CS 4758/6758: Robot Learning
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Robot Ingredients

» Basics (statistics, kinematics)

* Perception / Sensing
e Localization / Estimation

® Control S ——————

 Planning (Path planning)
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Control

e Dynamical systems
e PID controllers
e Common controllers

Later:

* Feedback control (includes sensing)
 Learning control
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Dynamical Systems

* A dynamical system changes continuously
(almost always) according to

X = F(x) where xe R”

A controller is defined to change the
coupled robot and environment into a
desired dynamical system.

X =F(x,u) X =F(x,H,(x))
u=H, (x)
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Linear Dynamical Systems
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Linear Dynamical System

T = Ar
e x(t) € R" is called the state
e 1 is the state dimension or (informally) the number of states

e A is the dynamics matrix
(system is time-invariant if A doesn’t depend on t)
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picture (phase plane):

&r A
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In One Dimension

e Simple linear system

* Fixed point
x =kx
e Solution
x=0=>x=0
k
x(t) = x,e"
o Stable if k<0
o Unstable if k>0
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In Two Dimensions

» Often, we have position and velocity:
x=(x,v)" where v=x

e |If we model actions as forces, which cause
acceleration, then we get:

X X V

% X forces
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Node
Behavior

FIG. C. Node: B = [
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Focus
Behavior
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Spiral
Behavior

(stable
attractor)
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FIG. E. Spiral sink: B = [



Center
Behavior

(undamped
oscillator)
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Block Diagram

block diagram representation of & = Ax:

n | n
l/s

e 1/s block represents n parallel scalar integrators

e coupling comes from dynamics matrix A
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useful when A has structure, e.q., block upper triangular:

T =

{ Ay Ao } ,

0 Ao

here 1 doesn't affect oo at all

2

2na



Examples of Linear Dynamical
Systems
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Finite-state discrete-time Markov chain

z2(t) e {1,..., nt is a random sequence with

Prob( z(t4+1)=i | z2(t)=3 )= F;;
where P € R™"™™ is the matrix of transition probabilities

can represent probability distribution of 2(#) as n-vector

p(t) =

I Prc}b(zi(z‘} =n)

(so, e.g., Prob(z(t) =1,2, or3) =[1110---0]p(t))

then we have p(t + 1) = Pp(t)

[ Prob(z(t)=1) |
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P is often sparse; Markov chain is depicted graphically

e nodes are states

e edges show transition probabilities
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example:

e state 1 is ‘system OK’

e state 2 is ‘system down’

e state 3 is ‘system being repaired’
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Higher order linear dynamical systems

k k—1) 1)
) = A2 oA™Y 4 Age,

where ' denotes mth derivative

define new variable 2z =

rd)

(k)

T
it

p(k=1)

Ay

r(t) e R"
c R so
1 0 0
0 1 0
2
0 0 1
A As Ap—1 |

a (first order) LDS (with bigger state)
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Block Diagram

. (k—1) (k—2)
‘Tl;'il'"} - 1}-".:5’ L l - ].;"rS l—l—‘ eses — 1;3 T I
Ak Ap_9 Ap
l"’ . B [ I - ‘
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Mechanical Systems

mechanical system with k degrees of freedom undergoing small motions:

e g(t) € R” is the vector of generalized displacements

o M is the mass matrix
o I is the stiffness matrix

e [)is the damping matrix

q ] we have

with state r = [ ;

~M-tp | T
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Linearization near equilibrium point

nonlinear, time-invariant differential equation (DE):

r = f(x)

where f: R" — R"

suppose x. is an equilibrium point, i.e., f(x.) =0

(so x(t) = x. satisfies DE)

now suppose x(t) is near ., so
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with dx(t) = x(t) — x., rewrite as

dx(t) =~ Df(x.)dz(t)

replacing =~ with = vields linearized approximation ot DE near z.

we hope solution of dz = Df(z.)dx is a good approximation of = — x,
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example: pendulum

1y
v

2nd order nonlinear DE mil26 = —Imgsinf

rewrite as first order DE with state = = [ g ] :

I2

T = { —(g/l)sin a4 ]
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equilibrium point (pendulum down): x =10

linearized system near z, = 0:

: 0 1
dr = [ .y 0}5:{?
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Does linearization ‘work’?

the linearized system usually, but not always, gives a good idea of the
system behavior near r,

example 1: © = —23 near z, = 0

for £(0) > 0 solutions have form x(t) = (T(D}—Q i 21)_159

linearized system is dx = 0; solutions are constant
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Controlling the Dynamical System
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Controlling a Simple System
o Consider a simple system: X = F'(x, u)

o Scalar variables x and u, not vectors x and u.

o Assume effect of motor command u: é’_F >0
o

e The setpoint x, is the desired value.
> The controller responds to error: e = x — x,,

e The goal is to set u to reach e = 0.

