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Robot IngredientsRobot Ingredients

� Basics (statistics, kinematics)

� Perception / Sensing

� Localization / Estimation
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� Localization / Estimation

� Control

� Planning (Path planning)



ControlControl

� Dynamical systems

� PID controllers

� Common controllers
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Later:

� Feedback control (includes sensing)

� Learning control



Dynamical SystemsDynamical Systems

� A dynamical system changes continuously 
(almost always) according to

� A controller is defined to change the 

n
F ℜ∈= xxx where)(&

Ashutosh Saxena

� A controller is defined to change the 
coupled robot and environment into a 
desired dynamical system.
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Linear Dynamical SystemsLinear Dynamical Systems
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Linear Dynamical SystemLinear Dynamical System
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In One DimensionIn One Dimension

� Simple linear system

� Fixed point

kxx =&
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� Solution  

◦ Stable if  k < 0

◦ Unstable if  k > 0
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In Two DimensionsIn Two Dimensions

� Often, we have position and velocity:

� If we model actions as forces, which cause 
acceleration, then we get:

xvvx
T

&== where),(x

Ashutosh Saxena

acceleration, then we get:
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Node Node 
BehaviorBehavior
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Focus Focus 
BehaviorBehavior
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Saddle Saddle 
BehaviorBehavior
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Spiral Spiral 
BehaviorBehavior

(stable (stable 
attractor)attractor)
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attractor)attractor)



Center Center 
BehaviorBehavior

((undampedundamped
oscillator)oscillator)
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oscillator)oscillator)



Block DiagramBlock Diagram
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Examples of Linear Dynamical Examples of Linear Dynamical 
SystemsSystems
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Block DiagramBlock Diagram
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Mechanical SystemsMechanical Systems
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Controlling the Dynamical SystemControlling the Dynamical System
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Controlling a Simple SystemControlling a Simple System

� Consider a simple system:  

◦ Scalar variables x and u, not vectors x and u.

◦ Assume effect of motor command u:  
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� The setpoint xset is the desired value.
◦ The controller responds to error:  e = x − xset

� The goal is to set u to reach e = 0.
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The intuition behind controlThe intuition behind control

� Use action u to push back toward error e
= 0

◦ error e depends on state x (via sensors y)

� What does pushing back do?

◦ Depends on the structure of the system
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◦ Depends on the structure of the system

◦ Velocity versus acceleration control

� How much should we push back?

◦ What does the magnitude of u depend on?

Car on a slope example



Velocity or acceleration control?Velocity or acceleration control?

� If error reflects x, does u affect x′ or x′′ ?

� Velocity control:   u→ x′ (valve fills tank)

◦ let x = (x)
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� Acceleration control:  u→ x′′ (rocket)

◦ let x = (x v)T

)(),()( uFx === uxx
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The BangThe Bang--Bang ControllerBang Controller

� Push back, against the direction of the error

◦ with constant action u

� Error is  e = x - xset
0),(:0 >=⇒=⇒< onxFxonue &
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� To prevent chatter around e = 0,

� Household thermostat.  Not very subtle.
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BangBang--Bang Control in ActionBang Control in Action
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◦ Optimal for reaching the setpoint

◦ Not very good for staying near it



� Does a thermostat work exactly that 
way?

� Why not?
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Proportional ControlProportional Control

� Push back, proportional to the error.

◦ set ub so that 

� For a linear system, we get exponential 

u = −ke + ub

0),( == bset uxFx&
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� For a linear system, we get exponential 
convergence.

� The controller gain k determines how 
quickly the system responds to error.

x(t) = Ce
−α t

+ xset



Velocity ControlVelocity Control

� You want to drive your car at velocity vset.
� You issue the motor command u = posaccel
� You observe velocity vobs.
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� Define a first-order controller:

◦ k is the controller gain.

u = −k (vobs − vset ) + ub



Proportional Control in ActionProportional Control in Action
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◦ Increasing gain approaches setpoint faster

◦ Can leads to overshoot, and even instability

◦ Steady-state offset



Find the control problemFind the control problem

Video
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SteadySteady--State OffsetState Offset

� Suppose we have continuing disturbances:

� The P-controller cannot stabilize at e = 0.

duxFx += ),(&
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� The P-controller cannot stabilize at e = 0.

◦ Why not?



SteadySteady--State OffsetState Offset

� Suppose we have continuing disturbances:

� The P-controller cannot stabilize at e = 0.

duxFx += ),(&

Ashutosh Saxena

� The P-controller cannot stabilize at e = 0.

◦ if ub is defined so F(xset,ub) = 0

◦ then F(xset,ub) + d ≠ 0, so the system changes

� Must adapt ub to different disturbances d.



Adaptive ControlAdaptive Control

� Sometimes one controller isn’t enough.

� We need controllers at different time 
scales.

u = −kPe + ub
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� This can eliminate steady-state offset.

◦ Why?

◦ Because the slower controller adapts ub.

u = −kPe + ub
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Integral ControlIntegral Control

� The adaptive controller                      means

� Therefore

eku Ib −=&

b

t

Ib udtektu +−= ∫
0

)(

Ashutosh Saxena

Therefore

� The Proportional-Integral (PI) Controller.
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Derivative ControlDerivative Control

� Damping friction is a force opposing 
motion, proportional to velocity.

� Try to prevent overshoot by damping 
controller response.
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controller response.

� Estimating a derivative from 
measurements is fragile, and amplifies 
noise.
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Derivative Control in ActionDerivative Control in Action
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◦ Damping fights oscillation and overshoot

◦ But it’s vulnerable to noise



Effect of Derivative ControlEffect of Derivative Control
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◦ Different amounts of damping (without noise)



Derivatives Amplify NoiseDerivatives Amplify Noise
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◦ This is a problem if control output (CO) 
depends on slope (with a high gain).



The PID ControllerThe PID Controller

� A weighted combination of Proportional, 
Integral, and Derivative terms.
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� The PID controller is the workhorse of 
the control industry.  Tuning is non-trivial.

0



PID Control in ActionPID Control in Action

Ashutosh Saxena

◦ But, good behavior depends on good tuning!



Exploring PI Control TuningExploring PI Control Tuning
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Parameters are hard to tune manually.  
Once tuned, the system could change 
(parameter drift) and retune parameters?
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� Use Machine Learning?


