CS 4758/6758: Robot Learning

Spring 2010: Lecture 5

Ashutosh Saxena

Sensors on a Human

Sight: image from a camera Sound: microphone on a robot Touch

Taste/Smell

Inertial?
Range sensor?

Sensors and Algorithms

- Choice of sensors is as much important as choice of algorithms.
- Often people forget about one of them.

Cameras

Several Types of Cameras

- Usual digital cameras
- Pan-Tilt-Zoom

Sensors

Inertial sensors

Gyros, accelerometers, compass.

Sensors

- Ranging sensors
- Ultrasonic, laser rangefinder (time of flight)
- Structured light, stereo (triangulation)
- Infra-red (reflective intensity)

Laser Range Finders

Ashutosh Saxena

Sensors

- Touch / Haptic sensors
- Motor Torques
- Capacitive / resistive touch (think iPhone)
- Optical

Sensors

- Localization
- GPS
- Indoor GPS (Vikon)
- RFID

Ashutosh Saxena

Sensor: Statistical Modeling

Additive error:

$$
y=x+\text { error }
$$

Multiplicative error;

$$
y=x * \text { error }
$$

Other types of errors?

Additive Errors

- Characterizing the error of the sensor
- Helps us in combining data from different sensors.
- Represent error as a random variable.
- Interested in modeling P(error) as statistical distributions.

Statistical modeling

Which sensor is better?

Modeling the measurement

$y=x+$ error
error (= $y-x$) is modeled with a statistical distribution.
$P(y \mid x)$ notation saying we model the observation y given the real value x.

Go to blackboard.

