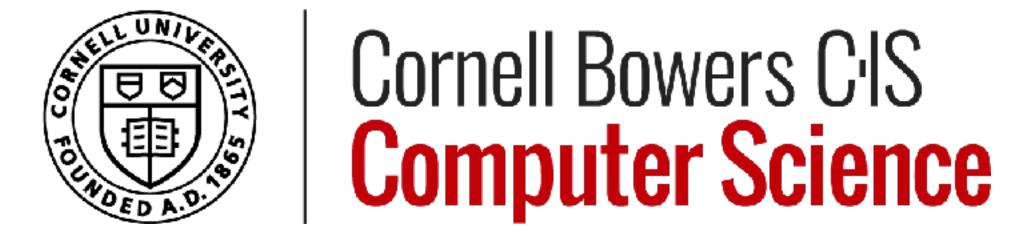
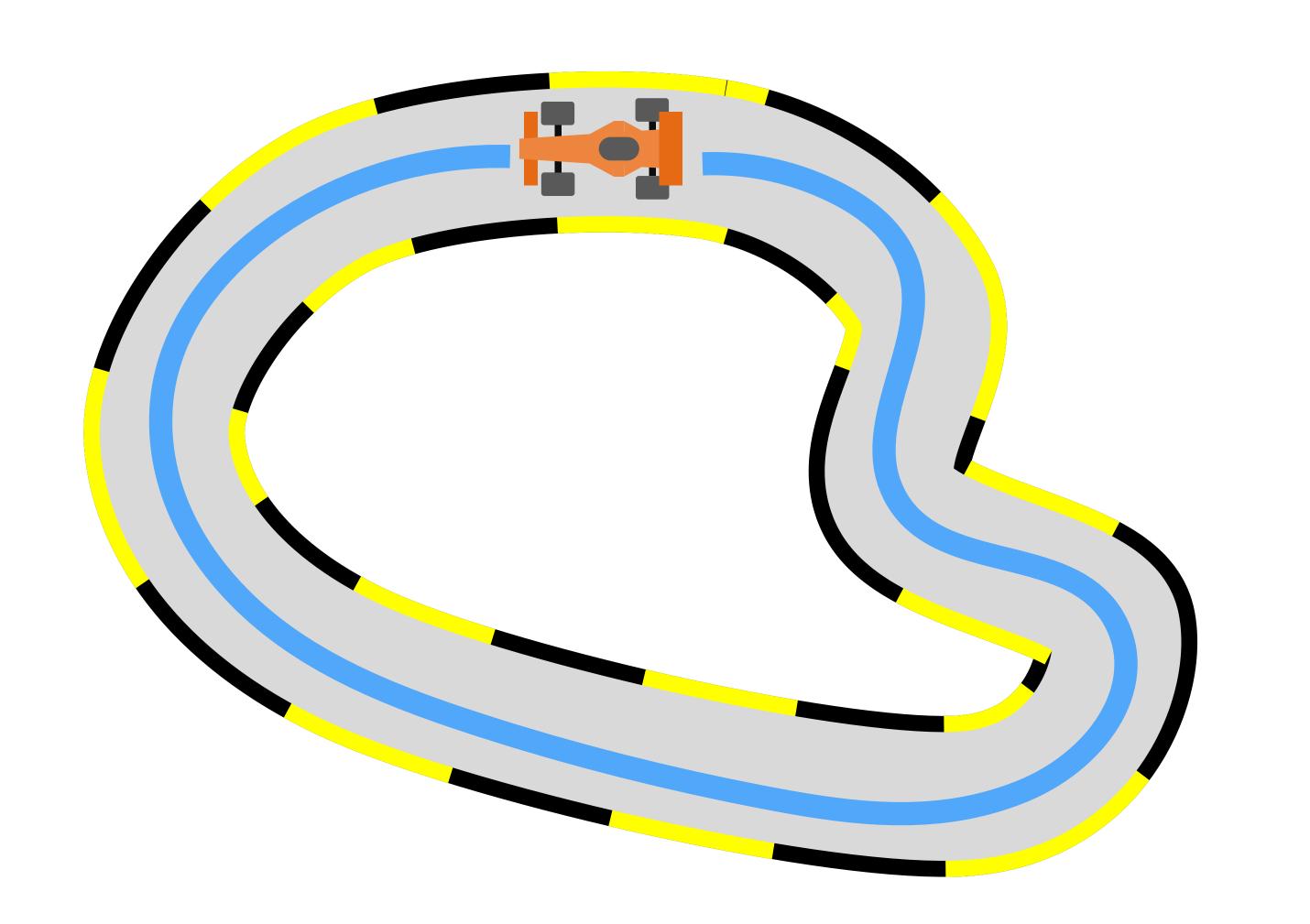
DAgger: Taming Covariate Shift with No Regret (Part 2!)

Sanjiban Choudhury



Behavior Cloning

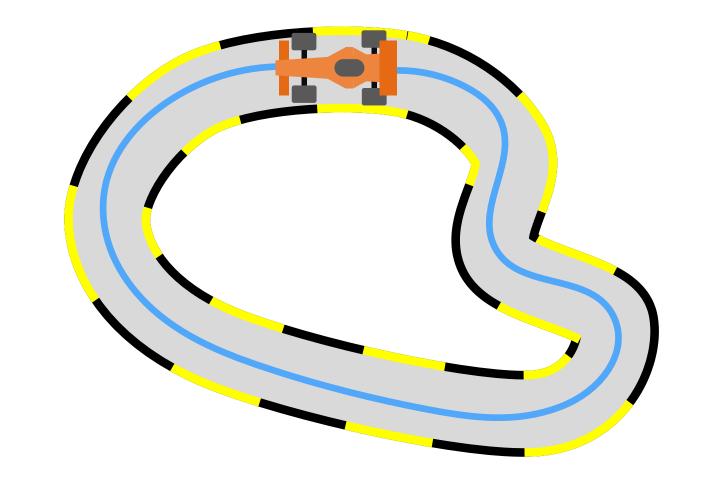


Expert runs away after demonstrations

The Big Problem with BC

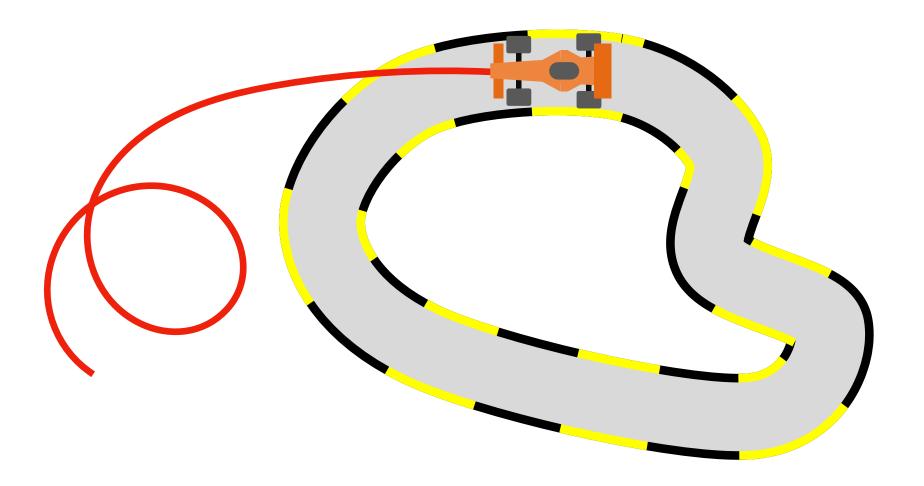
Train

$$\sum_{t=0}^{T-1} \mathbb{E}_{s_t \sim d_t^{\pi^*}} [\mathcal{C}(s_t, \pi(s_t))]$$



Test

$$\sum_{t=0}^{T-1} \mathbb{E}_{s_t \sim d_t^{\pi}} [\mathcal{L}(s_t, \pi(s_t))]$$



The Goal

$$\sum_{t=0}^{T-1} \mathbb{E}_{s_t \sim d_t^{\pi}} [\mathcal{L}(s_t, \pi(s_t))]$$

Can we bound this to $O(\epsilon T)$?

