Markov System

Has N states, called s, s, .. 5,

There are discrete timesteps,
=0, t=1, ...

On the t'th timestep the system is
in exactly one of the available
states. Call it g,

Note: g, €{s,, S, .. Sy }



Current State

A Markov System

Has N states, called s, 5, .. 5,

There are discrete timesteps,
=0, t=1, ...

On the t'th timestep the system is
in exactly one of the available

states. Call it g;
Note: g; €{s,, 55 .. Sy }

Between each timestep, the next
state is chosen randomly.



P(9.,,=5,]9,=5;) = 172
F(.,,=5,]9,=5,) = 172
F(0.,,=5;]09,=5,) =0

N=3
t=1
q:=qf=52

A Markov System

Has N states, called s, s, .. 5,

There are discrete timesteps,
=0, t=1, ...

On the t'th timestep the system is
in exactly one of the available
states. Call it g,

Note: g, {s,, 5, .. 5 }

Between each timestep, the next

P(0;,1=5410=S3) = 113
PG 1=5210:=55) = 2/3

P{0,175219,75;) = 0

state is chosen randomly.

The current state determines the
probability distribution for the

next state.



P(,,,=5,19;=5;) = 1/2
F(0.,,=5,]0,=5,) = 1/2
P(Q,,,=5;l9=5,) = 0

{?!={?¢=52

A Markov System

Has N states, called s, 5, .. 5,

There are discrete timesteps,
=0, t=1, ...

On the t'th timestep the system is
in exactly one of the available

states. Call it g,
Note: g; €{s,, 55.. Sy }

Between each timestep, the next

P(Q1=51|0=S3) = 1/3

P (G =5,10=S5) = 2/3
P0,175;10,75;) = O

state is chosen randomly.

The current state determines the
probability distribution for the

Often notated with arcs ext state.
between states




Markov Property

d:., Is conditionally independent

of { Q1. G2, -~ 91, 9o } GiVeN q.
In other words:

P(Gq = S G =s) =
P(9..1 = s;]d: = s;,any earlier history)
Question: what would be the best

Bayes Net structure to represent

the Joint Distribution of ( g, 94,
=1 P(0,4=5:1075:) = 113 || 1,94 }?

PG 1=5210:=53) = 2/3
P(0441=5219755) = O




he

(0ys =Sy

q:=S,) = 1/2

Answer:

1/2
D

9

13

Markov Property

d.., Is conditionally independent
of { G.1s G2, -+~ A1, Fo } GiVeN g

In other words:
P{q:ﬂ = Ej |':|' = Ei } =
P(¢1 = 8|0 = s ,any earlier history)

Question: what would be the best
yes Net structure to represent

e Joint Distribution of ( q,, 9.
05,93:94 )7



P(9,,,=541975,) = 1/2

Each of these
probability
tables is
identical

47

ﬂr{,f = P(E.r.!rr—'.

= S'J.|(L :Sr'-}

»| Markov Property
D | d..,1s conditionally independent
Pi0t+1=5119=5i) [PI0t:1=S200=5) | --| PI0::1=5)19,=5) | - .| Pl 1= Spgla=51)
IIﬂlf“.' 'ﬂf'_? B Ei'1',1' B Ejl‘h"-.'
Ei'-_;.,, 'ﬂ,?'_? o a'_?"l' 15-'il.‘:"l"-.'
35'“.' '33'_3' B 55',!' aEl"-.'
ﬂl’f afE B al_'r' B af.'".'
'Eru'-.l'f a."u'.: Eiln'-.l'r a."u'."‘.'
e Joint Dlstrlbutmn of ( qp, Q4.
C2,G3,Gs )7 f\
3 Notation:
- )







A Blind Robot

Location of Human II', AI,E_I_::’__'_}___ ________---'

Ty

M A human and a

/'*1 ‘ robot wander

| around randomly

_ ‘ onaaqnd. ..

S

R
H
— ™ |i--'l_'llr":-lI
Location of Robot t‘i‘ib' - 1

STATE q = | \ g = 324



Dynamics of System Each timestep the
q, = human moves

R randomly to an
adjacent cell. And
Robot also moves
H randomly to an
adjacent cell.

Typical Questions:
«"What's the expected time until the human is
crushed like a bug?”
« “‘\What's the probability that the robot will hit the
left wall before it hits the human?”

“"What's the probability Robot crushes human
on next time step?”




Example Question

“It's currently time t, and human remains uncrushed. What's the

probability of crushing occurring attimet+ 1 7”

If robot is blind:
< We'll do this first

We can compute this in advance.

If robot is omnipotent:

(l.E. If robot knows state at time t), <l:

Too Easy. We
won't do this

can compute directly.

