Conquering Motion Planning via Sampling and Search

Sanjiban Choudhury

We saw how LQR gives us the optimal policy for linear, quadratic costs

But how can we use LQR for general problems?

Recap

Cost $exp(-(x - x_{tree})^2 - (y - y_{tree})^2)$

$\dot{y} = u_s \sin \theta$ Dynamics

Initialize with a sequence of actions

Linearize dynamics, Quadricize costs

Call LQR to get quadratic values

Execute LQR policy to get new sequence of actions

Repeat the process till convergence!

But what happens when we have lots of trees?

Many local optima!

But what happens when we have lots of trees?

If we initialize LQR in a bad local basin, it finds a bad local optima

But what happens when we have lots of trees?

Instead we need something that can search globally to initialize LQR

The Problem with General MDPs LQR reasons locally

We need to combine it with something that reasons globally

This global reasoning is typically done by motion planning

General framework for motion planning

Create a graph

Search the graph

General framework for motion planning

Create a graph

Search the graph

How can we make this search faster?

Dijkstra

How can we make this search faster?

Dijkstra

A* with heuristic!

A* with heuristic!

What can we prove about A*

1. A* gives us the optimal path (If heuristic is admissible)

2. A* expands the optimal number of vertices (If heuristic is consistent)

But is the number of expansions really what we want to minimize in motion planning?

What is the most expensive step?

Edge evaluation is the most expensive step

Edge evaluation requires expensive collision checking

Check if helicopter intersects with tower

Check if manipulator intersects with table

Edge evaluation dominates planning time

Hauser, Kris., Lazy collision checking in asymptotically-optimal motion planning. ICRA 2015

How do we modify A* search to minimize edge evaluation?

Let's revisit Best First Search

Element (Node)	Priority Value (f-value)
Node S	f(S)

• • • • •

Let's revisit Best First Search

Evaluate eges (S,A), (S,B), (S,C)

What if we never use C? Wasted collision check!

• • • • •

The Virtue of Laziness

procrastinate as long as possible till you have to evaluate it!

- Take the thing that's expensive
 - (collision checking)
 - and

What is the laziest that we can be?

LazySP

(Lazy Shortest Path)

Dellin and Srinivasa, 2016

First Provably Edge-Optimal A*-like Search Algorithm

Greedy Best-first Search over Paths

LazySP

To find the shortest path, eliminate all shorter paths!

Return shortest feasible path!

A^* (191 edges)

LAZYSP (38 edges)

What can we prove about Lazy SP?

LazySP finds the optimal path

- LazySP evaluates the minimal number of edges
 - (For a given edge selector policy)

How can learning help make LazySP even lazier? (i.e. faster)

Leveraging Experience in Lazy Search

Mohak Bhardwaj *, Sanjiban Choudhury [†], Byron Boots * and Siddhartha Srinivasa [†] *Georgia Institute of Technology [†]University of Washington

Learn which edges to evaluate (STROLL)

LazySP

STROLL

General framework for motion planning

Create a graph

Search the graph

General framework for motion planning

Create a graph

Search the graph

Creating a graph: Abstract algorithm G = (V, E)

Vertices: set of configurations

Edges: paths connecting configurations

Creating a graph: Abstract algorithm G = (V, E)

Vertices: set of configurations

Edges: paths connecting configurations

1. Sample a set of collision free vertices V (add start and goal)

Creating a graph: Abstract algorithm G = (V, E)

Vertices: set of configurations

Edges: paths connecting configurations

1. Sample a set of collision free vertices V (add start and goal)

2. Connect "neighboring" vertices to get edges E

Strategy 1: Discretize configuration space

Create a lattice. Connect neighboring points (4-conn, 8-conn, ...)

What are the pros? What are the cons?

Theoretical guarantees: Resolution complete

Randomly sample points. Connect all neighbors in a ball!

Theoretical guarantees: Probabilistically complete

What are the pros? What are the cons?

Strategy 2: Uniformly randomly sample

Can we do better than random?

Uniform random sampling tends to clump

Question: How do we do this without discretization?

Ideally we would want points to be spread out evenly

Link for exact algorithm: https://observablehq.com/@jrus/halton

Halton Sequence

Intuition: Create a sequence using prime numbers that uniformly densify space

How can learning help make better graphs?

LEGO: Leveraging Experience in Roadmap Generation for Sampling-Based Planning

Rahul Kumar^{*1}, Aditya Mandalika^{*2}, Sanjiban Choudhury^{*2} and Siddhartha S. Srinivasa^{*2}

Learning a Sampler (LEGO)