DAGGER: A meta-algorithm for imitation learning

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Stéphane Ross

Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
stephaneross@cmu.edu

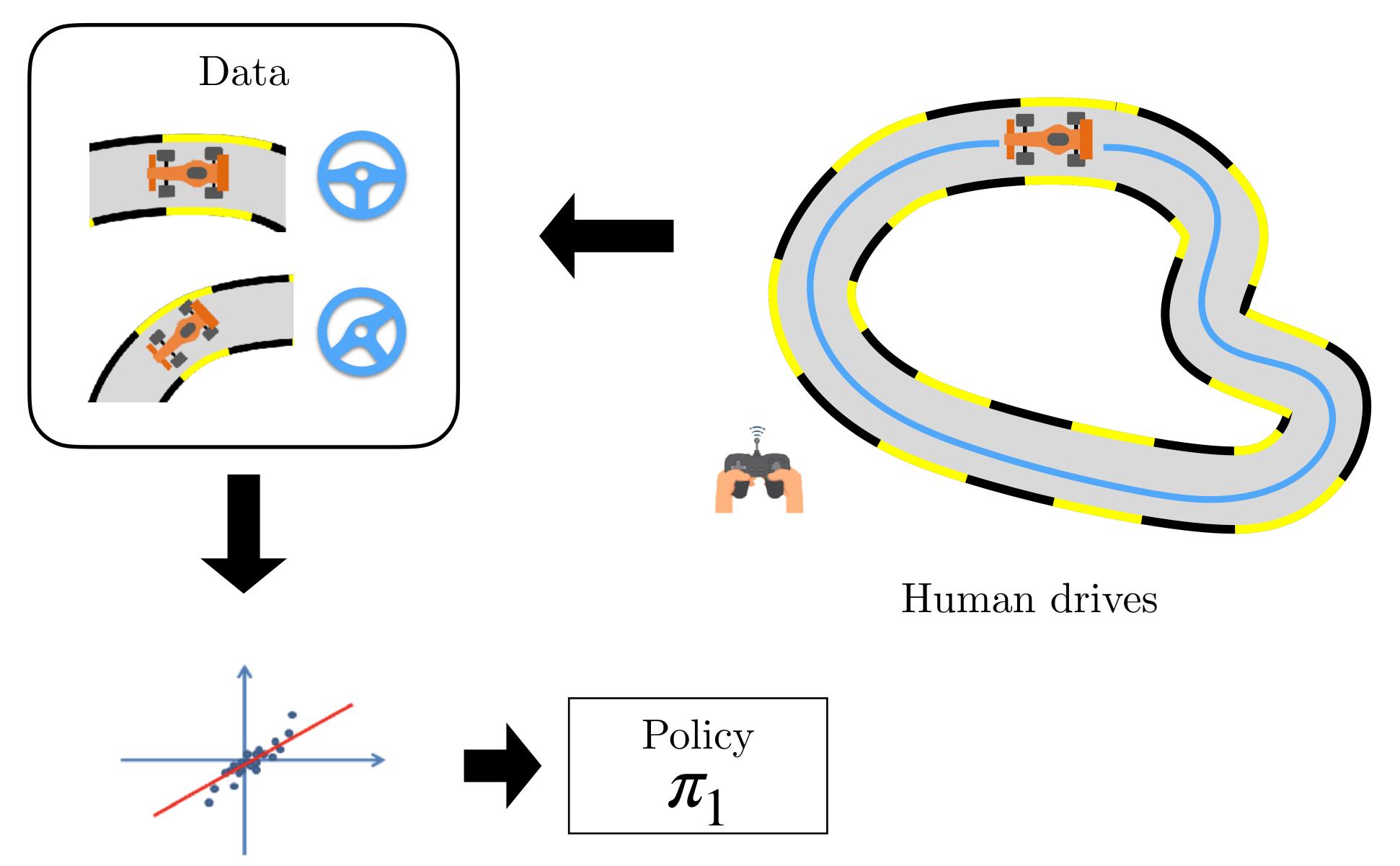
Geoffrey J. Gordon

Machine Learning Department Carnegie Mellon University Pittsburgh, PA 15213, USA ggordon@cs.cmu.edu

