

- Periodically visit for announcements, lecture notes and homeworks.
http://www.cs.cornell.edu/courses/CS4758/20IOsp
- Homework I will be posted today on the website) and is due on Feb 10.

Pre-reqs

- Knowledge of basic computer science principles and skills, at a level sufficient to write a reasonably nontrivial computer program. (E.g., CS III4 or CS 2110 or CS 31IO or equivalent.) Knowledge of $\mathbf{C / C + + / C \#}$ is not a pre-requisite, but it is strongly desirable.
- A course in probability/statistics (e.g. CS 2800, ECE 2200, ECE 3100 , or ENGRD 2700 or equivalent).
- Familiarity with the basic linear algebra. (E.g., MATH 2210 is sufficient but not necessary.) Strong mathematical skills are required in this course.
- A course in Artificial Intelligence or Robotics is desirable, but not essential.
- Motivation and patience to hack for long hours.

Robots

How many degrees of freedom?

End-Effector Configuration
Parameters

A set of m parameters:
Operational Coordinates
O_{n+1} : Operational point

A set $x_{1}, x_{2}, \ldots, x_{m_{0}}$ of m_{0} independent configuration parameters
m_{0} : number of degrees of freedom of the end-effector.
that completely specifies the end-effector position and orientation with respect to $\{0\}$

Why Coordinate Transformations?

shutosh Saxe

Rotation Matrix $\left[{ }^{B} \hat{X}_{A}^{T}\right]$
${ }_{B}^{A} R=\left[\begin{array}{lll}{ }^{A} \hat{X}_{B} & { }^{A} \hat{Y}_{B} & { }^{A} \hat{Z}_{B}\end{array}\right]=\left[\begin{array}{l}{ }^{B} \hat{Y}_{A}^{T} \\ { }^{B} \hat{Z}_{A}^{T}\end{array}\right]=\left[{ }^{B} \hat{X}_{A}{ }^{B} \hat{Y}_{A}{ }^{B} \hat{Z}_{A}\right]^{T}={ }_{A}^{B} R^{T}$

$$
{ }_{B}^{A} R={ }_{A}^{B} R^{T}
$$

Inverse of Rotation Matrices

$$
\begin{aligned}
{ }_{B}^{A} R^{-1} & ={ }_{A}^{B} R={ }_{B}^{A} R^{T} \\
{ }_{B}^{A} R^{-1} & ={ }_{B}^{A} R^{T} \quad \text { Orthonormal Matrix }
\end{aligned}
$$

Z-Y-X Euler Angles

${ }_{B}^{A} R=R_{Z^{\prime}}(\alpha) \cdot R_{Y^{\prime}}(\beta) \cdot R_{X^{\prime}}(\gamma)$

$$
\left[\begin{array}{ccc}
c \alpha & -s \alpha & 0 \\
s \alpha & c \alpha & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
c \beta & 0 & s \beta \\
0 & 1 & 0 \\
-s \beta & 0 & c \beta
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c \gamma & -s \gamma \\
0 & s \gamma & c \gamma
\end{array}\right]
$$

$$
{ }_{\hat{B}}^{A} R={ }_{s}^{A} R_{Z X X X}(\alpha, \beta, \gamma)=\left[\begin{array}{ccc}
c \alpha c \beta & X & X \\
s \alpha c \beta & X & X \\
-s \beta & c \beta . s \gamma & c \beta, c \gamma
\end{array}\right]
$$

Inverse Kinematics
- Given (x, y, z) of the end-effector, solve for
the angles.
• Not straight-forward to solve.

Nearest Neighbors

- Find the point closest to the query point.

