
3D Object Detection with Kinect
Tian Li (tl268)

Prabhat Putchakayala (psp26)
Mike Wilson (mew232)

Keywords: Kinect, vision, object detection, segmentation
Robot: Telepresence

1. Abstract

The goal of our project is to develop a general machine learning framework for
classifying objects based on RGBD point cloud data from a Kinect. Using this
framework, a robot equipped with a Kinect will take the name of an object as input, scan
its surroundings, and move to the most likely matching object that it finds. As a proof of
concept, we demonstrate our algorithm on an office/school environment. The 5 major
components of this project are as follows. 1) Gather RGBD images of the environment
and stitch them together into a 3D map. 2) Implement a 3D image segmentation
algorithm building on well known 2D image segmentation algorithms. 3) Create a
program to label and extract feature values from the segmented objects; this serves as
the training data. 4) Choose a set of features, baselines, and a machine learning model
to use. 5) Implement the automated planning and control for the robot.

2. Data Collection

Since our algorithms are capable of working in any environment, there are many types
of objects that can be found once trained. We decided to focus on office and school
type settings, both because these environments are readily accessible and because a
robot capable of finding and possibly retrieving objects in these environments has high
potential (for example, locating an object in a cluttered workspace).

To collect data, we obtained a tripod and a wheeled dolly to provide a steady yet
mobile base for our Kinect sensor. We then manually moved the setup through many
environments and recorded video at 3 frames per second, where each frame was a
picture of the environment with RGB values, as well as a depth value for each pixel.

After the fact, the frames from these videos were stitched together into a large point
cloud using ROS’s RGBD-Slam algorithm. In total, we obtained 20 point clouds using
this method, and we received another 7 point clouds from another group working on a
similar project, resulting in a total of 27 large point clouds for use in our training phase.
These clouds can be added to existing data sets to benefit future projects on 3D analysis
of office or school environments.

To limit the scope of our project and prevent having to spend too much time training
on many of the objects that can be found in a school or work environment, we limited

our objects to just the following eleven: umberellas, floors, walls, wallets, cell phones,
keyboards, trashcans, tables, chairs, water bottles, cd cases . Note that there are more
occurrences of objects than point clouds because many of our point clouds contained
multiple objects listed here.

3. Segmentation
The segmentation algorithm, at a high level, takes a point cloud as input and, using
several metrics, breaks the point cloud into segments, outputting a file representing the
point cloud broken into color coded segments.

The first step in executing this segmentation is to read in the data and build an
adjacency matrix to localize the data. This matrix is constructed under the direction of
our distance metric. The distance metric dictates how close two points must be in order
for us to compare them. Using this, we can break our point cloud into an adjacency
matrix with buckets of length, width, and height based on the distance metric. The
adjacency matrix makes the algorithm feasible from a time perspective, since it allows
for efficient lookup of points based on locality.

Once the points are in the adjacency matrix, for each cell in the matrix we calculate an
average normal. This is done using RANSAC[1]. because RANSAC returns the “best fit”
plane given a cloud of points, to calculate average normal we simply input an adjacency
cell into RANSAC and output the plane’s normal as the “average normal”.

Once the adjacency matrix is populated and each cell (and by extension, each point) is
given an average normal, we iterate through each point in the data set. For each point,
we compare it to each point in all neighboring adjacency cells (we do not need to look
at points outside of neighboring adjacency cells since they cannot be part of the same
segment by our distance metric). For each of these pairs of points, we run the following
heuristic:

color = Color Difference[2] < Color Cutoff
norm = Angle Formed(Point1 Norm, Point2 Norm) < Angle Cutoff
dist = distance(Point1, Point2) < Distance Cutoff
return color && norm && dist;

If that heuristic returns true for a given pair of points, those points are considered to be in
the same segment. In order to represent segments using data structures, a disjoint set[3]
data structure is used. This allows for segment merging in a time efficient manner.

Once all the segments are merged together, we run through a loop for each merged
segment. Given a segment, first drop all segments that are only a few points large. We
then calculate a color for each segment by linearizing the color space and dividing it into
equal parts for each segment. Finally, we output a file with each point in the cloud and
a “segment color” which is either (128, 128, 128) if the point is not part of any segment
(or is part of a dropped segment) or the color as determined by the algorithm.

4. Labeling
Once the segmentation algorithm has broken up a point cloud into many segments,
a human needs to label the important segments with text and throw out unimportant
segments. To facilitate this, we created a 3D point cloud labeler in OpenGL. The input
to the program is a list of points in the format <x coordinate, y coordinate, z coordinate,
segment’s red value, segment’s blue value, segment’s green value, pixel’s red value,
pixel’s green value, pixel’s blue value>, where the segment values refer to the color of
the segment the point belongs to as determined by the segmentation algorithm.