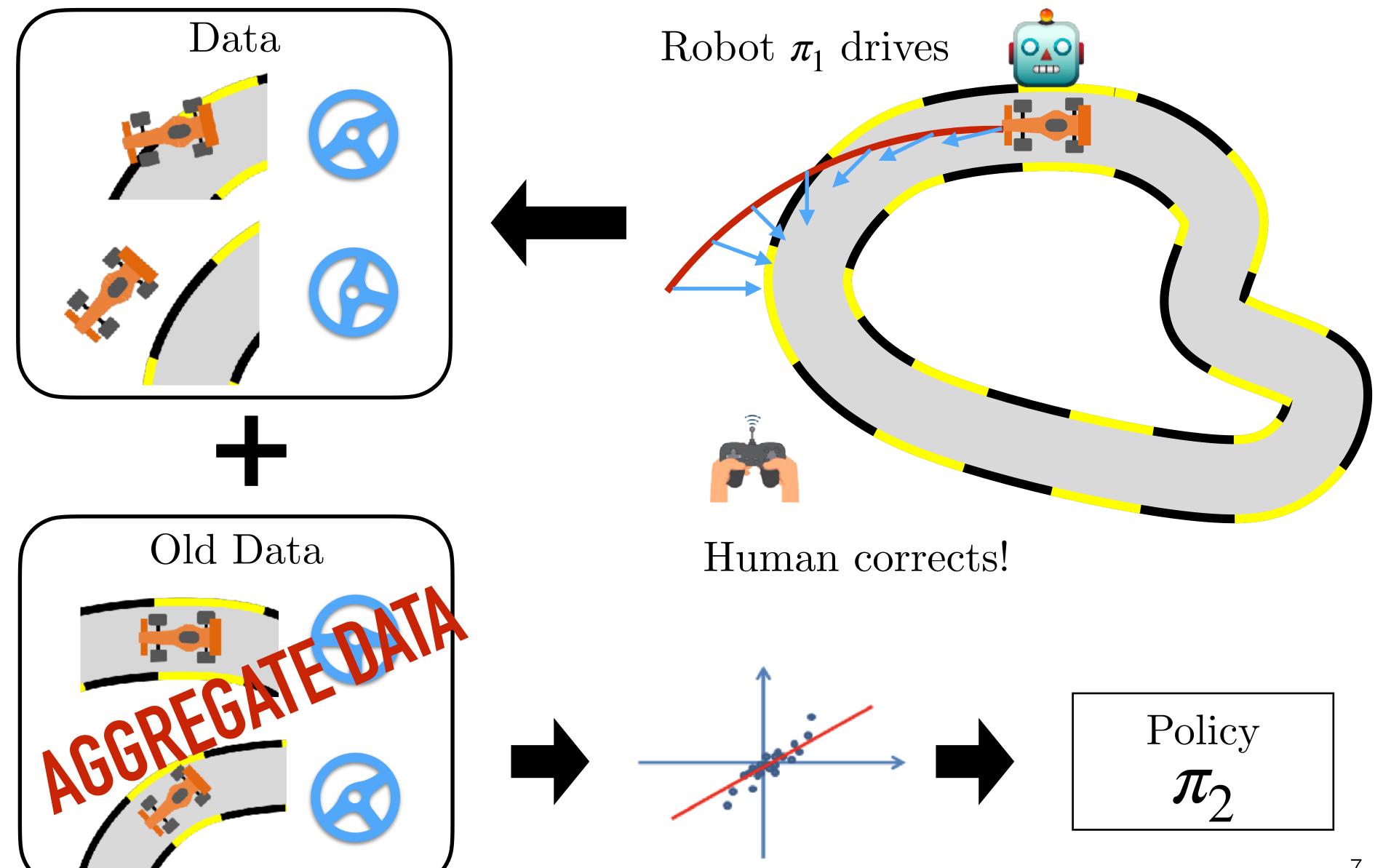
J. Andrew Bagnell

Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
dbagnell@ri.cmu.edu

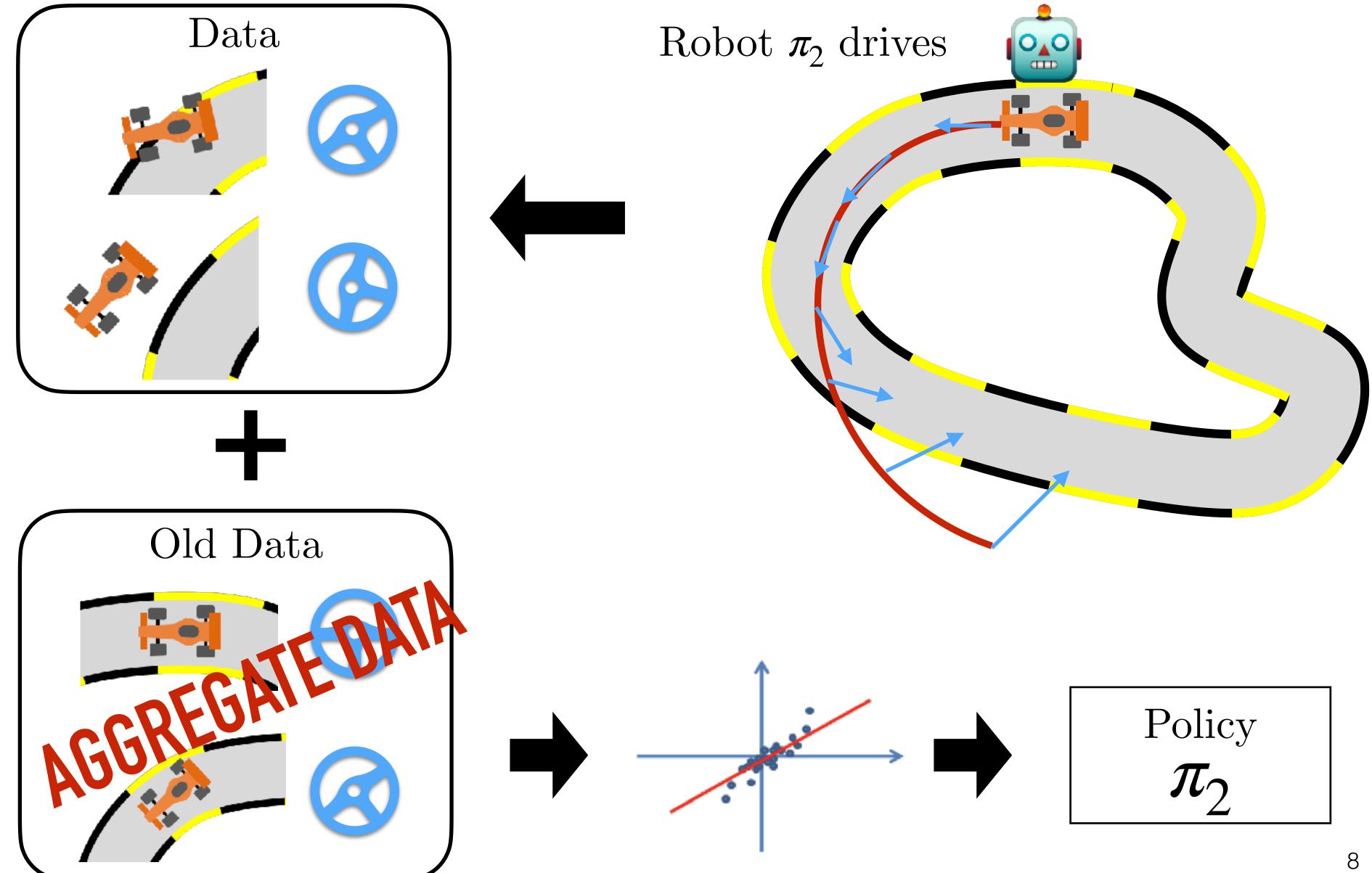
DAgger: Initializations



DAgger: Iteration 1

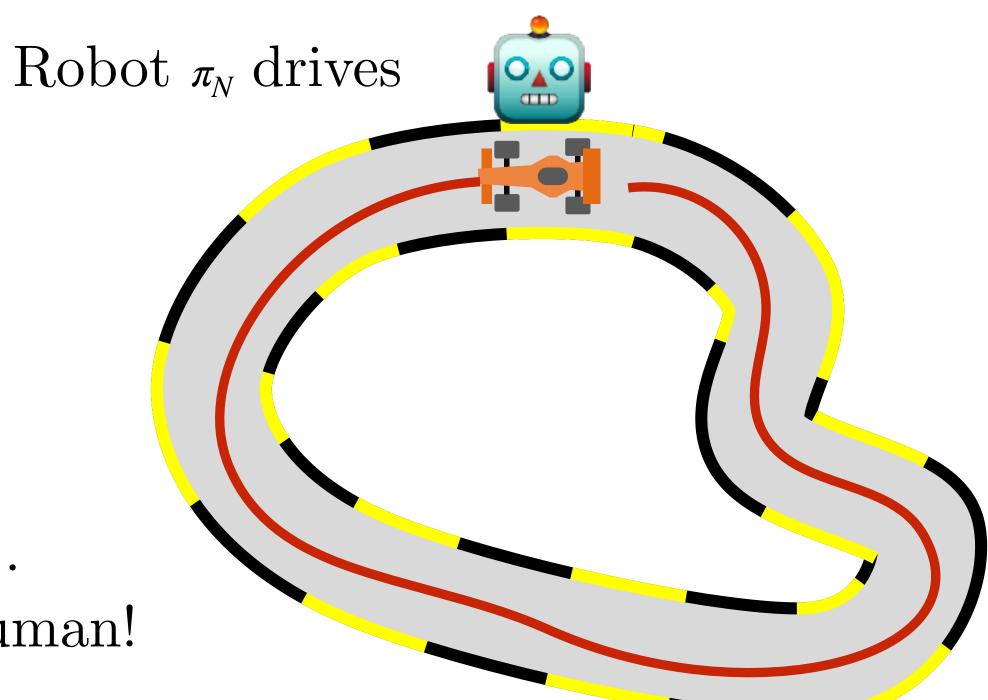


DAgger: Iteration 2



[Ross et al'11]

DAgger: Iteration N



After many iterations
we are able to drive like a human!

DAgger (Dataset Aggregation)

Initialize with a random policy π_1 # Can be BC Initialize empty data buffer $\mathscr{D} \leftarrow \{\}$

For
$$i = 1, ..., N$$

Execute policy π_i in the real world and collect data

$$\mathcal{D}_i = \{s_0, a_0, s_1, a_1, \dots\} \qquad \text{\# Also called a rollout}$$

Query the expert for the optimal action on learner states

$$\mathcal{D}_i = \{s_0, \pi^*(s_0), s_1, \pi^*(s_1), \dots\}$$

Aggregate data $\mathscr{D} \leftarrow \mathscr{D} \cup \mathscr{D}_i$

Train a new learner on this dataset $\pi_{i+1} \leftarrow \text{Train}(\mathcal{D})$

Select the best policy in $\pi_{1:N+1}$

The DAGGER Guarantee

DAGGER returns a policy π such that

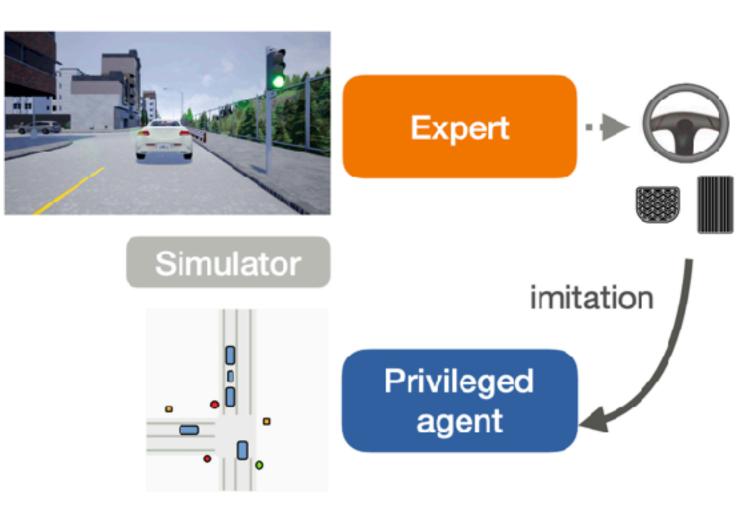
$$J(\pi) - J(\pi^*) \le O(\epsilon HT)$$

