
CS 4758/6758: Robot Learning: Homework 4
Due: Mar 19, 5pm

1 Logistic Regression: Gradient Descent (20pts)

A robot is trying to classify whether it is seeing a obstacle or not. (I.e., y ∈ {0, 1}.) Given
input x ∈ <k, we will use logistic regression, i.e., p(y|x; θ) = (hθ(x))y(1−hθ(x))1−y, where hθ(x) =

1
1+exp−θT x

.
(a) For learning the optimal value of θ, we will use gradient descent. Assume that the

m training examples were generated independently. Use the maximum likelihood principle,
maxθ

∏m
i=1 p(y

(i)|x(i); θ), to derive the update for the parameters θ using gradient descent.
(b) During testing phase, given x and θ, write an expression to estimate the output ŷ.
(c) Write the name of the function in some language (Matlab,C++, etc.) that you would use

for logistic regression.

2 Kernels (15pts)

One method to improve performance is to use kernels with SVM. A kernel is a function of two
input datapoints x and z, but not all functions are valid kernels. One method to prove that a
kernel K(x, z) is a valid kernel, is by proving that K(x, z) can be written as a dot product in high
dimensions, i.e., K(x, z) = φ(x)Tφ(z) for some φ(x).

In this problem, we consider original data is two-dimensional, i.e., x = (x1, x2) ∈ <2 and
z = (z1, z2) ∈ <2. For K1(x, z) = (xT z + c)2, prove that it is a valid kernel by showing that
K1 = φ(x)Tφ(z) for φ(x) = (x1x1, x1x2, x2x1, x2x2,

√
2cx1,

√
2cx2, c).

3 Linear Systems (10 pts)

1. We define the state of a robot (e.g., for a helicopter to stabilize its height) by x = (h, ḣ),
where h is the height of the helicopter and ḣ would be the velocity in vertical direction (rate of
change of height). We model it as a continuous time linear system ẋ = Ax, where A ∈ <2×2

would describe the linear system.

We bought two helicopters, based on measurements, we found out that their effective dynamics
matrix is given as follows.

A1 =
(

0 1
0.1 1

)
A2 =

(
0 1
−0.1 −1

)
Please determine explain which helicopter(s) will be passively stable out of the box.1

2. Now you were hired to comment on a autonomous flying plane robot a company is building.
The plane’s state in this case is determined by x = (u, v, θ, q), where: u is the velocity of
aircraft along body axis; v is the velocity of aircraft perpendicular to body axis (down is
positive); θ is the angle between body axis and horizontal (up is positive); q is the angular
velocity of aircraft (pitch rate).

1Hint: Look at the eigenvalues.

p. 1



The plane engineers told you that the continuous time linearized dynamics matrix of the
plane flying at 774ft in this case is given by:

A1 =


0.003 0.039 0 0.322
0.065 0.319 7.74 0
0.020 0.101 0.429 0

0 0 1 0


Please explain if their plane is stable or not? (Hint: Use eigenvalues again!)

4 Arm Path Planner (55 points)

Overview

θ1

θ2

l1 = 20

(xhand, yhand)

l2 = 20

Figure 1: the arm

In this question, you have to build a path planner for the two
degree-of-freedom arm at right.

You know the locations of all obstacles but need to find a path
around them. The path should be specified in configuration space–
that is, as a set of θ1, θ2 angles. Write a program, using any planning
algorithm you like, that can accomplish this. A successful path will:

1. Move the arm’s tip from the specified start to finish
2. Keep the arm’s joints within the range −90◦ ≤ θi ≤ 90◦

3. Prevent the arm from colliding with any obstacles

Steps:
(a) First convert the problem to configuration space, i.e., (θ1, θ2).
Plot the obstacle locations, and start/goal locations of the arm in
this new space. (The start and end locations will be point in this
space.)
(b) Use a potential field attractor function to attract the arm to the goal.
(c) Use a potential function to repel the arm from the obstacle areas.
(d) Run gradient descent (or a similar algorithm) to find a path.

Specification
In the file easy.txt (Figure 2a) and medium.txt (Figure 2b), you are given desired (x, y) in

the first line, followed by (xmin, ymin, xmax, ymax) defining a rectangle in the next line
The arm always starts from θ1 = 90◦, θ2 = 0◦.
You should produce a third csv file as output, containing an acceptable path for the arm. The

path is written as a set of configurations, one per line. That is, each line should contain the angles
θ1, θ2 in degrees and separated by commas. (So for example, the point θ1 = 30◦, θ2 = 45◦ would be
written as: 30, 45.) The arm should be able to smoothly move from one configuration to the next
without hitting anything. Please give at least 10 configurations (i.e. your file should have at least
10 lines).

Please do not deviate from the specified format–we will be testing your paths.

Submission
Using the subject line [hw4armanswer], send an email to cs4758.qa@gmail.com with your

program’s output (i.e., csv file) for easy and medium scenarios. attached.
Also, on paper, submit:

1. If you deviate from the procedure above, write a high-level description of your algorithm (note
that it should be able to handle planning for obstacles of similar difficulty)

p. 2



2. Which scenarios would it work in? Would it work if there were more obstacles (such as
Figure 3)? You do not need to solve for this case.

3. A printout of your source code
4. One graph each for easy.txt and medium.txt case for θ1, θ2 from start to finish.

(0, 0) (35, 0)

start here

go here

(0,40)

(a) easy.txt

(0, 0) (35, 0)

start here

go here

(0,40)

don’t
hit
this

(35, 35)

(25, 25)

(b) medium.txt

Figure 2: Find paths for each of these two cases.

(0, 0)

start here

go here
don’t
hit
this

or this

Figure 3: a more challenging task

p. 3