Using this as input, the labeling program displays the segmented point cloud. Example:

Point cloud with original colors:

Point cloud with segment colors:

The colors of all the segments are displayed as squares on the left side of the screen.
When hovering over a square, the corresponding segment is displayed and all other
segments are temporarily hidden. The user can then click on the square and type in an
appropriate input. In this image, the user was able to identify and label 6 objects.

Once all the segments have been labeled, the user can output the list of labeled
segments along with their labels. This labeler can also be used in future projects related
to 3D image segmentation, as long as the points and segments are provided in the
described format.

5. Feature Extraction
The feature extraction algorithm takes as input the file output from the segmentation
code and the file output by the OpenGL labeling code. It also takes as input “test”
or “train”, which determines what the algorithm will do.

First, the code runs through the labels looking for a segment labeled “floor” (as several
of our features require knowledge of which segment is the floor segment). If it cannot
find the segment labeled “floor” (or if it is in “test” mode, which ignores labels), it
attempts to guess which segment is the floor. To do this, it runs through each segment,
calculating the segment’s best fit plane using RANSAC[1]. Then, given the plane, the
algorithm runs through each point in the segment and calculates distance from each
point to that plane. This results in each segment having an “error” value, which is the
average distance of a point in a segment from it’s representative plane. This value gives
a rough idea of how planar the segment is. The algorithm then combines this knowledge
with how “low” the plane is (based on average Z value), and chooses the floor to be the
lowest and most planar segment using a weighting of those two values.

Once the code has determined which segment is the floor by reading it or guessing
it, the code runs through each segment calculating the segment’s feature vector. The
feature vector is as follows:

1. Minimum and Maximum Height: These two values are calculated by calculating
the minimal and maximal distance of any given point in the segment from the
floor plane.

2. Volume and Surface Area: these are calculated using a straightforward
computation of a 3D Bounding box.

3. Angle to Floor: To calculate this, RANSAC is used to calculate this segment’s
average normal. Then, the angle between that normal and the floor’s normal is
calculated and used as this feature.

4. Average Color: This computation is a straightforward average operation.

Once each of these vectors are computed for each segment, the results are output to a

file to be read in by the machine learning code.

6. Training and Evaluation
a. Baselines

Before implementing our machine learning algorithm, we first created two
baselines:

i. Guess a random label: For a given test feature, randomly guess a label
from the set of training features. Since this algorithm is not deterministic,
the accuracy ranged from about 5% to 15% during cross validation using
only the labeled features.

ii. Guess the most common label: For a given test feature, guess the label
that appears most frequently in the training data. In our cases, “floor”
and “wall” appear most frequently in our training point clouds. The
program guessed “floor” for all the test features and was correct 16.5% of
the time using only the labeled features.

b. Machine Learning
The machine learning code has no knowledge about point clouds or segments,
and indeed can be used for any problem. It takes as input the features extracted
from the training set, along with the label of the segment represented by each
feature, and trains a multi-class support vector machine[4]. Next, it takes the
features extracted from the test set and attempts to classify each one. It also
provides a certainty measure for each test feature (in machine learning terms,
this is the decision function). Finally, it takes the requested label inputted by
the user and outputs the ID of the test feature that has the highest score of all
the test features that match the given label. In terms of our project, the program
outputs the segment in the test set that it believes is most closely represented by
the given label.

To evaluate our algorithm, we performed cross validation by determining one
point cloud from the training data to be our test set and then using all remaining
point clouds to train. Using only the labeled features as test features, the
machine learning algorithm was correct 52.11% of the time. Here is a breakdown
of accuracy for each object:

Label: umbrella, Occurrences: 4, Accuracy: 0.000000
Label: floor, Occurrences: 11, Accuracy: 0.545455
Label: wall, Occurrences: 7, Accuracy: 0.428571
Label: wallet, Occurrences: 3, Accuracy: 0.333333
Label: phone, Occurrences: 1, Accuracy: 0.000000
Label: keyboard, Occurrences: 7, Accuracy: 0.714286
Label: trashcan, Occurrences: 2, Accuracy: 0.000000
Label: table, Occurrences: 11, Accuracy: 0.545455
Label: chair, Occurrences: 8, Accuracy: 0.375000
Label: googlebottle, Occurrences: 5, Accuracy: 0.200000

Label: blackbottle, Occurrences: 1, Accuracy: 0.000000
Label: cdcase, Occurrences: 7, Accuracy: 0.714286

Note that during the planning and control stage, the number of test features
available will be a lot more than in the training phase because every segment
defined by the segmentation algorithm will be used to generate a feature, not just
the segments that have been labeled.