<: Main Body
of Lecture




What is P(q; =s)? slow, stupid answer

Step 1: Work out how to compute P(Q) for any path Q

= {10243 -- G;
Given we know the start state q, (i.e. P(q,)=1)

P(q; d, .. g;) = P(d4 95 .. dvq) P(a:la s .- Aiq)
= P(q4 ds .- di.q) P(q4/9i.1) WHY?
= P(a,]94)P(a5]a,)-..P(a;lq..4)

"
1

Step 2: Use this knowledge to get P(q, =s) %ﬁj

P(q, =)= SPQ) et

(=Paths of length 7 that end in =



What is P(q; =s) ? Clever answer

» For each state s, define
ps(i) = Prob. state is s, attime ¢

= P(g; =s)
« Easy to do inductive definition

Vi p,(i)=

Vi PaJ)=Plq.,, =5;)=



What is P(q, =s) ? Clever answer

» For each state s, define
ps(i) = Prob. state is s, at time ¢
= P(g; = s)
+ Easy to do inductive definition

‘1 if s, is the start state

Vi po(i) =1 .
: 0 otherwise

Vi Pe(J)=P(q.=35;)=



What is P(q; =s) ? Clever answer

» For each state s, define
p(i) = Prob. state is s, at time ¢
=P(q;=s)
+ Easy to do inductive definition

o _[1 if s, is the start state
Vi pli)=+ |
0 otherwise

Vi pPa(J)=P(g.,=5;)=

ZP(Q’M_E NG, =8)=



What is P(q, =s) 7 Clever answer

» For each state s, define
p(i) = Prob. state is s, at time ¢
=P(q;=s)
+ Easy to do inductive definition

. _[1 if 5, is the start state
Vi pyli)=1 |
0 otherwise

Vi Pum(J)=P(q.y=35;)=

Remember.
ZP(ELI_‘E ’ﬁ' _'5}_ HH-ZP{'E}'H]:SJ {Irz'gi}

ZP*I@H-_ =s,|q,=5,)P(q,=5,)= > a,p,(i)
i=] i=l



What is P(q; =s) 7 Clever answer

+ For each state s, define : Jﬁﬂmgl'ullﬁﬂti?]r_"l IS ?}ilr’ﬂple-
p,(i) = Prob. state is s, at time ¢ G?S{;ﬁ' " t)'Sta ein
=P(g;=s) 7
+ Easy to do inductive definition | PdT) | Pd2) | - | PdN)
Vi (i) 1 if s, is the start state 0 0 1 0
Vi ] =+
b L0 otherwise L
llil"'il p +1{j) P(q +l B _5 ] B 1-'ﬁn..=l.l
ZP(EL | =85, Aq,=5,)=
:llllr b1



What is P(q, =s) ? Clever answer

» For each state s, define
py(i) = Prob. state is s, at time ¢

= P(g; = s)

« Easy to do inductive definition
1 if s, is the start state

Vi p)=1

L

Vi PmJ)=P(q.=35;)=

otherwise

Cost of computing F.(1) for all
states S, 1s now O(t N2)

The stupid way was O(NF)
This was a simple example
It was meant to warm you up
to this trnick, called Dynamic

Programming, because
HMMs do many tricks like

this.

ZP(Q;I_‘S NG, =S;)=

ZP{GHL
i=]

=5,.l' fj', ='5§}P(QI = Sr':] = Zﬂﬁp"(rj
i=]




Hidden State

!f robot has some sensors, but <: Main Body
incomplete state information ... of Lecture

Hidden Markov Models are
applicablel



Hidden State

+ The previous example tried to estimate P(qg; = s)
unconditionally (using no observed evidence).

+ Suppose we can observe something that's affected
by the true state.

« Example: Proximity sensors. (tell us the contents of
the 8 adjacent squares)

|~|l|.|' |~|l|.|' ||I|l|.|'
H . = y L
denotes
- * H WwWaLL®

True state g, What the robot sees:

Observation O,



Noisy Hidden State

« Example: Noisy Proximity sensors. (unreliably tell us

the contents of the 8 adjacent squares)

Ry

H

True state g,

- =
"
® denotes
— - “WALL"
Uncorrupted Observation
A
|~|l|.|' ||I|l|.|'
® W
H H

What the robot sees:
Observation O,



Noisy Hidden State

« Example: Noisy Proximity sensors. (unreliably tell us
the contents of the 8 adjacent squares)

R, 2 W W W W
i ® 1 denotes
T H “WALL"

True state g, _ _ Uncorrupted Observation
0. 15 noisily determined depending on Y
the current state. W W
Assume that O.is conditionally ® | W
independent of {q,,, G, --- s, Ay Oy, H H

Oz, --- 01, G hgiven g, What the robot sees:
In other words: Observation O,
F(O,=X]g,=5,) =

P(O,= X|qg,= s, ,.any earlier history)




Noisy Hidden State

« Example: Noisy Proximity sensors. (unreliably tell us
the contents of the 8 adjacent squares)

R, 2 W W W W™
i ® 1 denotes
T H “WALL"

Lrue state g, : _ Uncorrupted Observation
O, 15 noisily determined depending on N
the current state. W W
Assume that O, is conditionally ® -
independent of {d,,, U, --- Dy, Dy Oy, H H

Oz - Oy, Op } given g, What the robot sees:

In other words: ~———__ Observation O,

P(O,=X|q.=5 )= Question: what'd be the best Bayes Net
t - structure to represent the Joint Distribution
F(O,= X |q,= s, ,any earlier history) of (g, 94, 92.92.95 Og, 04, 05,05,04 )7