H is the recoverability coefficient that says if I make a mistake, how much does an expert have to pay to recover

Many cool applications of DAGGER in robotics

Lee et al, Learning quadrupedal locomotion over challenging terrain (2020)

Choudhury et al, Data Driven Planning via Imitation Learning (2018)



Chen et al Learning by Cheating(2020)

Pan et al Imitation learning for agile autonomous driving (2019)

How do we actually apply DAGGER in practice?

Asking a *human* expert to label every state the robot visits is hard

Option 1: Extend DAGGER to different degrees of human feedback

Can we extend DAGGER to handle easier forms of human feedback preferences, interventions, etc?

Yes (*Future lectures!)

Option 2: Use an algorithmic oracle

What if we had a powerful algorithm that we can run in train time but not at test time?

Learning quadrupedal locomotion over challenging terrain

Joonho Lee¹, Jemin Hwangbo^{1,2}†, Lorenz Wellhausen¹, Vladlen Koltun³, Marco Hutter¹

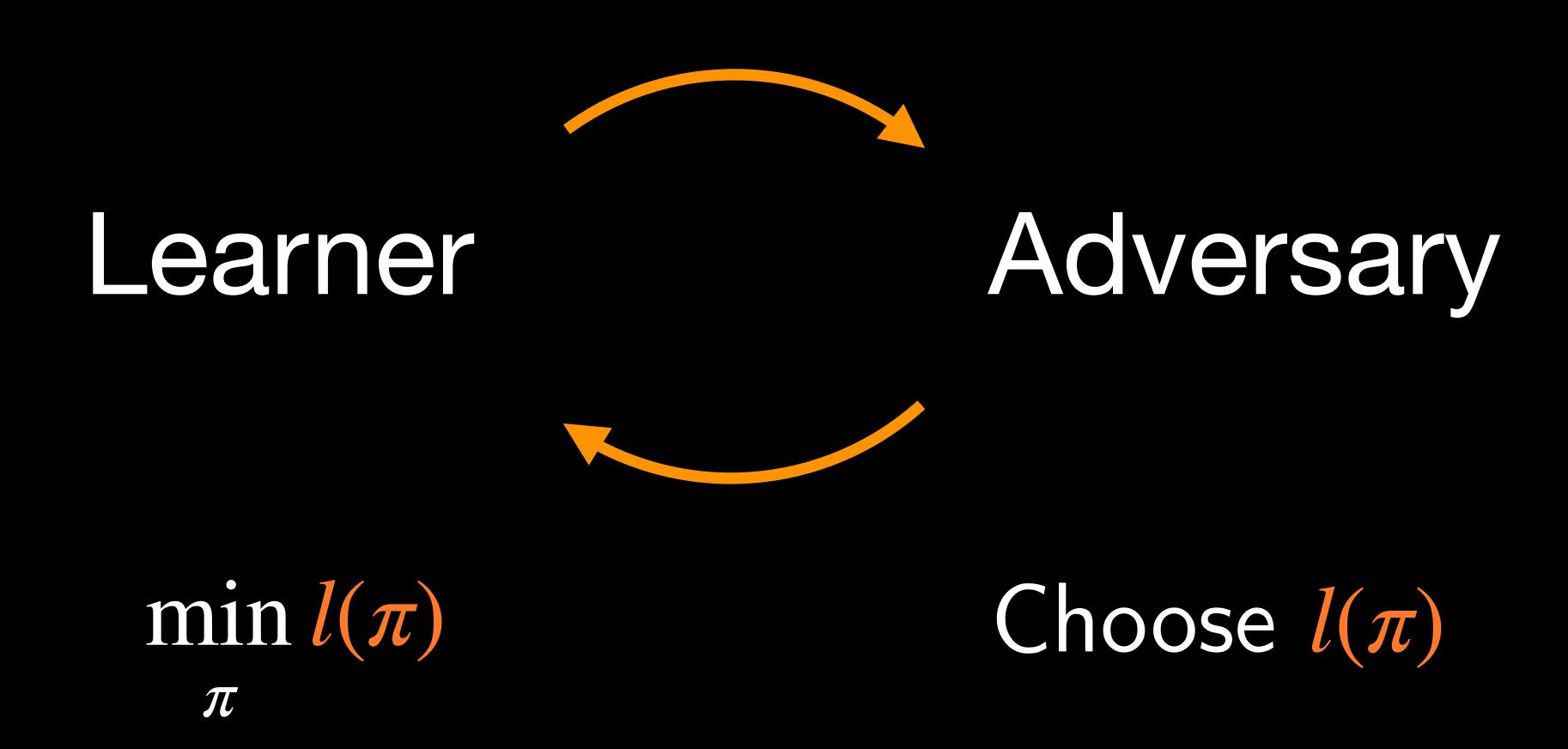
- ¹Robotic Systems Lab, ETH Zurich
- ² Robotics & Artificial Intelligence Lab, KAIST
- ³ Intelligent Systems Lab, Intel