7. Planning and Control
We decided to use the Erratic telepresence robot because of the mounted Kinect and
ground mobility. The robot is provided a label to find (ex: “keyboard” or “cdcase”), and it
starts in the center of a room and turns 360 degrees on the spot, occasionally taking a
snapshot with the Kinect. We decided to analyze each snapshot individually rather than
stitching them together like we did to create the training data because ROS’s RGBD-
Slam algorithm runs very slowly and cannot operate in real time.

Each snapshot is run through the analysis phases above (segmentation → feature
extraction → machine learning classification) to determine the best segment in the
snapshot (i.e, the segment in the snapshot that received the highest score from the SVM
for the given label). The score for the segment is stored as the robot turns and takes
additional snapshots.

Once a full circle has been made by the robot, it calculates the position of the segment
with the highest score (the position is simply the average position of all the points that
make up the segment). Next, it calculates the angle it needs to turn in order to be
pointing directly at the segment. Finally, it calculates the distance to the segment and
drives towards it, stopping immediately before it makes contact.

8. Demonstration

From the training and evaluation phase, we realized that the keyboard (specifically, we
trained using a small, white, iPad keyboard) was very easy for the algorithm to segment
and detect, so we decided to use that in our demonstration video.

The robot takes 4 snapshots in 90 degree increments and looks for a keyboard in each
one. It does not find any segment in snapshots 1, 3, or 4 with a score higher than 0, but
in snapshot 2, it is able to find the keyboard and give it a high score. After taking all 4
snapshots, the robot turns towards the keyboard and drives to it.

A video demonstration of our robot finding a keyboard is available on YouTube here:

http://www.youtube.com/watch?v=rff-0BbZn-U

9. References
[1]: MRPT RANSAC Algorithm: http://www.mrpt.org/RANSAC_C++_examples

http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.youtube.com/watch?v=rff-0BbZn-U
http://www.mrpt.org/RANSAC_C++_examples
http://www.mrpt.org/RANSAC_C++_examples
http://www.mrpt.org/RANSAC_C++_examples
http://www.mrpt.org/RANSAC_C++_examples
http://www.mrpt.org/RANSAC_C++_examples
http://www.mrpt.org/RANSAC_C++_examples
http://www.mrpt.org/RANSAC_C++_examples
http://www.mrpt.org/RANSAC_C++_examples
http://www.mrpt.org/RANSAC_C++_examples
http://www.mrpt.org/RANSAC_C++_examples
http://www.mrpt.org/RANSAC_C++_examples
http://www.mrpt.org/RANSAC_C++_examples
http://www.mrpt.org/RANSAC_C++_examples

[2]: Color Difference Formula: http://www.compuphase.com/cmetric.htm
[3]: Disjoint Set Code: http://www.emilstefanov.net/Projects/DisjointSets.aspx
[4]: PyML: http://pyml.sourceforge.net/

http://www.compuphase.com/cmetric.htm
http://www.compuphase.com/cmetric.htm
http://www.compuphase.com/cmetric.htm
http://www.compuphase.com/cmetric.htm
http://www.compuphase.com/cmetric.htm
http://www.compuphase.com/cmetric.htm
http://www.compuphase.com/cmetric.htm
http://www.compuphase.com/cmetric.htm
http://www.compuphase.com/cmetric.htm
http://www.compuphase.com/cmetric.htm
http://www.compuphase.com/cmetric.htm
http://www.emilstefanov.net/Projects/DisjointSets.aspx
http://www.emilstefanov.net/Projects/DisjointSets.aspx
http://www.emilstefanov.net/Projects/DisjointSets.aspx
http://www.emilstefanov.net/Projects/DisjointSets.aspx
http://www.emilstefanov.net/Projects/DisjointSets.aspx
http://www.emilstefanov.net/Projects/DisjointSets.aspx
http://www.emilstefanov.net/Projects/DisjointSets.aspx
http://www.emilstefanov.net/Projects/DisjointSets.aspx
http://www.emilstefanov.net/Projects/DisjointSets.aspx
http://www.emilstefanov.net/Projects/DisjointSets.aspx
http://www.emilstefanov.net/Projects/DisjointSets.aspx
http://www.emilstefanov.net/Projects/DisjointSets.aspx
http://www.emilstefanov.net/Projects/DisjointSets.aspx
http://pyml.sourceforge.net/
http://pyml.sourceforge.net/
http://pyml.sourceforge.net/
http://pyml.sourceforge.net/
http://pyml.sourceforge.net/
http://pyml.sourceforge.net/
http://pyml.sourceforge.net/
http://pyml.sourceforge.net/