Answer Hidden State

Kimity sensors. (unreliably tell us
adjacent squares)

H -|’r||II .|’r||II .|lr||II
| 'Iln..'
| & denotes
|| EE— H “WALLT
Uncorrupted Observation
A"
|~|l|.|' |~|l|.|'
® W
H H
What the robot sees:

— Observation O,

ion: what'd be the best Bayes Net
structure to represent the Joint Distribution

plory )} Of (dg. Gy, 92.93.04 Op. Oy, 05,0,.0,)7

=t
—
w2
-
—




A ' : B o ¥ P T
nswerq Hldden Motation:
0 Kimity sens|b(k)=P(0,=k|q, =5,

I P
I |PIO=11g,25;) [PIOF=2 q._=5i]tﬂf’.'f P{O=Kig=5;) | -. |PIO=Mig=5;)
d, 1ou(1)  [Bg(2)  [batk) | {py(M)
2|05(1)  |Ba(2) || by(k) |, (M)
3105(1) bs(2) | Da(K) |0z (M)
92 - L|b(1) b, (2) -|bi(k) -6, (M)
ND,, (1) by, (2) ---{ Dy (K) - Dy, (M)
ds3 0 H | H
What the robot sees:
N Observation O,
q 4 ion: what'd be the best Bayes Net
O 4 structure to represent the Joint Distribution
Lory ) of (Qg. Gy, 92.92.94 Op, Oy, 05,0;3,0,4 )7




Hidden Markov Models

Qur robot with noisy sensors is a good example of an HMM
« Question 1: State Estimation
What is P(g;=S,; | O,0,...0+)
It will turn out that a new cute D.P. trick will get this for us.
« Question 2: Most Probable Path
Given O,0,...0;, what is the most probable path that | took?
And what is that probability?

Yet another famous D.P. trick, the VITERBI algorithm, gets
this.

« Question 3: Learning HMMs:

Given O,0,...0;, what is the maximum likelihood HMM that
could have produced this string of observations?

Very very useful. Uses the E.M. Algorithm



Some Famous HMM Tasks

Question 1: State Estimation
What is P(g=S; | 0,0,...0,)




Some Famous HMM Tasks

Question 1: State Estimation r |

Pl FRl FR] FR[
=2 -00d  JAN-23-200d pl-dE=200d T 2 3= 200
1542 1730 18-18 19:06




Some Famous HMM Tasks

Question 1: State Estimation

bus 15

55 aat | gt lesg Land Swii

PRI PRl FRI FRI
202008 JN-13-0004 230004 Jehie25-2ui
Bsd2 : = :

17330 18:18 19:06




Some Famous HMM Tasks

Question 1: State Estimation
What is P(g,=5,] 0,0,...0,)
Question 2: Most Probable Path

Given 0,0,...0;, what is
the most probable path
that | took?




Some Famous HMM Tasks

Question 1: State Estimation
What is P(q,=S, | 0,0,...0,

Question 2: Most Probable

Given O0,05...0;, what |
the most probable path

that | took?

MRl FRI
230008 Jip-23-2004
1542 1733

FRI FRI
JR-23-2004  JAN=23-0u0d
18:18 19:06




Some Famous HMM Tasks

Question 1: State Estimation
What is P(g;=S, | 0,0,...0,| Woke up at 8.35, Got on Bus at 9.46,

Question 2: Most Probable Satin lecture 10.00-11.22...

Given O,0,...0,, what |
the most probable path

that | took?

FRl F&l FRI FRI
SRR MN-25-200E  JAN-2E-200 IR 2 5=200i
1542 17:20 18;18 19;06




Some Famous HMM Tasks

Question 1: State Estimation
What is P(g:=S; | 0,0,...0,)
Question 2: Most Probable Path

Given O,0,...01, what is
the most probable path
that | took?

Question 3: Learning HMMs:

Given O,0,...0;, what is
the maximum likelihood
HMM that could have
produced this string of
observations?




Some Famo

— I IR AR A

|

Question 1: State Estimation
What is P(q,=5,| 0,0,...0
Question 2: Most Probable P

Given 0,0,...0;, what |

the most probable pa
that | took?

Question 3: Learning HMMs:

Given O,0,...0;, what is

the maximum likelihood
HMM that could have

produced this string of
observations?

L FRI PRl
MN-23-N00d  J-IE-A004  JAN-25-200d

17:30 18;18 19:06




Some Famoy "L

Question 1: State Estimation
What is P(q,=S, | 0,0,...0

Question 2: Most Probable P
Given O,0,...0;, what |

the most probable pa
that | took?

Question 3: Learning HMMs:

Given O,0,...0;, what is
the maximum likelihood
HMM that could have
produced this string of
observations?

