Solving Continuous MDPs: The Linear Quadratic Regulator (LQR)

Sanjiban Choudhury

Model-based Planning

Step 0: Build a robot
Step 1: Collect data of your robot doing stuff in the world

Step 2: Use data to learn a dynamics model for your robot

Step 3: Plan with the model to compute an optimal policy

Today's Challenge!

Step 0: Build a robot
Step 1: Collect data of your robot doing stuff in the world

Step 2: Use data to learn a dynamics model for your robot
Step 3: Plan with the model to compute an optimal policy
How do we do this for robots with continuous state-actions?

Brainstorm

How do we model the Atlas backflip as a Markov Decision Problem $<\mathrm{S}, \mathrm{A}, \mathrm{C}, \mathrm{T}>$?

The Inverted Pendulum: A

 fundamental dynamics model
Humanoid balancing

Rocket landing

Recall: How do we solve a MDP?

Value Iteration

Initialize value function at last time-step

$$
V^{*}(s, T-1)=\min c(s, a)
$$

$$
a
$$

for $t=T-2, \ldots, 0$

\bigcirc	14	14	13	14	14	14	14	2	1	0
\rightarrow	14	13	12	14	14	14	14	3	2	1
N	13	12	11	14	14	14	14	4	3	2
m	12	11	10	9	8	7	6	5	4	3
寸	13	12	11	14	14	14	14	6	5	4
-	14	13	12	14	14	14	14	7	6	5
φ	14	14	13	14	14	14	14	8	7	6
N	14	14	14	13	12	11	10	9	8	7
∞	14	14	14	14	13	12	11	10	9	8
ar	14	14	14	14	14	13	12	11	10	9
	1	1	2	3	4	5	$\frac{1}{6}$	7	8	9

Compute value function at time-step t

$$
V^{*}(s, t)=\min _{a}\left[c(s, a)+\gamma \sum_{s^{\prime}} \mathscr{T}\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}, t+1\right)\right]
$$

Can we apply value iteration to solve this MDP?

$V^{*}(s, t)=\min _{a}\left[c(s, a)+\gamma \sum_{s^{\prime}} \mathscr{T}\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}, t+1\right)\right]$

THE CURSE OF DIMENSIONALITY

1D: $\mathbf{1 0}^{1}$

\section*{| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |}

Curse of Dimensionality

We cannot discretize continuous states and actions, because the number of states/action grows exponentially with dimension

We need some approximation or assumptions!

Can we analytically represent and update $V^{*}(s, t) ?$

$$
V^{*}(s, t)=\min _{a}\left[c(s, a)+\gamma \sum_{s^{\prime}} \mathscr{T}\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}, t+1\right)\right]
$$

What class of functions can we use for $\mathscr{T}\left(s^{\prime} \mid s, a\right)$ and $V^{*}\left(s^{\prime}, t+1\right)$?

Can we analytically represent and update

$$
V^{*}(s, t) ?
$$

Yes*

$V^{*}(s, t)=\min _{a} \underset{\text { (Quadratic) }}{\left[c(s, a)+\gamma \sum_{s^{\prime}} \mathscr{T}\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}, t+1\right)\right]}$ (Linear) \quad (Quadratratic) $)$

Linear Quadratic Regulator (LQR)

LQR is widely used in real world robotics

But the real world is not linear and quadratic, right?

No, but we can linearize dynamics and quadricize the costs about some reference

LQR can then be used as a very fast subroutine to compute optimal policy

LQR is widely used in real world robotics

Whole-Arm Manipulation
Target Position: 0.2 m forward

Check out notebook

cs4756_robot_learning / notebooks / inverted_pendulum_lqr.ipynb

Illustrated Linear Quadratic Regulator

Companion to courses lectures from CS6756: Learning for Robot Decision Making and Chapter 2 of Modern Adaptive Control and Reinforcement Learning.

In [3]: import numpy as np
mport autograd.numpy as np
from autograd import grad, jacobian
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from matplotlib import rc
from IPython.display import HTML, Image
rom matplotlib.patches import Circle
rc('animation', html='jshtml')
Dynamics of an Inverted Pendulum

Let's formalize!

It's quadratics all the way down!

The LQR Algorithm

Initialize $V_{T}=Q$
For $\mathrm{t}=\mathrm{T}-1, \ldots, 1$

Compute gain matrix

$$
K_{t}=\left(R+B^{T} V_{t+1} B\right)^{-1} B^{T} V_{t+1} A
$$

Update value
$V_{t}=Q+K_{t}^{T} R K_{t}+\left(A+B K_{t}\right)^{T} V_{t+1}\left(A+B K_{t}\right)$

Value Iteration for Inverted Pendulum

An Easy Starting Point

Another Easy Starting Point

A Hard Starting Point

Another Hard Starting Point

tl;dr

THE CURSE OF DIMENSIONALITY

It's quadratics all the way down!
The LQR Algorithm
Initialize $V_{T}=Q$
For $\mathrm{t}=\mathrm{T} . . .1$
Compute gain matrix
$K_{t}=\left(R+B^{T} V_{t+1} B\right)^{-1} B^{T} V_{t+1} A$

Update value
$V_{t}=Q+K_{t}^{T} R K_{t}+\left(A+B K_{t}\right)^{T} V_{t+1}\left(A+B K_{t}\right)$