†Substantial part of the work was carried out during his stay at 1

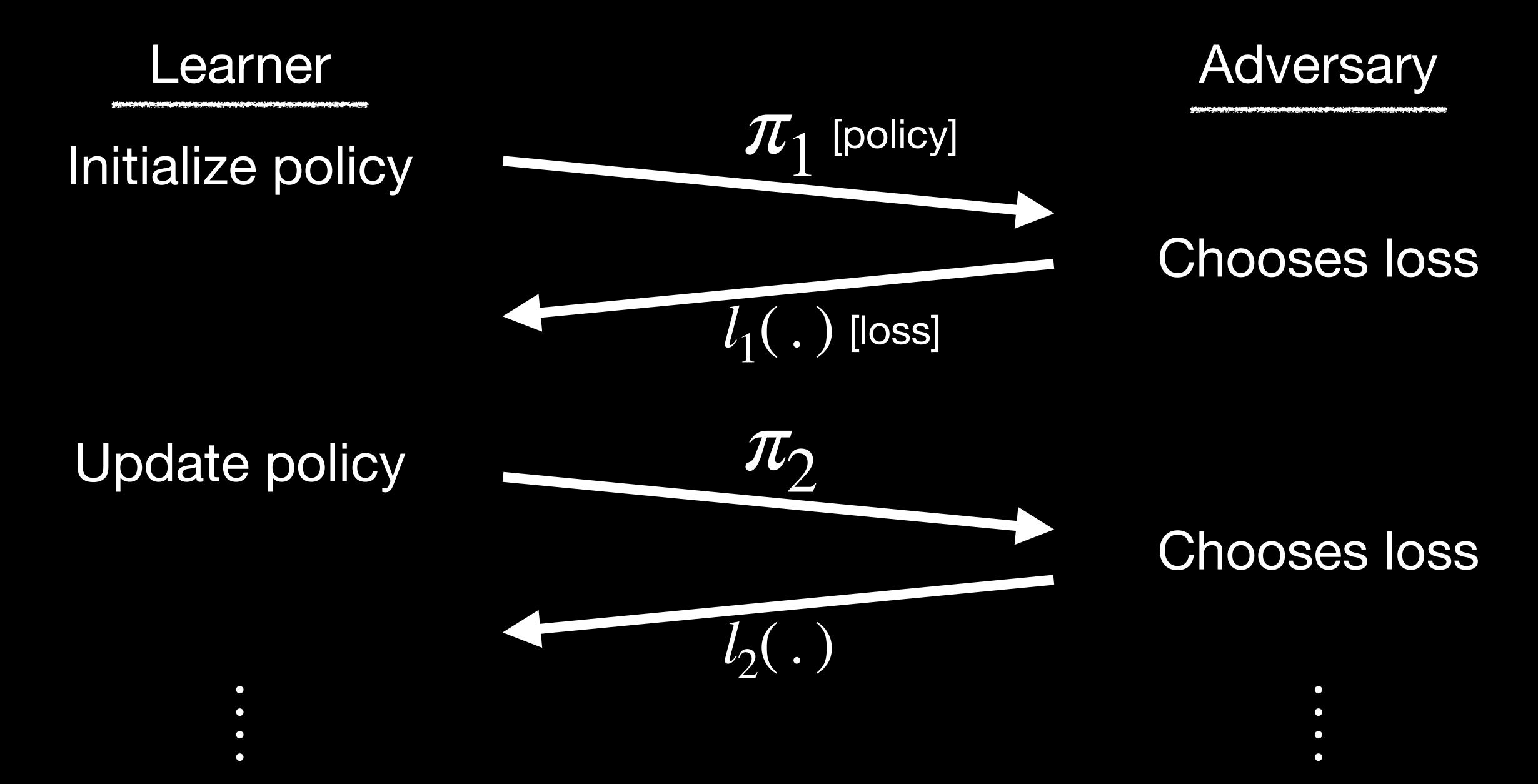
But why does aggregating data work?

From Imitation Learning to Interactive No-Regret Learning

Interactive Learning



Interactive Learning



What is the best that I can do in such an adversarial setting?

From Imitation Learning to Interactive No-Regret Learning

How do we design algorithms that are no-regret?

Regret =
$$\sum_{t=1}^{T} l_t(\pi_t) - \min_{\pi^*} \sum_{t=1}^{t} l_t(\pi^*)$$
(Learner) (Best in hindsight)