FRI FE] FR1 FR[
M20-a00d MN-23-0004 JA-23-2004 DA 23-2ud
I5za2 17330 18:i8 19:06




Basic Operations in HMMs

For an observation sequence O = O,.. O, the three basic HMN
operations are:

Froblem Algorithm C:Jmelexity
Evaluation: -orward-Backward O( TNE}
Calculating P(g,=5, | O,0,...0,)
Inference: Viterbi Decoding O(TNE)
Computing Q" = argmaxg P(Q|O)
Learning: Baum-Welch (EM) | O (TNE )
Computing A" = argmax, P(O|4)

T = # timesteps, N = # states \/‘




HMM Notation —
_ : /LR F'iaLII'IEFI.I .TDLL;tt;nil I:nn
(from Rablner S Suwey) g-lsclgftrjsdm.i;:ﬁ::;:i:u:slinhapee-:"

Recognition," Proc. of the IEEE,

The states are labeled S; S, .. Sy vol.77. No.2. pp 257--235, 1928

Available from

For a particular trial....
Let T be the number of ohservations

T s also the number of states passed
through

O =0,0,.. O;is the sequence of observations
Q=4q,4,..97 Isthe notation for a path of states

A= (N,M,{m },{a;}.{bi(J))}) Is the specification of an
HMM



HMM Formal Definition

An HMM, A, 1s a o-tuple consisting of
N the number of states

M the number of possible observations :J This_iﬁ new. In our
 {n, m, . m} The starting state probabilities previous example,

start state was

Pla,=5)=m deterministic
*dy, A 8 |
a,. a,, Aoy, ?’- The state transition probabilities
- . . P{QHZS_ | q’czaij:aij
Ay G dyy
+ by(1) by(2) ... byM) ] e heervtion e
b, (1) b(2) . (M) e observation probabilities

P(O=k | q=S,)=b.(k)

pf1) b2 . byM) -



Here’S an H M M Start randomly in state 1 or 2

e Choose one of the output
- ad 173 o ;

S, ¥ “-\ISE symbols in each state at

| | B 7Y | random.

XY [
: 23 "'_"\{f«":\- ; /
- .;;.-.--- l?-f ) ‘:'IIE-H____.-"'T
m— ZX FTm
A o
1 I." a3
A1
Ty = 112 My = 142 T, =0
845 = 113 A4 = 213
Ay, = 113 8y = Ay = 203
A, = 113 845 = 113 Ay = 113
=12 b, (Y) =12 b, (£)=0
=0 b, (Y) =12 b, (£) =12



Here’'s an HMM Start randomly in state 1 or 2

e Choose one of the output
Lﬂ 113 -.l};—-x\.ISE syn;t}[jla In each state at
143 - ZY | randoim.

XY -~ |
P "-~-¢---~:.'-55}“-=T-*”; Let’s generate a sequence of
[ S observations:
T EX 3 -
e "{H — T Ty
\ [ 20-50 choice
A between S, and
M, = ¥ T, =0 t S,

Ay = V3 A5 = 73 r.,—}"
“ Az = A3 = 5 i
4 Ay, = ¥4 a,.,=% q,= o 0= |__
_ = __ Oy= _
= V4 b, (Y) =% b, (Z)=0 - —
_ _, e L= 1 19= |
=0 b, (Y) = % b, (Z) = %

(X) =V b, (Y) =0 b, (Z) = %



Here's an HMM

1/3
It

Start randomly in state 1 or 2

Choose one of the output

- l_ i-_-.“;“ K,f-—-a\& symbols in each state at
_ XY 113 _| ZY | random.
--I—
-r... . ..i 22 \,ﬁr}‘\ f’r Let's generate a sequence of
N~ -/ observations:
13 I . Z}{ f" '3 ____‘,:-'_-h,,-"' —-_,?,_—___\
N=3 ] Sa 50-50 choice
M=3 N3 between X and Y
My, = ¥ M, = %2 T, =0 )
1-_"‘—"5‘%-__ _,/L__
4, =0 diz = 3 dyy = 75 O
A, = a,, =0 Ayq = 35 [
dyy = Vs dy; = 2 dyg = Vs Jo= S, = |=
4= _ 1= _
b, (X) =22 b, (Y) =" b, (£)=0 _ O.=
b, (X)=0 b, (Y) = 1 b, (Z) =14 9 — = —
b, (X) =% b, (Y)=10 b, (Z) =1



Here's an HMM Start randomly in state 1 or 2

— Choose one of the output
1/3

C;“ ._._";: }, EISH syn;t}[jls In each state at
. XY ._. 13 _| ZY , Fandolm
-., . .“ 3, — H\ — /o Lets generate a sequence of
"‘x._____ { 7x hq'-.l ‘ 7 observations:
113 I'-.Kh {,.-' 3 T YT T T
T Sa Goto S; with
\_/113 (" probability 2/3 or
T, =% 1,=0 S, with prob. 1/3
T‘-‘.______';.._“__H____‘_’/L_—
Ay = %2 dy3 =73 —
Ay = ¥a Aoy = dy3 =73 —
i = 74 Ay = Vs i3 = 7 G=_ |SP |0= |X
Lo
=1 b, (Y)= Y b, (Z)=0 o I BE L
= ol 1 _ ol 1 = _ D _
- b,()=%  b@=n Hd=_1-7 1—
=% b, (Y)=0 b, (Z) =



