CS 4758/6758: Robot Learning

0

Spring 2010: Lecture 6

Ashutosh Saxena

Previous Lecture

Probability distributions for modeling the sensor data.

Maximum Likelihood approach for estimation.

(First homework problem in HW2 explores this.)

Robot Localization

- Data from sensors is affected by measurement errors.
- We can only compute the probability that the robot is in a given configuration.

Localization

 Robot is placed along a line, but it does not know where.

Multimodal Distribution

Robot near 'a' or 'b'

Which distribution to use to model this?

Dirac Distribution

Robot is at 'a' with probability 1.0

$$\delta(l) = \begin{cases} \infty & l = 0 \\ 0 & otherwise \end{cases} \text{ with } \int_{-\infty}^{+\infty} \delta(l) dl = 1$$

Gaussian Distribution

• Used in Kalman filters.

Probabilistic approach for Robot Localization

- Initial probability distribution p(l)
- Statistical model characterizing the error of each sensor p(s|l)
- Data from the sensor s=s_i
- Map of the environment.

Two phases in Robot Operation

Action

- Take a known action
- $\circ\,$ E.g., move the robot by ΔS
- Often movement is not perfect.

Two phases in Robot Operation

Perception

- Use sensors to figure out where it is.
- Sensors are not perfect.
- Use probability distributions.

Example

- Robot uses sonar.
- Sonar statistical error:
 p(s | l)

What is p(| s)?

Bayes Rule

$$P(| s) = \frac{p(s | l) p(l)}{p(s)}$$

Example 2

• Prob. Distribution of robot position = belief

Initial belief:

Example 2

• The robot moves ΔS , and assume the action is "perfect".

• What is the new robot belief?

Involves a convolution operation

$$P_{new}(I) = p(I) * p_{enc}(I)$$

= $\sum_{l'} p(l') p_{enc}(l-l')$

New Robot Belief

• Before:

• After taking the action: p(l)

Error in Action

• Suppose the action is not perfect, but rather approximately moves the robot.

p(l)

а

b

 $a + \Delta S$

С

d

nutosh Saxena

l

Robot movement

- **Initially,** the robot is put somewhere, but not told its location. P(I) is uniform
- **Perception,** robot queries its sensor, but does not know which one.

 $p(||s_1) = p(s_1||) p(|) / p(s_1)$

Action, robot moves one meter forward. Error in motion makes p(I|s) smoother. $p(I) = p(I) * p_{enc}(I)$

Perception, robot queries again $p(||s_2) = p(s_2||) p(|) / p(s_2)$

Where is the robot?

 $I^* = \arg \max_{I} p(I | s_1, s_2)$

Maximum likelihood estimate.

Can also do: $I^* = \arg \max_{I} \log p(I | s_1, s_2)$

Summary

- Decide state space, i.e., how to represent 'l'.
- Choose a statistical model for sensors P(s | I)
- Choose a statistical model for action $P_{enc}(I)$
 - Only needed when the robot is moving.
- Use Bayes rule / conditional independence properties to compute the probability p(I| s₁, s₂, ...)
 - Compute arg max $p(|| s_1, s_2, ...)$

Two approaches

Grid-based localization

- Discretize the state into many cells.
 - E.g., for ID problem:

• For 3D problem: need $100 \times 100 \times 100 = 1000000$ cells.

Kalman filter based localization

- Only use Gaussian distribution to model robot motion and sensors.
- Benefit: Only need μ and \sum (fewer numbers)
- Cons: ?

Grid-Based (Markov localization)

For a 2D robot (e.g., a car): (x,y,θ) • We need 3D grid.

For a 3D robot (e.g., a helicopter) • We need 6D grid

Example

Let us assume that the robot probability distribution at t=0 is the one below:

9.1 Action Phase:

Let us assume that the robot moves forward with the following statistical model:

After Action phase

• How would p(l) look?

$$p(l) * p_{Enc}(l) = \sum_{m=0}^{m=9} p[m] \cdot p_{Enc}[l - m]$$

That is:

Perception phase

Before perception:

 $p(s \mid l)$

1 Saxena

2D localization

- Sensors (laser)
- 2D grid

Sensor Modeling

How to model p(s|l) ?

Ultrasonic (left)

2D grid: beliefs at different times

Example 1: Office Building

Real Example 2

