The environment
Camera as sensor

- Image and signal processing.

Implementation:
- OpenCV for processing the Image signals.
- Other libraries for processing 1D signals.
What is an image?

We get this as the input data

Source: A. Efros
Ashutosh Saxena
What is an image?

- A grid of intensity values

(common to use one byte per value: 0 = black, 255 = white)
What is an image?

- We can think of a (grayscale) image as a function, f, from \mathbb{R}^2 to \mathbb{R}:
 - $f(x,y)$ gives the intensity at position (x,y)

A digital image is a discrete (sampled, quantized) version of this function.
Image transformations

- As with any function, we can apply operators to an image

\[g(x, y) = f(x, y) + 20 \]

\[g(x, y) = f(-x, y) \]

- We’ll talk about a special kind of operator, *convolution* (linear filtering)
ID signal

<table>
<thead>
<tr>
<th></th>
<th>255</th>
<th>200</th>
<th>178</th>
<th>100</th>
<th>74</th>
<th>67</th>
<th>71</th>
<th>101</th>
<th>120</th>
<th>180</th>
<th>211</th>
<th>240</th>
</tr>
</thead>
</table>

Ashutosh Saxena
Question: Noise reduction

Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!
What’s the next best thing?

Source: S. Seitz
Image filtering

- Modify the pixels in an image based on some function of a local neighborhood of each pixel

Local image data

<table>
<thead>
<tr>
<th>10</th>
<th>5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

Some function

Modified image data

7

Source: L. Zhang
Linear filtering

- One simple version: linear filtering (cross-correlation, convolution)
 - Replace each pixel by a linear combination of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")

\[
\begin{array}{ccc}
10 & 5 & 3 \\
4 & 6 & 1 \\
1 & 1 & 8 \\
\end{array}
\quad \begin{array}{ccc}
0 & 0 & 0 \\
0 & 0.0 & 0 \\
0 & 5.0 & 0.5 \\
\end{array}
\quad \begin{array}{cccc}
\text{Local image data} & \text{kernel} & \text{Modified image data} \\
\end{array}
\]

Source: L. Zhang
Cross-correlation

Let F be the image, H be the kernel (of size $2k+1 \times 2k+1$), and G be the output image.

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

This is called a **cross-correlation** operation:

\[
G = H \otimes F
\]
Convolution

- Same as cross-correlation, except that the kernel is “flipped” (horizontally and vertically)

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

This is called a convolution operation:

\[G = H \ast F \]

- Convolution / cross-correlation are commutative and associative
Convolution

Adapted from F. Durand
Mean filtering

\[
H \ast F = G
\]
Mean Filtering: 1-D

One can also apply convolution to 1D signals.

\[F = [0, 10, 12, 20, 8, 12, 0] \]
\[H = [0.25, 0.5, 0.25] \]
\[G = ? \]
Linear filters: examples

Original

\[\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

Identical image

Source: D. Lowe
Linear filters: examples

Original

\[
\begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

= Shifted left By 1 pixel

Source: D. Lowe
Linear filters: examples

Original

 Blur (with a mean filter)

Source: D. Lowe
Linear filters: examples

Original * \begin{pmatrix}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0 \\
\end{pmatrix} - \frac{1}{9} \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{pmatrix} = \text{Sharpening filter (accentuates edges)}

Source: D. Lowe
Gaussian Kernel

\[G_\sigma = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \]

Source: C. Rasmussen
Mean vs. Gaussian filtering

Ashutosh Saxena
Gaussian noise

\[F[x, y] + \mathcal{N}(0, 5\%) \]

\[\sigma = 1 \text{ pixel} \quad \sigma = 2 \text{ pixels} \quad \sigma = 5 \text{ pixels} \]

Smoothing with larger standard deviations suppresses noise, but also blurs the image.
Outliers noise – Gaussian blur

- What’s wrong with the results?
Alternative idea: Median filtering

- A **median filter** operates over a window by selecting the median intensity in the window.

- Is median filtering linear?

Source: K. Grauman
Median filter

- What advantage does median filtering have over Gaussian filtering?

Source: K. Grauman
Salt & pepper noise – median filtering

$p = 10\%$

$\sigma = 1$ pixel

$\sigma = 2$ pixels

$\sigma = 5$ pixels

3x3 window

5x5 window

7x7 window
Questions?
Edge Detection
Edge detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels
Characterizing edges

- An edge is a place of rapid change in the image intensity function

Source: L. Lazebnik

- Edges correspond to extrema of derivative
Effects of noise

Noisy input image

\[f(x) \]

\[\frac{d}{dx} f(x) \]

Where is the edge?

Source: S. Seitz
Ashutosh Saxena
Solution: smooth first

To find edges, look for peaks in $\frac{d}{dx}(f \ast h)$

Source: S. Seitz

Ashutosh Saxena
Differentiation is convolution, and convolution is associative:

\[\frac{d}{dx} (f \ast h) = f \ast \frac{d}{dx} h \]

This saves us one operation:

Source: S. Seitz

Ashutoshi Saxena
2D edge detection filters

Gaussian

\[h_\sigma(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}} \]

derivative of Gaussian \((x)\)

\[\frac{\partial}{\partial x} h_\sigma(u, v) \]
Derivative of Gaussian filter

x-direction

y-direction
The Sobel operator

- Common approximation of derivative of Gaussian
Sobel operator: example
Questions?
Finding Objects

- Background subtraction
Feature extraction: Corners and blobs
Desirable properties in the features

Distinctiveness:

◦ can differentiate a large database of objects

Efficiency

◦ real-time performance achievable
Example of features

A laundry list:

- Corner / edge detectors
- SIFT features
- Output of various filters…
Feature Matching

Ashutosh Saxena
Feature Matching

Multiple View Geometry in Computer Vision

Ashutosh Saxena
Metric for similarity?

- Vector x_i and x_j.
- What is the distance between them?
Matching using distance between the features

Find features that are invariant to transformations
- geometric invariance: translation, rotation, scale
- photometric invariance: brightness, exposure, …

Feature Descriptors

Ashutosh Saxena
Object recognition (David Lowe)
Image matching

by Diva Sian

by swashford

Ashutosh Saxena
Harder case

by Diva Sian

by scgbt

Ashutosh Saxena
Harder still?

NASA Mars Rover images

Ashutosh Saxena
How to match features?

- Robustness?

Projects

- Project proposals due **Feb 15**.
 - Brief description of the projects on Thursday lecture.
 - Choose a Topic and a Robot.

- Good time to setup a meeting with the instructor next week.
Questions?