HEFE’S an H M M Start randomly in state 1 or 2

. Choose one of the output
S, —y i "‘}f——-«\SE symbols in each state at

s/ Lets generate a sequence of

_ _-" | _f____-.--;*’ observations:
1 E ZX .E 113 o
B - P .
S, 50-50 choice
N3 between 7 and X
I[E = 15 *[3 = (] )
_iﬁh_—"h"-h-__ __./L__
E1n =V 313 = %4 —
A3 =% dyy = a,, = % -
A3 = % 8y = ¥ A3 = s o= '31 Du:(:)(
q,= 53 1= E
=% b, (Y) =12 b, (Z)=0
= - D:._:-: .
=0 b, (Y) =12 b, (Z) = %



Here's an HMM Start randomly in state 1 or 2

o Choose one of the output
S, — - "}r—-x\SE symbols in each state at
" | (EN - AV random.

XY - |
i J— __.H----"}\-E _~  Let's generate a sequence of
S R R e R : ,
W i observations:
TN : ZX W
iili_l_!,ﬂq_ — T
\_ Each of the three
= next states is |
-1 o —
= Ty =0 (C  equally likely “‘* _
~_ _,/L‘
E|1n = ‘.l-"'r-ﬂ- 313 = b __:h\q-h
A, = Va a,, =0 A4 = 33 )
a,.,= % A, = Y a,.,="% 9= |S, |0,= |X
T
(= Sa O= | X
=14 b, (Y) =% b, (Z)=0 ~ — ~
_ _ _ . 0= |- 0= |_
= b, (Y) =1 b, (Z) =1



Here’'s an HMM

143
LI

Start randomly in state 1 or 2

Choose one of the output

S, —— }f—a\s symbols in each state at
KY ‘_ 7Y ', random.
M , u- . “r(-l\ /' Lets generate a sequence of
observations:
13 'E Z}{.E' — TN
N=3 "._I"‘-'-"I; S, 5D 50 choice
M=3 A3 between Z and X
My, = ¥ M, = ¥ T, =0 )
[
dyg = di; = 7 dyz = V3 _
8y, = V2 ., = Ay, = 54 C_:J
a,, = Y 8y, = ¥a a., = q,= S, Dﬂ=f_|}}{
b, (X) =1 b. (Y) =% b. (Z)=0 O = 2
1 = Ja 1 = 2 1 - — Sq — e
b, (X)=0 b, (Y) =12 b, (Z) =1 4z - O —
b, (X) =12 b, (Y)=0 b, (Z) =1



Here's an HMM

Start randomly in state 1 or 2

Choose one of the output

S, . e "'}/’_'35; symbols in each state at
Xy - 13 7y | random.
N AP s Let's generate a sequence of
. ‘ i observations:
TR ZX 113
. 4
N =3 “remnxig
M=23 N3
My = ¥ M, = %2 M, =0
dyy = gy = Vs dyg = 43
A= Ay = dy3 = 73
A3 = 73 Ay = 75 A3 = s 9= |5, = | X
d:=_ |5; = | X
b, (X) =14 b, (Y) =12 b, (£)=10 0= Q _ |7
b, (X) =0 b, (Y) =Y b, (Z)=1 = - -
b, (X) =72 b, (Y)=0 b, (£) ="



State EStImatIDn Start randomly in state 1 or 2

e Choose one of the output
S 13 ":;,f-—-a\Sﬂ symbols in each state at

KY 21 ZY ', random.

/' Let's generate a sequence of
H"“‘Aj\\ observations:

13 ‘: ZX 5
feostis | This is what the
y , 1R : observer has to
T, = ¥ M, = V2 Ty = .
’ 2 3 work with. ..
a;,=0 Ay = s A3 = s I|
a,, =% a,, = a,, = % |
A, =% d,, = Va a., =% q,= O= | X
4= 1= X
=% b, (Y) = 1 b, (Z)=0 - -
=0 b, (Y) =% b, (Z)=1 LI ? O |Z
= % b, (¥) =0 b, (Z) = ¥



Prob. of a series of mbservatlona

What is F’{D) p{g 0, D}

' XY
Slow, stupid way: XY e
P{D} - ZP[G"“ QJ 1=

Q=Paths of lenzth 3

= > PO|QPQ)

J=Paths of length 3

How do we compute P(Q) for
an arbitrary path Q7

How do we compute P(0|Q)
for an arbitrary path Q7




Prob. of a series of Dbservatlons
What is P(0) = P(O, O, D}

P(O,=X"0,=X"0,=2)? “‘ G D
| {zv)
Slow, stupid way: f, v’ZA /
P(O) = ZP[G ~ Q) Py
Q=Paths of langzth 3 ‘;I,_ ,; :__-H
= Y PO|QPQ) \_/n

J=Paths of lenzth 3

P(Q)= P(d,,9,.9;

)
How do we compute P(Q) for)” =P(d,) P(d.,d:/9,) (chain rule)
P(q

(
: £
an arbitrary path Q7 ™ =P(a,) P(a,la,) P(a,] a,,,) (chain)
(

How do we compute P(O|Q) =P(q,) P(a,]a,) P(d.] g,) (why?)