Ashutosh Saxena



The intuition behind control

e Use action u to push back toward error e
=0
° error e depends on state x (via sensors )
e What does pushing back do!?
> Depends on the structure of the system
> Velocity versus acceleration control
* How much should we push back?
> What does the magnitude of u depend on!?

Car on a slope example
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Velocity or acceleration control?

e If error reflects x, does u affect X" or X ?
* Velocity control: u — x” (valve fills tank)

° let x = (x)
X=(x)=F(x,u)=(u)
 Acceleration control: u — x” (rocket)

o let x = (x v)7
. X
x=| [=FXxu)=
V U
V=X=1U
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The Bang-Bang Controller

» Push back, against the direction of the error

> with constant action u
° Erroris e = x - x,
e<O0=u=on=>x=F(x,on)>0
e>0=u =off >x=F(x,o0ff ) <0
* To prevent chatter around e = 0,
e < —E=U = 0n
e >+E=u = off

* Household thermostat. Not very subtle.
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Bang-Bang Control in Action
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> Optimal for reaching the setpoint

> Not very good for staying near it
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* Does a thermostat work exactly that
way!
* Why not!?
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Proportional Control

* Push back, proportional to the error.
u=—ke+u,
> setu, so that x=F(x,,,u,)=0
* For a linear system, we get exponential
convergence.

x()=Ce "+ x_,
* The controller gain k determines how
quickly the system responds to error.
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Velocity Control

* You want to drive your car at velocity v,

* You issue the motor command u = pos,_,,

* You observe velocity v,

e Define a first-order controller:
u=—k(v )+ u,

obs Set

° k is the controller gain.
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Proportional Control in Action
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° Increasing gain approaches setpoint faster
> Can leads to overshoot, and even instability
o Steady-state offset
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Find the control problem
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Steady-State Offset

» Suppose we have continuing disturbances:
x=F(xu)+d

e The P-controller cannot stabilize at e = 0.
> Why not!
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Steady-State Offset

» Suppose we have continuing disturbances:
x=F(xu)+d

e The P-controller cannot stabilize at e = 0.
° if u, is defined so F(x,,u,) =0
> then F(x,u,) + d # 0, so the system changes

» Must adapt u, to different disturbances d.
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Adaptive Control

* Sometimes one controller isn’t enough.

* We need controllers at different time
scales.

u=—k,e+u,
u, =—k,e where £k, <<k,
 This can eliminate steady-state offset.
> Why?

> Because the slower controller adapts u;,
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Integral Control

e The adaptive controller le = —k,e means
t
u, ()= —k,jedt +u,
0
e Therefore

u(t)=—kpe(t)— k,_[edt +u,
0

e The Proportional-Integral (Pl) Controller.
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Derivative Control

e Damping friction is a force opposing
motion, proportional to velocity.

* Try to prevent overshoot by damping
controller response.
u=-—k,e—k,e

 Estimating a derivative from
measurements is fragile, and amplifies
noise.
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Derivative Control in Action
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> Damping fights oscillation and overshoot

o But it’s vulnerable to noise
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P & SF

Effect of Derivative Control

s
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Copyright 212006 by Dougls J. Cooper. Al Rights Resenved.

Tirmne

o Different amounts of damping (without noise)

Ashutosh Saxena



Derivatives Amplify Noise

slope rapidly
decreasing

slope rapidly
el T increaSing ...................

PV & SP

pv —7

Copyright © 2006 by Douglas J. Cooper. All Rights Reserved.

Time

° This is a problem if control output (CO)
depends on slope (with a high gain).
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The PID Controller

* A weighted combination of Proportional,
Integral, and Derivative terms.

u(t) = —kpe(t) =k, | edt = kpé(r)

e The PID controller is the workhorse of
the control industry. Tuning is non-trivial.
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PID Control in Action
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° But, good behavior depends on good tuning!
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Exploring Pl Control Tuning

Impact of Ke and Ti on Performance for Pl Controller Form: CO=COQ,; .. +Kce(t) + I%: | e(t)dt

2 Ke

B

Kc

P
g s i

f
i

Kc/2

Base Case Performance : 5 !

..............................................

Coapyright & 2006
by Douglas J. Cooper.
Al Rights Rezerved.

__ P
e T
i’ i

27

Saxena



Parameters are hard to tune manually.
Once tuned, the system could change
(parameter drift) and retune parameters!?

e Use Machine Learning?
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