CS 4758/6758: Robot Learning

0

Spring 2010: Lecture 7

Ashutosh Saxena

Robot Ingredients

- Basics (statistics, kinematics)
- Perception / Sensing
- Localization / Estimation
- Control
- Planning (Path planning)

Control

- Dynamical systems
- PID controllers
- Common controllers

Later:

- Feedback control (includes sensing)
- Learning control

Dynamical Systems

- A dynamical system changes continuously (almost always) according to $\dot{\mathbf{x}} = F(\mathbf{x})$ where $\mathbf{x} \in \Re^n$
- A controller is defined to change the coupled robot and environment into a desired dynamical system.

 $\dot{\mathbf{x}} = F(\mathbf{x}, \mathbf{u})$ $\dot{\mathbf{x}} = F(\mathbf{x}, H_i(\mathbf{x}))$ $\mathbf{u} = H_i(\mathbf{x})$

Linear Dynamical Systems

0

Linear Dynamical System

$$\dot{x} = Ax$$

- $x(t) \in \mathbf{R}^n$ is called the state
- *n* is the *state dimension* or (informally) the *number of states*
- A is the dynamics matrix (system is time-invariant if A doesn't depend on t)

picture (*phase plane*):

In One Dimension

- Simple linear system
- Fixed point $\dot{x} = kx$
- Solution $x = 0 \Rightarrow \dot{x} = 0$ $x(t) = x_0 e^{kt}$
 - Stable if k < 0
 - Unstable if k > 0

example 1: $\dot{x} = \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix} x$

example 2:
$$\dot{x} = \begin{bmatrix} -0.5 & 1 \\ -1 & 0.5 \end{bmatrix} x$$

In Two Dimensions

- Often, we have position and velocity: $\mathbf{x} = (x, v)^T$ where $v = \dot{x}$
- If we model actions as forces, which cause acceleration, then we get:

$$\dot{\mathbf{x}} = \begin{pmatrix} \dot{x} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} \dot{x} \\ \ddot{x} \end{pmatrix} = \begin{pmatrix} v \\ forces \end{pmatrix}$$

Spiral Behavior

(stable attractor)

FIG. E. Spiral sink:
$$B = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
, $b > 0 > a$.

Center Behavior

(undamped oscillator)

FIG. F. Center: $B = \begin{bmatrix} 0 & -b \\ b & 0 \end{bmatrix}, b > 0.$

Block Diagram

block diagram representation of $\dot{x} = Ax$:

- 1/s block represents n parallel scalar integrators
- $\bullet\,$ coupling comes from dynamics matrix A

useful when A has structure, e.g., block upper triangular:

$$\dot{x} = \left[\begin{array}{cc} A_{11} & A_{12} \\ 0 & A_{22} \end{array} \right] x$$

here x_1 doesn't affect x_2 at all

Examples of Linear Dynamical Systems

Finite-state discrete-time Markov chain

 $z(t) \in \{1, \ldots, n\}$ is a random sequence with

$$Prob(z(t+1) = i | z(t) = j) = P_{ij}$$

where $P \in \mathbf{R}^{n \times n}$ is the matrix of *transition probabilities*

can represent probability distribution of z(t) as *n*-vector

$$p(t) = \begin{bmatrix} \operatorname{Prob}(z(t) = 1) \\ \vdots \\ \operatorname{Prob}(z(t) = n) \end{bmatrix}$$

(so, *e.g.*, $Prob(z(t) = 1, 2, \text{ or } 3) = [1 \ 1 \ 1 \ 0 \cdots 0]p(t))$ then we have p(t+1) = Pp(t)

- nodes are states
- edges show transition probabilities

example:

- state 1 is 'system OK'
- state 2 is 'system down'
- state 3 is 'system being repaired'

$$p(t+1) = \begin{bmatrix} 0.9 & 0.7 & 1.0 \\ 0.1 & 0.1 & 0 \\ 0 & 0.2 & 0 \end{bmatrix} p(t)$$