for an arbitrary path Q7 Example inthe case U =5, 5,5,

=12* 253" 1/3=1/9




Prob. of a series of observatlmns
What is P(0) = P(O, O, D}

PO,=X"0,=X*0,=2)? v < . TN
| XY - EY )
Slow, stupid way: | ..___E‘;:fl..:_-?l ff----ﬁx{-i-}-};ﬁ/
P(O)= Y P(O~Q) m ZX e
Q=Paths of lenzih 3 l\r A g
= Y PO|QP©Q) N1
(}=Paths of length 3 P{Dl‘:}}
How do we compute P(Q) for|=P(O, 0,0, |9, d,d, )
an arbitrary path Q7 =P(0, | g, ) P(0, | 4, ) P(O, | 5 ) (why?)
How do we compute P(O|Q)|/ Example in the case Q = 5, 5, S,
for an arbitrary path Q7 =P(X| S,) P(X| S,) P(Z| S,) =

=12 127 12=1/8




Prob. of a series of mbservatlona
What is P(0) = P(0, O, O,) =

P(O,=X"*"0,=X" D3 Z)7? St 7/ %
. ;-(\,f |+ [ ZY |
Slow, stupid way: f \(ﬂk /
P(O)= ZP[G ~ Q) 10
QePaths of lengia 3 E\\\I,"
= ZP(H|Q}P[Q‘A‘F 'P{\I:ﬂ Z‘i‘
Q=Faths of lenzfh 3 d ET —
*::b \Wgﬂm nee PO\ ) *i"'—?
How do we compute P(Q)F— PO qs and 2 —
an arbitrary path Q7 -ﬁ:{; ﬁﬂmpﬂmw atioNS x}j
- u
How do we compute F’(El*|t,',1%,Fj com®

for an arbitrary path Q7

Mesmprleiel 0 &l eecas VA Bdeo=po

Clid= T



The Prob. of a given series of
observations, non-exponential-cost-style

Given observations O, O, ... O;
Define

0.(i)=P(0O,0,...0, nq. =S5, %) where 1 st=T

a;(1) = Probability that, in a random trial,

« \We'd have seen the first t observations

» We'd have ended up in S, as the t'th state visited.

In our example, what is a,(3) 7




o(1): easy to deflne recurswely

o (i) = P(O, O,

D NG, = :3|;"}x1|

a,(1)=P(0, n g, —SJ
~Plg, =5 }P{Gﬂ‘?] =s;)

(GG 0,0 A

1+l

rl{..,'rjl

=5}

what?

J

pe defin

stupidly by cons

ering al' paths len

gth

1. How?]



o,(1): easy to define recursively

E!T'I:.'l::l — P'I:G.I GE DT NG, = Si | :;"} (i} can be defined stupidly by considering all paths length

1. oW

a,(i)=PlO,rng,=S,)
=Plg, =S, }P{D1|?1 =5]|
= what?
‘-'1":+1U}= P(ﬂlﬂz--ﬂrﬂm Ny = SI)

T

N : .
=>Pl00,.0,nq =510, 1g,=5,)

Fuml

fum]

= Z Pl::DH] e = S_.l' q: = Sr' :b‘,'l:f}

QHI = S_.l' }I! I[I)

= ZP{QHI = Sj |'gr =5, _}[P(ﬂp,l

— Z a; 'E}_r' 'I:'D___,_] :h'r {E)

N ,
= Z Pl:.GHJ' e = S.J' GIGE G.‘ NG, = LSlr' lp[l:}lﬂfﬂf NG, = S'}

e



In our example

)= —gla) @ XY = Y |
&rr{f}_ P(GIG]-.{}; M gr M -""L] '-“‘x_ ;'__" - -"QA— F/’J
()= 1,(0, B
— ZX "1
LN _,F\} Zﬂy I th{’ } “h -f s,
A3

WE SAW 0,0,0,=XXZ

{Il(l):i a(2)=0 H1{3]={]
a,(1)=0 a,(2)=0 a,[3}=%
a;(1)=0 ﬂ5{2)=i gj[;)zi



Easy Question

We can cheaply compute
0,(1)=P(0,0;...01q=S))
(How) can we cheaply compute
P(O,0,...0,) 7

(How) can we cheaply compute
P(q:=5/0,0,...0))



Easy Question

We can cheaply compute
0,(1)=P(0,0,...01q=S))

(How) can we cheaply compute
P(O,0,...0,) 7

> a,(i)

(How) can we cheaply compute a, (i)

::llll-

P(g=S,0,0,...0,) Z&}U)

Jj=1




Most probable path given observations

What's most probable path given O,0,...0-.1.¢.