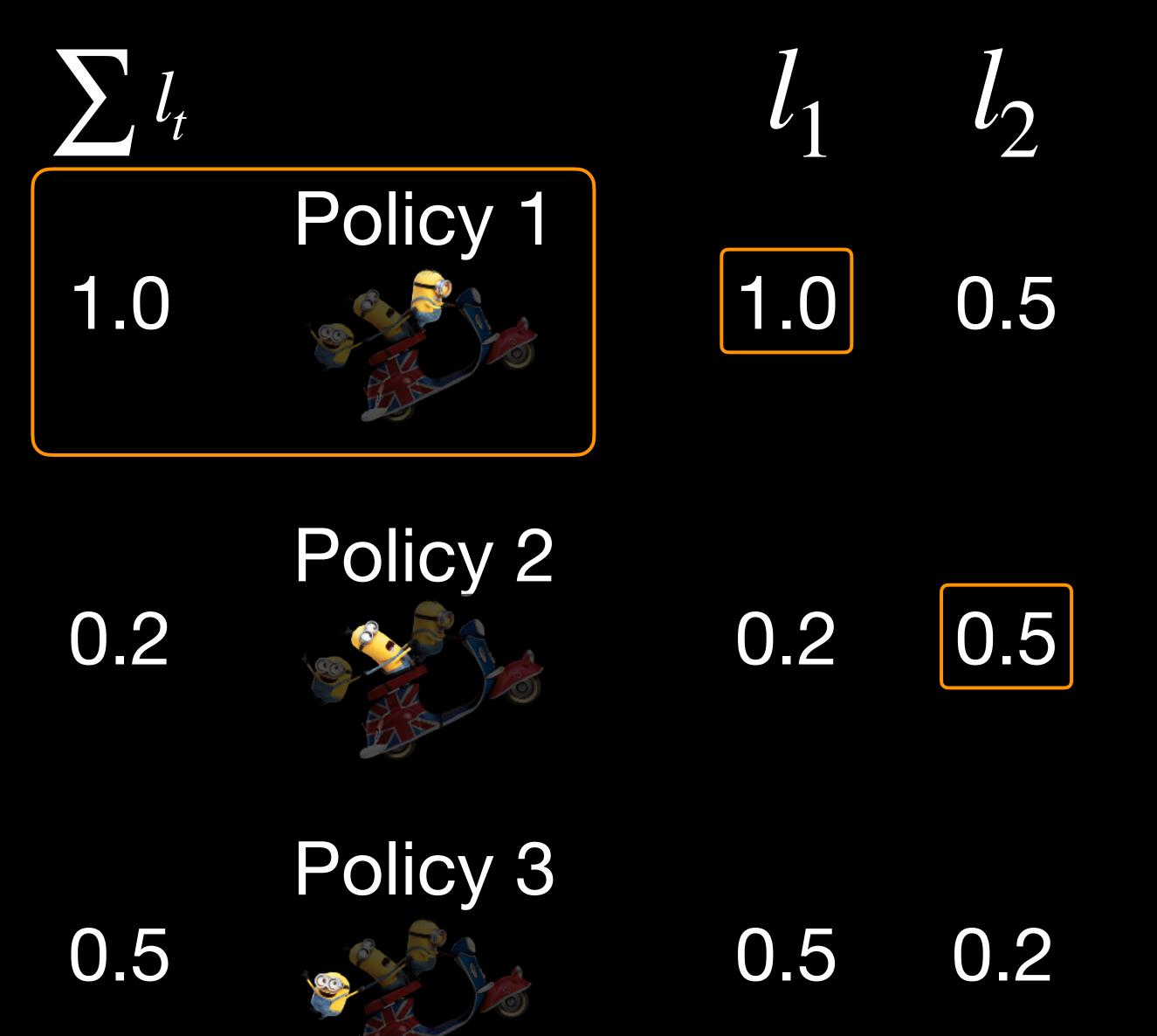
FOLLOW THE LEADER!

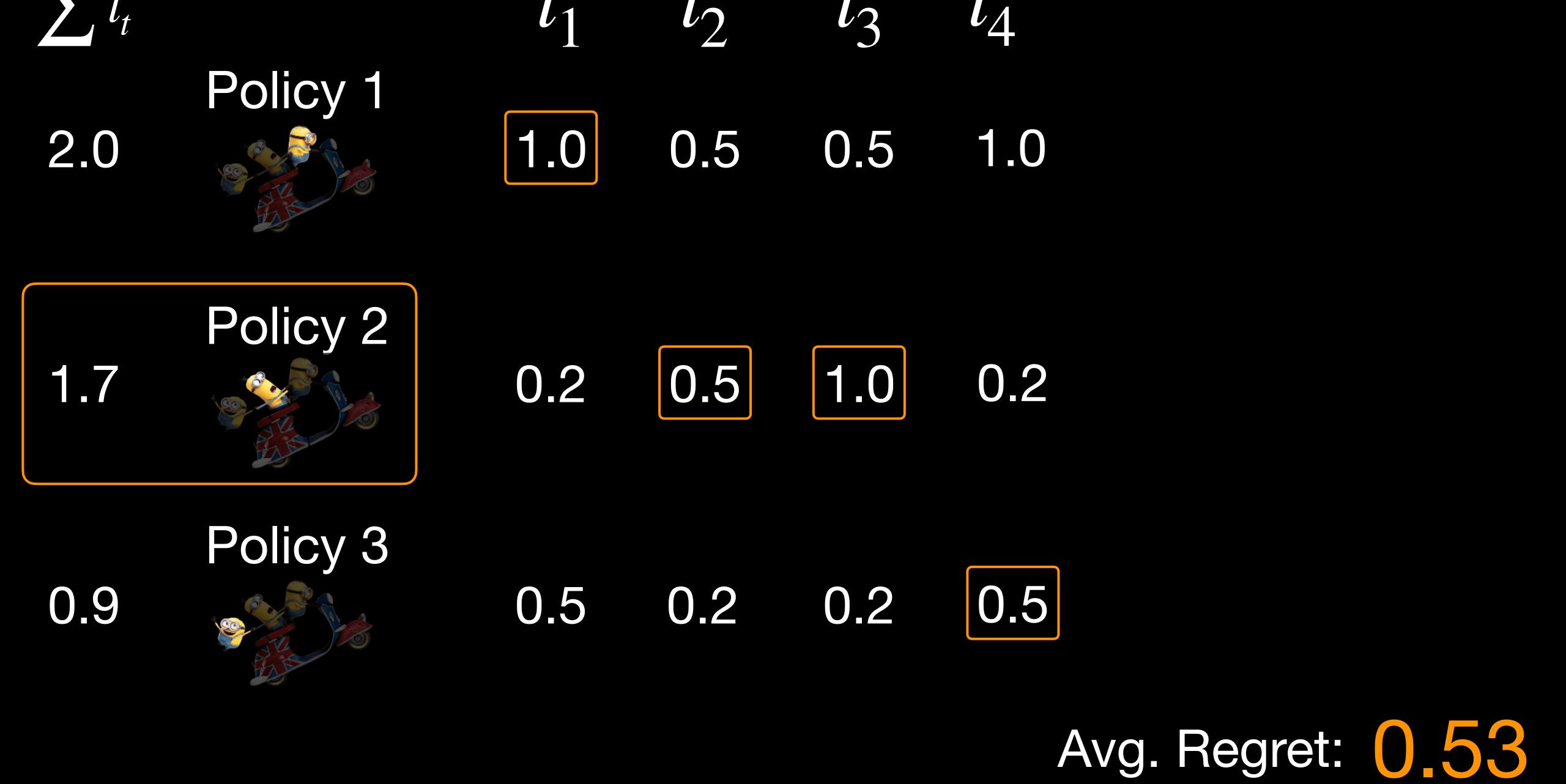
At every round t, choose the best policy in hindsight