Higher order linear dynamical systems

$$x^{(k)} = A_{k-1}x^{(k-1)} + \dots + A_1x^{(1)} + A_0x, \quad x(t) \in \mathbf{R}^n$$

where $x^{(m)}$ denotes mth derivative

define new variable
$$z = \begin{bmatrix} x \\ x^{(1)} \\ \vdots \end{bmatrix} \in \mathbf{R}^{nk}$$
, so

$$\dot{z} = \begin{bmatrix} x^{(1)} \\ \vdots \\ x^{(k)} \end{bmatrix} = \begin{bmatrix} 0 & I & 0 & \cdots & 0 \\ 0 & 0 & I & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & 0 & \cdots & I \\ A_0 & A_1 & A_2 & \cdots & A_{k-1} \end{bmatrix} z$$

a (first order) LDS (with bigger state)

Block Diagram

Mechanical Systems

mechanical system with k degrees of freedom undergoing small motions:

$$M\ddot{q} + D\dot{q} + Kq = 0$$

- $q(t) \in \mathbf{R}^k$ is the vector of generalized displacements
- M is the mass matrix
- K is the stiffness matrix
- D is the damping matrix

with state
$$x = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}$$
 we have
$$\dot{x} = \begin{bmatrix} \dot{q} \\ \ddot{q} \end{bmatrix} = \begin{bmatrix} 0 & I \\ -M^{-1}K & -M^{-1}D \end{bmatrix} x$$

Linearization near equilibrium point

nonlinear, time-invariant differential equation (DE):

$$\dot{x} = f(x)$$

where $f : \mathbf{R}^n \to \mathbf{R}^n$

suppose x_e is an *equilibrium point*, *i.e.*, $f(x_e) = 0$ (so $x(t) = x_e$ satisfies DE)

now suppose x(t) is near x_e , so

$$\dot{x}(t) = f(x(t)) \approx f(x_e) + Df(x_e)(x(t) - x_e)$$

with $\delta x(t) = x(t) - x_e$, rewrite as

$$\dot{\delta x}(t) \approx Df(x_e)\delta x(t)$$

replacing \approx with = yields *linearized approximation* of DE near x_e

we hope solution of $\dot{\delta x} = Df(x_e)\delta x$ is a good approximation of $x - x_e$

example: pendulum

2nd order nonlinear DE $ml^2\ddot{\theta} = -lmg\sin\theta$

rewrite as first order DE with state $x = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}$:

$$\dot{x} = \left[\begin{array}{c} x_2\\ -(g/l)\sin x_1 \end{array} \right]$$

equilibrium point (pendulum down): x = 0

linearized system near $x_e = 0$:

$$\dot{\delta x} = \left[\begin{array}{cc} 0 & 1 \\ -g/l & 0 \end{array} \right] \delta x$$

Does linearization 'work'?

the linearized system usually, but not always, gives a good idea of the system behavior near x_e

example 1: $\dot{x} = -x^3$ near $x_e = 0$

for x(0) > 0 solutions have form $x(t) = (x(0)^{-2} + 2t)^{-1/2}$

linearized system is $\dot{\delta x} = 0$; solutions are constant

Controlling the Dynamical System

Controlling a Simple System

• Consider a simple system: $\dot{x} = F(x, u)$

• Scalar variables x and u, not vectors x and u. • Assume effect of motor command u: $\frac{\partial F}{\partial u} > 0$

- The setpoint x_{set} is the desired value.
 The controller responds to error: e = x x_{set}
- The goal is to set u to reach e = 0.

The intuition behind control

- Use action *u* to push back toward error e
 = 0
 - error e depends on state x (via sensors y)
- What does pushing back do?
 - Depends on the structure of the system
 - Velocity versus acceleration control
- How much should we push back?
 - What does the magnitude of *u* depend on?

Car on a slope example

Velocity or acceleration control?