Whatis argmax P(0|0,0,..0;)?
Q

Slow. stupid answer :

argmax P(0|0,0,..0;)
Q

) P(0,0, ---OT‘Q)P(Q)
— argrqna}i P(_G1O?_"'GI )

-argmax P(0,0,..0;|0P(0)
Q



Efficient MPP computation

We're going to compute the following variables:

o(i)=  max P(d1 g2 .- Ger A 4= S A O .. Oy
9192--Gt-1
= The Probability of the path of Length t-1 with the
maximum chance of doing all these things:
...OCCURING
and
...ENDING UP IN STATE S

and
...PRODUCING OQUTPUT 0O,...0,

DEFINE: mpp,(i) = that path
So: &,(1)= Prob(mpp,(i))



The Viterbi Algorithm

5:&:": diq----4:_4 Plg,q,-.q,, ng, =S5 A ﬂlﬂ:“ﬂr)
WPP:{?-}= -t 4 P{fj’1fi'z---‘?_r_1 Mg, =35; A ﬂlﬂz--ﬂr)

oax

8,(7) = one choice Plg, =5, A 0,)
= P{fi'l =5, }P{Gl |‘?r'1 = Sr':]

=1.5,0,)
MNow, suppose we have all the &,(1)'s and mpp,(i)'s for all 1.

HOW TO IEET E:mmand mppt,,,{J

A
mpp,1)—- ?t‘-F'mI::u ﬁt{n "{r)
mpp.(2 o)
| PP{2) ﬁ “E.E) @LJ
- .'-\. IlI Prob=5,2) /%x‘x ™. -~ d—:-_
'y .I = II ) S

mppt{ N } i V' f;r-:-l::=ﬁ,i M) SQ

IIII . é ) qt I:I1+1

i
Copyright i Andress W, Moo | I Shide: &2



fime t

| -" I-Hlﬁn‘_:’_lr/H-)

The Viterbi Algorithm

time t+1

e

®

The most prob path with last
two states S; S
IS
the most prob path to S, ,

followed by transition S, — S,




The Viterbi Algorithm

fime t time t+1

N / Hﬁ&@

S The most prob path with last
A M ' N two states S, S.
WAVA }(’ _ I ™
|V E—D is
‘."'l/' I| |'IIIII| II.III"-
- v , = the most prob path to S, ,
fallonwad by transition Si _——

J

What is the prob of that path?
6,(1) X P(S; — S;1 Oy [ A)
= 0(1) & b; (Oy.4)
SO The most probable path to S, has
S. as its penultimate state
where i*=argmax 8(i) a; b; (Oy.4)
I




The Viterbi Algorithm

fime t time t+1
™ The most prob path with last
/ f.“ f_}@ \7i) two states S; S
i v ia
f'. NN
H"“’*k% the most prob path to S, ,
followad by transition Si » S

J

What is the prob of that path?

o(1) x P(S, — Sj A ""S LAY
= o) @ b (Oy.4) S

SD Th t b bl t+1|::.|::| - 'ﬁ u J 1+1}} with 1 defined
e MOosl propanie mﬂpmm _ mﬂﬂm to the lef

S as its penultimate Swre

where i"=argmax (i) a; b; (Oy.,)




Inferring an HMM

Remember, we've been doing things like
P(O,0,..0:|A)
That “A” is the notation for our HMM parameters.

Now We have some cbservations and we want to
estimate A from them.

AS USUAL: We could use

() MAX LIKELIHOOD A =argmax P(O, .. O; | A)
A

(i) BAYES
Work out P A O, O )

and then take E[A] ormax P(A | O, .. O;)
A



Max likelihood HMM estimation

Define
1"["{'} = P{qt = 5i | t::]1"::}2'"l::}T d A :'
&) =P(a =S5 A g1 = 5| 010;,...0: A)

vi(1) and g(1,)) can be computed efficiently i .t
(Details in Rabiner paper)

-1
Z. Y (F) — Expected number of transitions
t=1 out of state | durnng the path

-1
Z c (; j) —  Expected number of transitions from
r=1. £ state | to state | during the path



r-1

r-1

ful

i {'-":I - P[';!'i: = SE|GLD] -Or. “'J")
IE‘r{..‘r.-- ,-ﬂ =P{gr = 3 My = Sj |ﬂlﬂi"ﬂf= ":Lj

> ¥ (7) = expected number of transitions out of state i during path
=l

> gli g )= expected mumber of transitions out of iand into j during path

HMM
estimation

I-1 . {expected frequency |
Notice = - -
5, (i) " expected frequency |

£ L0

Tl | 1

L)
LS -~

= Estimate of Pmb{HEEt state S J-|Thi£ state S, jl

We can re - estimate

We can also re - estimate
b j{[}# Je— e (See Rabiner)




We want a;~" = new estimate of P(q,.; =s,|q, =s,) ‘




We want a; = new estimate of P(q,, =s,|q, =s,)

u

Expe:.,ted*naus]tmua i— j|27.0,.0,.-- 0,

.0,.0,.-+- O




We want a, = new estimate of P(q,,, =5, |q, =5,)

-\.-l

E‘apeuted #1r

2% 0,.0,.--0,

ZE&pectedw transitions i — k | 7. 0,.0,.--- O;

ZP({II+1 :'SJ"E}: = 3 |’{Dld*01‘02"”01':}

r=1

N T
ZZP Jre1 = k- = 9
=1

— ]
— | —

Hﬂll:i U G GT)




We want a; " = new estimate of P(q,., =5, |q, =s5,)

Expe:.,ted**naus]tmnsrﬁ ;M‘?M 0,.0,.---0;

| A7.0,.0,.---O;

ZP({IHI 4; =45 |’{Dld‘t}1*t}2"”0}'}
o ET=1T

ZZP(‘Tr-1 =5,.4, =5, | £°.0,.0,.---Op)

k=1 =]

L 11;1- T
: iJ nere S’i" :ZP({?;H :E,r"q: :Sr'-Ol-"'OT ;Lnld)
51.1 t=1

s

=t = What?