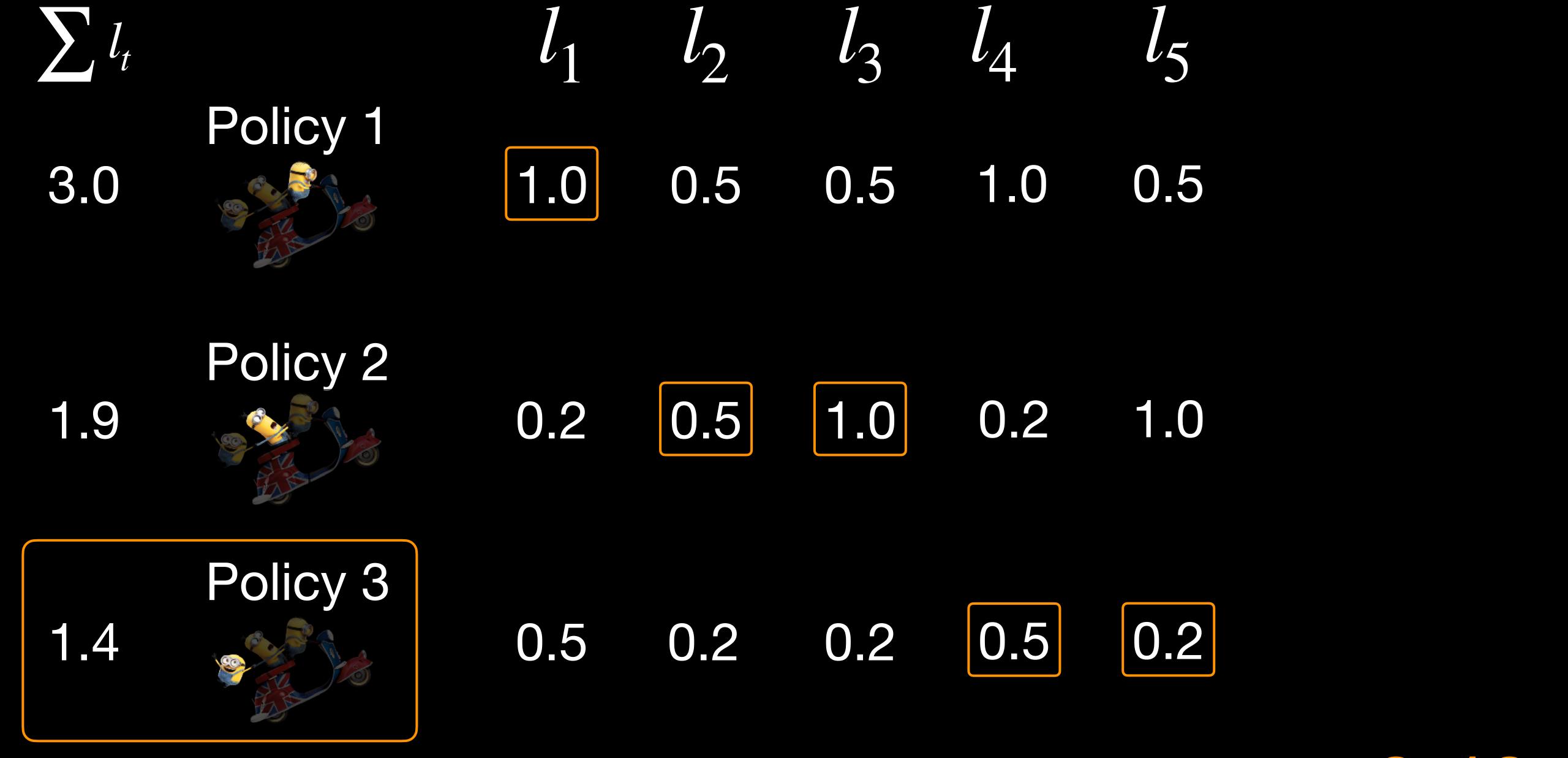
$$\pi_t = \underset{\pi}{\operatorname{arg min}} \sum_{i=1}^{t-1} l_i(\pi)$$

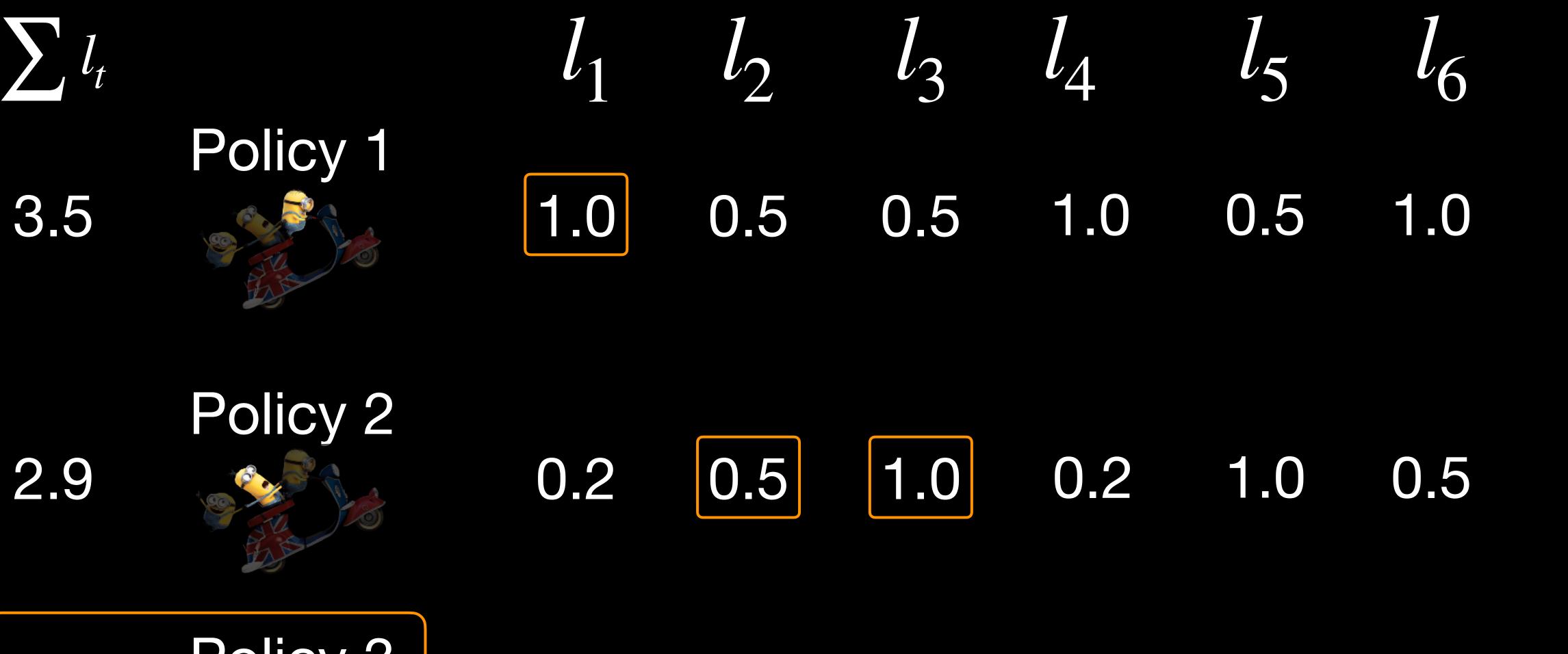
(lowest total loss)

