CS 4758/6758: Robot Learning

Spring 2010: Lecture 3.

Ashutosh Saxena

Ashutosh Saxena

The environment

Camera as sensor

- Image and signal processing.

Implementation:

- OpenCV for processing the Image signals.
- Other libraries for processing ID signals.

What is an image?

We get this as the input data

What is an image?

- A grid of intensity values

255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	20	0	255	255	255	255	255	255	255
255	255	255	75	75	75	255	255	255	255	255	255
255	255	75	95	95	75	255	255	255	255	255	255
255	255	96	127	145	175	255	255	255	255	255	255
255	255	127	145	175	175	175	255	255	255	255	255
255	255	127	145	200	200	175	175	95	255	255	255
255	255	127	145	200	200	175	175	95	47	255	255
255	255	127	145	145	175	127	127	95	47	255	255
255	255	74	127	127	127	95	95	95	47	255	255
255	255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255

(common to use one byte per value: $0=$ black, $255=$ white)

What is an image?

- We can think of a (grayscale) image as a function, f, from R^{2} to R :
$\circ f(x, y)$ gives the intensity at position (x, y)

snoop

3D view
A digital image is a discrete (sampled, quantized) version of this function

Image transformations

- As with any function, we can apply operators to an image

$$
g(x, y)=f(x, y)+20
$$

$$
g(x, y)=f(-x, y)
$$

- We'll talk about a special kind of operator, convolution (linear filtering)

ID signal

255	200	178	100	74	67	71	101	120	180	211	240

Question: Noise reduction

Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them! What's the next best thing?

Image filtering

- Modify the pixels in an image based on some function of a local neighborhood of each pixel

10	5	3
4	5	1
1	1	7

Local image data

Modified image data

Linear filtering

One simple version: linear filtering (cross-correlation, convolution)

- Replace each pixel by a linear combination of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask","filter")

Cross-correlation

Let F be the image, H be the kernel (of size $2 \mathrm{k}+1 \times 2 \mathrm{k}+1$), and G be the output image
$G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v]$
This is called a cross-correlation operation:

$$
G=H \otimes F
$$

Convolution

- Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v]
$$

This is called a convolution operation:

$$
G=H * F
$$

- Convolution / cross-correlation are commutative and associative

Convolution

Mean filtering

H

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	10	20	30	30	30	30	20	10	
	10	10	10	0	0	0	0	0	

G

Mean Filtering: I-D

One can also apply convolution to ID signals.

$\mathrm{F}=[0,10,12,20,8,12,0]$
$\mathrm{H}=\left[\begin{array}{lll}.25 & .5 & .25\end{array}\right]$
$\mathrm{G}=$?

Linear filters: examples

Original

Identical image

Linear filters: examples

Original

Shifted left
By 1 pixel

Linear filters: examples

Original

Blur (with a mean filter)

Linear filters: examples

Gaussian Kernel

$$
G_{\sigma}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}}
$$

Mean vs. Gaussian filtering

Gaussian noise

$F[x, y]+\mathcal{N}(0,5 \%)$

$\sigma=1$ pixel

$\sigma=2$ pixels

$\sigma=5$ pixels

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Outliers noise - Gaussian blur

$p=10 \%$

$\sigma=1$ pixel

$\sigma=2$ pixels

$\sigma=5$ pixels

- What's wrong with the results?

Alternative idea: Median filtering

- A median filter operates over a window by selecting the median intensity in the window

- Is median filtering linear?

Median filter

- What advantage does median filtering have over Gaussian filtering?
filters have width 5 :

Salt \& pepper noise - median filtering

$p=10 \%$

$\sigma=1$ pixel $\quad \sigma=2$ pixels

$\sigma=5$ pixels

3×3 window

5×5 window

Ashutosh Saxena

Questions?

Edge Detection

Edge detection

- Convert a 2D image into a set of curves
- Extracts salient features of the scene
- More compact than pixels

Characterizing edges

- An edge is a place of rapid change in the image intensity function
intensity function

Effects of noise

Noisy input image

Where is the edge?

Solution: smooth first

To find edges, look for peaks in $\frac{d}{d x}(f * h)$

Associative property of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{d x}(f * h)=f * \frac{d}{d x} h$
- This saves us one operation:

2D edge detection filters

Gaussian
$h_{\sigma}(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{2 \sigma^{2}}}$

Derivative of Gaussian filter

The Sobel operator

- Common approximation of derivative of Gaussian

$\frac{1}{8}$| -1 | 0 | 1 |
| :--- | :--- | :--- |
| -2 | 0 | 2 |
| -1 | 0 | 1 |
| $s x$ | | |

$\frac{1}{8}$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| -1 | -2 | -1 |
| $s y$ | | |

Sobel operator: example

Questions?

Finding Objects

- Background subtraction

Feature extraction: Corners and blobs

Desirable properties in the features

Distinctiveness:

- can differentiate a large database of objects

Efficiency

- real-time performance achievable

Example of features

A laundry list:

- Corner / edge detectors
- SIFT features
- Output of various filters...

Feature Matching

Feature Matching

Metric for similarity?

- Vector x_{i} and x_{j}.
- What is the distance between them?

Matching using distance between the features

Find features that are invariant to transformations geometric invariance: translation, rotation, scale photometric invariance: brightness, exposure, ...

Feature Descriptors

Object recognition (David Lowe)

Image matching

by Diva Sian

by swashford

Harder case

by Diva Sian

by scgbt

Harder still?

NASA Mars Rover images

How to match features?

- Robustness?

Machine Learning to the rescue. Supervised Learning: next lecture.

Projects

- Project proposals due Feb I5.
- Brief description of the projects on Thursday lecture.
- Choose a Topic and a Robot.
- Good time to setup a meeting with the instructor next week.

Questions?

