
Conquering Motion Planning  
via Sampling and Search

Sanjiban Choudhury

1



Recap

2

We saw how LQR gives us the optimal policy for linear, quadratic 
costs

But how can we use LQR for general problems?



LQR for a non-linear, non-quadratic MDP

3

Cost 
exp( − (x − xtree)2 − (y − ytree)2)

Dynamics



LQR for a non-linear, non-quadratic MDP

4

Initialize with a sequence 
of actions



LQR for a non-linear, non-quadratic MDP

5

Linearize dynamics,  
Quadricize costs



LQR for a non-linear, non-quadratic MDP

6

Call LQR to get  
quadratic values



LQR for a non-linear, non-quadratic MDP

7

Execute LQR policy 
to get new sequence  

of actions



LQR for a non-linear, non-quadratic MDP

8

Repeat the process 
till convergence!



But what happens when we have lots of trees?

9

Many local optima!



But what happens when we have lots of trees?

10

 If we initialize LQR  
in a bad local basin,  

it finds  
a bad local optima



But what happens when we have lots of trees?

11

Instead we need 
something that can search 
globally to initialize LQR



The Problem with General MDPs

12

LQR reasons locally

We need to combine it with something that reasons globally

This global reasoning is typically done by motion planning



General framework for motion planning

Create a graph Search the graph

Interleave



Create a graph

General framework for motion planning

Search the graph

Interleave



How can we make this search faster?

15

Dijkstra



How can we make this search faster?

16

Dijkstra A* with heuristic!



What can we prove about A*

17

A* with heuristic!

1. A* gives us the optimal path
(If heuristic is admissible)

2. A* expands the  
optimal number of vertices

(If heuristic is consistent)



18

But is the number of expansions really what we 
want to minimize in motion planning?

What is the most expensive step?



Edge evaluation is the most expensive step

19

Why?



20

(Schluman et al. ’14)

Check if helicopter 
intersects with tower

Check if manipulator 
intersects with table

Edge evaluation requires expensive collision checking



Edge evaluation dominates planning time

21

Edge Evaluations

Other

Hauser, Kris., Lazy collision checking in asymptotically-optimal motion planning. ICRA 2015 



How do we modify A* 
search to minimize edge 

evaluation?  

22



Let’s revisit Best First Search

23

S

A

B
G

C

Element 
(Node)

Priority Value 
 (f-value)

Node S f(S)



24

S

A

B
G

C

Element 
(Node)

Priority Value 
 (f-value)

Node S f(S)

Node A f(A)

Node C f(C)

Let’s revisit Best First Search

Evaluate eges (S,A), (S,B), (S,C)



What if we never use C?  
Wasted collision check!

25

S

A

B
G

C

Element 
(Node)

Priority Value 
 (f-value)

Node S f(S)

Node A f(A)

Node C f(C)



26

Take the thing that’s expensive  
(collision checking) 

and  
procrastinate as long as possible 

 till you have to evaluate it!

The Virtue of Laziness



What is the laziest that we can 
be? 

LazySP 
(Lazy Shortest Path) 

Dellin and Srinivasa, 2016 

First Provably Edge-Optimal A*-like Search Algorithm 

27



LazySP

Greedy Best-first Search over Paths

To find the shortest path, 
eliminate all shorter paths!



LazySP 
Optimism Under Uncertainty

Lazy Search for  
Shortest Path

Evaluate Path

Update the Graph



LazySP 
Optimism Under Uncertainty

Lazy Search for  
Shortest Path

Evaluate Path

Update the Graph



LazySP 
Optimism Under Uncertainty

Lazy Search for  
Shortest Path

Evaluate Path

Update the Graph



LazySP 
Optimism Under Uncertainty

Lazy Search for  
Shortest Path

Evaluate Path

Update the Graph



LazySP 
Optimism Under Uncertainty

Lazy Search for  
Shortest Path

Evaluate Path

Update the Graph



LazySP 
Optimism Under Uncertainty

Lazy Search for  
Shortest Path

Evaluate Path

Update the Graph



LazySP 
Optimism Under Uncertainty

Lazy Search for  
Shortest Path

Evaluate Path

Update the Graph



LazySP 
Optimism Under Uncertainty

Lazy Search for  
Shortest Path

Evaluate Path

Update the Graph



LazySP 
Optimism Under Uncertainty

Return shortest feasible path!



A* vs LazySP



A* vs LazySP



A* vs LazySP



A* vs LazySP



A* (191 edges) LAZYSP (38 edges)

A* vs LazySP



What can we prove about Lazy SP?

43

LazySP finds the optimal path

LazySP evaluates the minimal number of edges

(For a given edge selector policy) 



How can learning help 
make LazySP even lazier? 

(i.e. faster)

44



Learn which edges to evaluate (STROLL)

45
LazySP STROLL



Create a graph

General framework for motion planning

Search the graph

Interleave



Create a graph

General framework for motion planning

Search the graph

Interleave



Creating a graph: Abstract algorithm

48

G = (V,E)

Vertices: set of configurations Edges: paths connecting 
configurations 



49

G = (V,E)

Vertices: set of configurations Edges: paths connecting 
configurations 

Creating a graph: Abstract algorithm

1. Sample a set of collision free 
vertices V (add start and goal)



50

G = (V,E)

Vertices: set of configurations Edges: paths connecting 
configurations 

Creating a graph: Abstract algorithm

1. Sample a set of collision free 
vertices V (add start and goal)

2. Connect “neighboring” vertices to get edges E 



Strategy 1: Discretize configuration space

What are the pros? What are the cons?

Create a lattice. Connect neighboring points (4-conn, 8-conn, …)

Theoretical guarantees: Resolution complete



What are the pros? What are the cons?

Randomly sample points. Connect all neighbors in a ball!

Theoretical guarantees: Probabilistically complete

Strategy 2: Uniformly randomly sample



Can we do better than random?

Uniform random sampling tends to  
clump

Ideally we would want points to be 
spread out evenly

Question: How do we do this without discretization?



Halton Sequence
Intuition: Create a sequence using prime numbers that uniformly densify space

Link for exact algorithm: 
https://observablehq.com/@jrus/halton



How can learning help 
make better graphs?

55



Learning a Sampler (LEGO)