We want @, = new estimate of P(q,,, =5, |q, =s5,)

Expe:.,ted**nausltmus i— j|27.0,.0,.---0,

.0,,0,.---0;
ZP(qm =5 | A°.0,.0,.---0;)
=57
ZZP(Q’ 0 =8¢, =5, | A7°.0,.0,.---Or)
-1

b ¥ ..

=

J'-'..Ii"

DS,

1

I—where g ZP(gm—s .q,=5,.0,,- O | 1)

T

=a, Zﬂ’(i)ﬁ (1)b;(0,,,)




/| N T
We want ﬂ;m = Sﬁ-ﬁ/ ;5& where 5, = “g;ﬂ} (f);'{?:q(f)bj(gm}



{ N T
We want ﬂ;'ﬁ" = S-';-",f"f Z S_f.i.- where S-';-" =a, Z o, (-f}ﬁ:q{j)b;(()m]
foo k=1 r=1

" T o " B




EM for HMMs

If we knew A we could estimate EXPECTATIONS of quantities
such as

Expected number of times in state |
Expected number of transitions | — |

If we knew the quantities such as
Expected number of times in state |

Expected number of transitions | — |
We could compute the MAX LIKELIHOOD estimate of

A= ({a;}, b))}, m)

Roll on the EM Algorithm...



B~ LN =

EM 4 HMMs

Get your observations O, ...O;
Guess your first A estimate A(D), k=0
K=k+1

Given O, ...O+, A(k) compute
Vi), gfij)  v1stsT, wisisN, v1<jsN

Compute expected freq. of state i, and expected freq. i—)

Compute new estimates of a;, b(k), m; accordingly. Call
them A(k+1)

Goto 3, unless converged.

Also known (for the HMM case) as the BAUM-WELCH
algorithm.



Bad News

* There are lots of local minima

Good News

* The local minima are usually adequate models of the
data.

Notice

« EM does not estimate the number of states. That must
be given.

« Often, HMMs are forced to have some links with zero
probability. This is done by setting a,=0 in initial estimate
AO)

« Easy extension of everything seen today: HMMs with
real valued outputs



B BRI B W D

Trade-off between too few states (inadequately

modeling the structure in the data) and too many

(fitting the noise).
* There are lots ¢ | | o
Thus #states I1s a regulanzation parameter.

Blah blah blah. .. bias varnance tradeoff. . _blah
.. | blah.. _.cross-validation.. blah blah.. _AlC,
* The local minim g blah blah (same ol same ol’)

data.

+ EM does not€stimate the number of states. That must
be given.

« Often, HMMs are forced to have some links with zero
probability. This is done by setting a,;=0 in initial estimate
AQ)

« Easy extension of everything seen today: HMMs with
real valued outputs



What You Should Know

« What is an HMM 7
» Computing (and defining) o,(1)

» The Viterbi algorithm DON'T PANIC:
starts on p. 257

« Qutline of the EM algorithm \
 To be very happy with the kind of maths and | f.f
analysis needed for HMMs \» .“

+ Fairly thorough reading of Rabiner” up to page 266*
[Up to but not including “IV. Types of HMMs™].

L. B. Rabiner. "A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Proc. of the IEEE, Vol.77, No.2,
pp.257--286, 1989

nitp:ieeexplore.ieee org/iels/5/698/00018626 pdf7arnumber=18626




Outline

Introduction to Temporal Processes
» Markov chains
» Hidden Markov models
Discrete-State HMMs
» Inference: Filtering, smoothing, Viterbi, classification
» Learning: EM algorithm
Continuous-State HMMs

» Linear state space models: Kalman filters

» Nonlinear dynamical systems: Particle filters

Applications and Extensions



Discrete HMMs: Observations

Discrete Observations yr €4{1,2,..., M}
0.3 0.2]

. loa . loo

pQye oy =1) = || Pluelz=2)= |7
0.1 0.5

Continuous Observations Yt & Rk

VAN

p(yt | x¢ = 1) p(yt | x¢ = 2)




Linear State Space Models

@ T1 o ? @ It € Rd
©® @ wew
Tey1 = Az + wy wt ~ N (0, Q)
yr = Cxg + vy vy ~ N (0, R)

» States & observations jointly Gaussian:
» All marginals & conditionals Gaussian
» Linear transformations remain Gaussian



Simple Linear Dynamics

Brownian Motion

<o) 100 20
Time

Tip] = Tt T Wt

Constant Velocity




