# Conquering Motion Planning via Sampling and Search

Sanjiban Choudhury





## We saw how LQR gives us the optimal policy for linear, quadratic costs

## But how can we use LQR for general problems?

## Recap





# Cost $exp(-(x - x_{tree})^2 - (y - y_{tree})^2)$







#### $\dot{y} = u_s \sin \theta$ Dynamics





## Initialize with a sequence of actions





## Linearize dynamics, Quadricize costs



## Call LQR to get quadratic values



## Execute LQR policy to get new sequence of actions









# Repeat the process till convergence!



## But what happens when we have lots of trees?







## Many local optima!





## But what happens when we have lots of trees?





If we initialize LQR in a bad local basin, it finds a bad local optima



## But what happens when we have lots of trees?



# 

## Instead we need something that can search globally to initialize LQR



# The Problem with General MDPs LQR reasons locally

#### We need to combine it with something that reasons globally

This global reasoning is typically done by motion planning



## General framework for motion planning



#### Create a graph







#### Search the graph

## General framework for motion planning



#### Create a graph





#### Search the graph



## How can we make this search faster?



#### Dijkstra



## How can we make this search faster?



#### Dijkstra



#### A\* with heuristic!





#### A\* with heuristic!

## What can we prove about A\*

#### 1. A\* gives us the optimal path (If heuristic is admissible)

## 2. A\* expands the optimal number of vertices (If heuristic is consistent)

## But is the number of expansions really what we want to minimize in motion planning?

## What is the most expensive step?



## Edge evaluation is the most expensive step







## Edge evaluation requires expensive collision checking



Check if helicopter intersects with tower



Check if manipulator intersects with table

## Edge evaluation dominates planning time



Hauser, Kris., Lazy collision checking in asymptotically-optimal motion planning. ICRA 2015

# How do we modify A\* search to minimize edge evaluation?



## Let's revisit Best First Search

| Element<br>(Node) | Priority Value<br>(f-value) |
|-------------------|-----------------------------|
| Node S            | f(S)                        |
|                   |                             |
|                   |                             |



• • • • •



## Let's revisit Best First Search









## Evaluate eges (S,A), (S,B), (S,C)

## What if we never use C? Wasted collision check!





• • • • •



# The Virtue of Laziness

procrastinate as long as possible till you have to evaluate it!

- Take the thing that's expensive
  - (collision checking)
    - and

## What is the laziest that we can be?

# LazySP

(Lazy Shortest Path)

Dellin and Srinivasa, 2016

First Provably Edge-Optimal A\*-like Search Algorithm

#### Greedy Best-first Search over Paths

# LazySP

## To find the shortest path, eliminate all shorter paths!



#### Return shortest feasible path!













#### $A^*$ (191 edges)



#### LAZYSP (38 edges)

## What can we prove about Lazy SP?

LazySP finds the optimal path

- LazySP evaluates the minimal number of edges
  - (For a given edge selector policy)



# How can learning help make LazySP even lazier? (i.e. faster)

#### Leveraging Experience in Lazy Search

Mohak Bhardwaj \*, Sanjiban Choudhury <sup>†</sup>, Byron Boots \* and Siddhartha Srinivasa <sup>†</sup> \*Georgia Institute of Technology <sup>†</sup>University of Washington





## Learn which edges to evaluate (STROLL)



LazySP

STROLL

## General framework for motion planning



#### Create a graph





#### Search the graph



## General framework for motion planning



#### Create a graph



#### Search the graph



# Creating a graph: Abstract algorithm G = (V, E)

Vertices: set of configurations

Edges: paths connecting configurations

# Creating a graph: Abstract algorithm G = (V, E)

Vertices: set of configurations



Edges: paths connecting configurations

1. Sample a set of collision free vertices V (add start and goal)

# Creating a graph: Abstract algorithm G = (V, E)

Vertices: set of configurations



Edges: paths connecting configurations

1. Sample a set of collision free vertices V (add start and goal)

2. Connect "neighboring" vertices to get edges E



## **Strategy 1:** Discretize configuration space

Create a lattice. Connect neighboring points (4-conn, 8-conn, ...)



What are the pros? What are the cons?

Theoretical guarantees: Resolution complete

Randomly sample points. Connect all neighbors in a ball!



Theoretical guarantees: Probabilistically complete

What are the pros? What are the cons?

## Strategy 2: Uniformly randomly sample

## Can we do better than random?



Uniform random sampling tends to clump

Question: How do we do this without discretization?



Ideally we would want points to be spread out evenly



Link for exact algorithm: https://observablehq.com/@jrus/halton

## Halton Sequence

Intuition: Create a sequence using prime numbers that uniformly densify space

# How can learning help make better graphs?

#### LEGO: Leveraging Experience in Roadmap Generation for Sampling-Based Planning

Rahul Kumar<sup>\*1</sup>, Aditya Mandalika<sup>\*2</sup>, Sanjiban Choudhury<sup>\*2</sup> and Siddhartha S. Srinivasa<sup>\*2</sup>



## Learning a Sampler (LEGO)



![](_page_55_Picture_2.jpeg)

![](_page_55_Picture_3.jpeg)