
Solving Continuous MDPs:
The Linear Quadratic Regulator

(LQR)

Sanjiban Choudhury

1

Model-based Planning

Step 0: Build a robot

Step 1: Collect data of your robot doing stuff in the world

Step 2: Use data to learn a dynamics model for your robot

Step 3: Plan with the model to compute an optimal policy

Today’s Challenge!

Step 0: Build a robot

Step 1: Collect data of your robot doing stuff in the world

Step 2: Use data to learn a dynamics model for your robot

Step 3: Plan with the model to compute an optimal policy

How do we do this for robots with continuous state-actions?

Brainstorm

5

How do we model the Atlas backflip as a Markov Decision Problem
<S, A, C, T>?

The Inverted Pendulum: A
fundamental dynamics model

Rocket landingHumanoid balancing

Recall: How do we solve a MDP?

Image courtesy Dan Klein

10

Value Iteration

Initialize value function at last time-step

for t = T − 2,…,0

Compute value function at time-step t

V*(s, t) = min
a [c(s, a) + γ∑

s′

𝒯(s′ |s, a)V*(s′ , t + 1)]

V*(s, T − 1) = min
a

c(s, a)

11

Can we apply value iteration to
solve this MDP?

V*(s, t) = min
a [c(s, a) + γ∑

s′

𝒯(s′ |s, a)V*(s′ , t + 1)]

The curse of dimensionality

Curse of Dimensionality

We cannot discretize continuous states and actions,
because the number of states/action grows exponentially

with dimension

We need some approximation or assumptions!

14

Can we analytically represent and update
?V*(s, t)

V*(s, t) = min
a [c(s, a) + γ∑

s′

𝒯(s′ |s, a)V*(s′ , t + 1)]
What class of functions can we use for ? 𝒯(s′ |s, a) and V*(s′ , t + 1)

15

Can we analytically represent and update
?V*(s, t)

V*(s, t) = min
a [c(s, a) + γ∑

s′

𝒯(s′ |s, a)V*(s′ , t + 1)]
Yes*

(Quadratic)(Linear)(Quadratic)(Quadratic)

Linear Quadratic Regulator (LQR)

17

LQR is widely used in real world robotics

But the real world is not linear and quadratic, right?

No, but we can linearize dynamics and
quadricize the costs about some reference

LQR can then be used as a very fast subroutine
to compute optimal policy

LQR is widely used in real world robotics

Check out notebook

19

https://github.com/portal-cornell/cs4756_robot_learning/blob/main/notebooks/inverted_pendulum_lqr.ipynb

Let’s formalize!

VT−1

VT−2

VT−3

It’s quadratics all the way down!

Kt = (R + BTVt+1B)−1BTVt+1A

Vt = Q + KT
t RKt + (A + BKt)TVt+1(A + BKt)

The LQR Algorithm

For t = T-1, …, 1

Compute gain matrix
Kt = (R + BTVt+1B)−1BTVt+1A

Initialize VT = Q

Update value
Vt = Q + KT

t RKt + (A + BKt)TVt+1(A + BKt)

Value Iteration for Inverted Pendulum

θ

·θ

An Easy Starting Point

Another Easy Starting Point

A Hard Starting Point

Another Hard Starting Point

28

tl;dr The curse of dimensionality

The LQR Algorithm

For t = T … 1

Compute gain matrix
 Kt = (R + BTVt+1B)−1BTVt+1A

Initialize VT = Q

Update value
 Vt = Q + KT

t RKt + (A + BKt)TVt+1(A + BKt)

VT

VT−1

VT−2

VT−3

It’s quadratics all the way down!