- If error reflects x, does u affect x' or x'' ?
- Velocity control: $\mathbf{u} \to \mathbf{x}'$ (value fills tank) • let $\mathbf{x} = (x)$ $\dot{\mathbf{x}} = (\dot{x}) = F(\mathbf{x}, \mathbf{u}) = (u)$

• Acceleration control:
$$\mathbf{u} \to \mathbf{x}''$$
 (rocket)
• let $\mathbf{x} = (x \ v)^T$

$$\dot{\mathbf{x}} = \begin{pmatrix} \dot{x} \\ \dot{v} \end{pmatrix} = F(\mathbf{x}, \mathbf{u}) = \begin{pmatrix} v \\ u \end{pmatrix}$$
$$\dot{v} = \ddot{x} = u$$

The Bang-Bang Controller

- Push back, against the direction of the error
 with constant action u
- Error is $e = x x_{set}$ $e < 0 \Rightarrow u := on \Rightarrow \dot{x} = F(x, on) > 0$ $e > 0 \Rightarrow u := off \Rightarrow \dot{x} = F(x, off) < 0$ • To prevent chatter around e = 0, $e < -\mathcal{E} \Rightarrow u := on$ $e > +\mathcal{E} \Rightarrow u := off$
- Household thermostat. Not very subtle.

Bang-Bang Control in Action

- Optimal for reaching the setpoint
- Not very good for staying near it

- Does a thermostat work exactly that way?
- Why not?

Proportional Control

° S

• Push back, proportional to the error.

$$u = -ke + u_b$$

et u_b so that $\dot{x} = F(x_{set}, u_b) = 0$

• For a linear system, we get exponential convergence.

$$x(t) = Ce^{-\alpha t} + x_{set}$$

• The controller gain k determines how quickly the system responds to error.

Velocity Control

- You want to drive your car at velocity v_{set.}
 You issue the motor command u = pos_{accel}
 You observe velocity v_{obs}.
- Define a first-order controller:

$$u = -k(v_{obs} - v_{set}) + u_b$$

 \circ k is the controller gain.

Proportional Control in Action

- Increasing gain approaches setpoint faster
- Can leads to overshoot, and even instability
- Steady-state offset

Find the control problem

<u>Video</u>

Steady-State Offset

• Suppose we have continuing disturbances:

$$\dot{x} = F(x, u) + d$$

The P-controller cannot stabilize at e = 0.
Why not?

Steady-State Offset

• Suppose we have continuing disturbances:

$$\dot{x} = F(x, u) + d$$

- The P-controller cannot stabilize at e = 0.
 if u_b is defined so F(x_{set}, u_b) = 0
 then F(x_{set}, u_b) + d ≠ 0, so the system changes
- Must adapt u_b to different disturbances d.

Adaptive Control

- Sometimes one controller isn't enough.
- We need controllers at different time scales.

$$u = -k_P e + u_b$$

$$\dot{u}_b = -k_I e \quad \text{where} \quad k_I << k_P$$

- This can eliminate steady-state offset.
 Why?
 - Because the slower controller adapts u_b .

Integral Control

- The adaptive controller $\dot{u}_b = -k_I e$ means $u_b(t) = -k_I \int_0^t edt + u_b$
- Therefore

$$u(t) = -k_P e(t) - k_I \int_0^t edt + u_b$$

• The Proportional-Integral (PI) Controller.

Derivative Control

- Damping friction is a force opposing motion, proportional to velocity.
- Try to prevent overshoot by damping controller response.

$$u = -k_P e - k_D \dot{e}$$

 Estimating a derivative from measurements is fragile, and amplifies noise.

Derivative Control in Action

- Damping fights oscillation and overshoot
- But it's vulnerable to noise

• Different amounts of damping (without noise)

Derivatives Amplify Noise

 This is a problem if control output (CO) depends on slope (with a high gain).

The PID Controller

• A weighted combination of Proportional, Integral, and Derivative terms.

$$u(t) = -k_{P}e(t) - k_{I} \int_{0}^{t} edt - k_{D}\dot{e}(t)$$

• The PID controller is the workhorse of the control industry. Tuning is non-trivial.

PID Control in Action

But, good behavior depends on good tuning!

Exploring PI Control Tuning Impact of Kc and T_i on Performance for PI Controller Form: $CO = CO_{bias} + Kce(t) + \frac{Kc}{\pi} \int e(t) dt$ В 2Kc A Base Case Performance Kc Kc/2 Copyright @ 2006 Ti/22*T*i Ti by Douglas J. Cooper. All Rights Reserved.

Saxena

Parameters are hard to tune manually. Once tuned, the system could change (parameter drift) and retune parameters?

• Use Machine Learning?