Avg. Regret: -









Policy 3

1.6

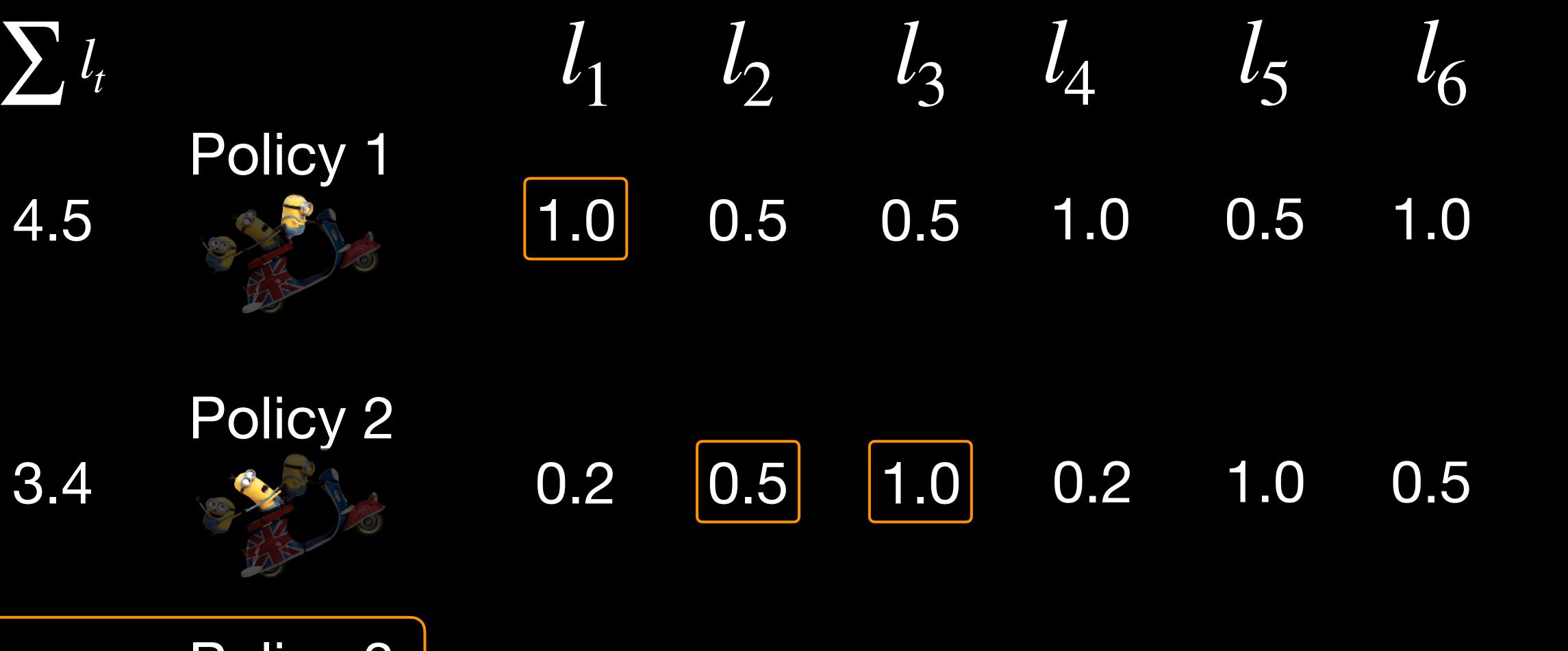
0.5 0.

0.2 0.2

0.5

0.2

0.2



Policy 3
0.5 0.2 0.2 0.5 0.2

1.8

Is FTL no-regret?

FTL is no-regret if

1. We are in the continuous setting

2. Loss is strongly convex

Back to the proof!

Let's recap!

We can frame interactive imitation learning as online learning

FTL is no-regret if the loss is strongly convex

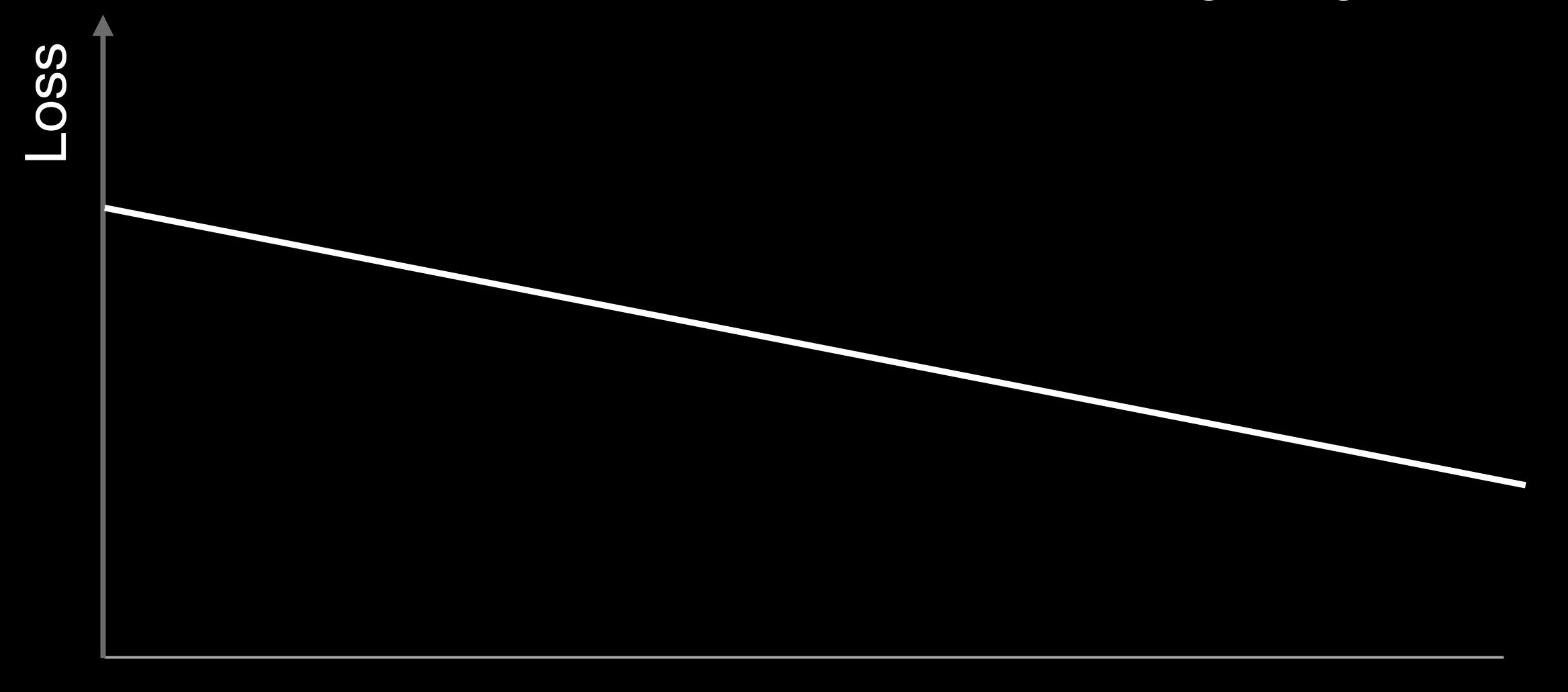
DAGGER is FTL

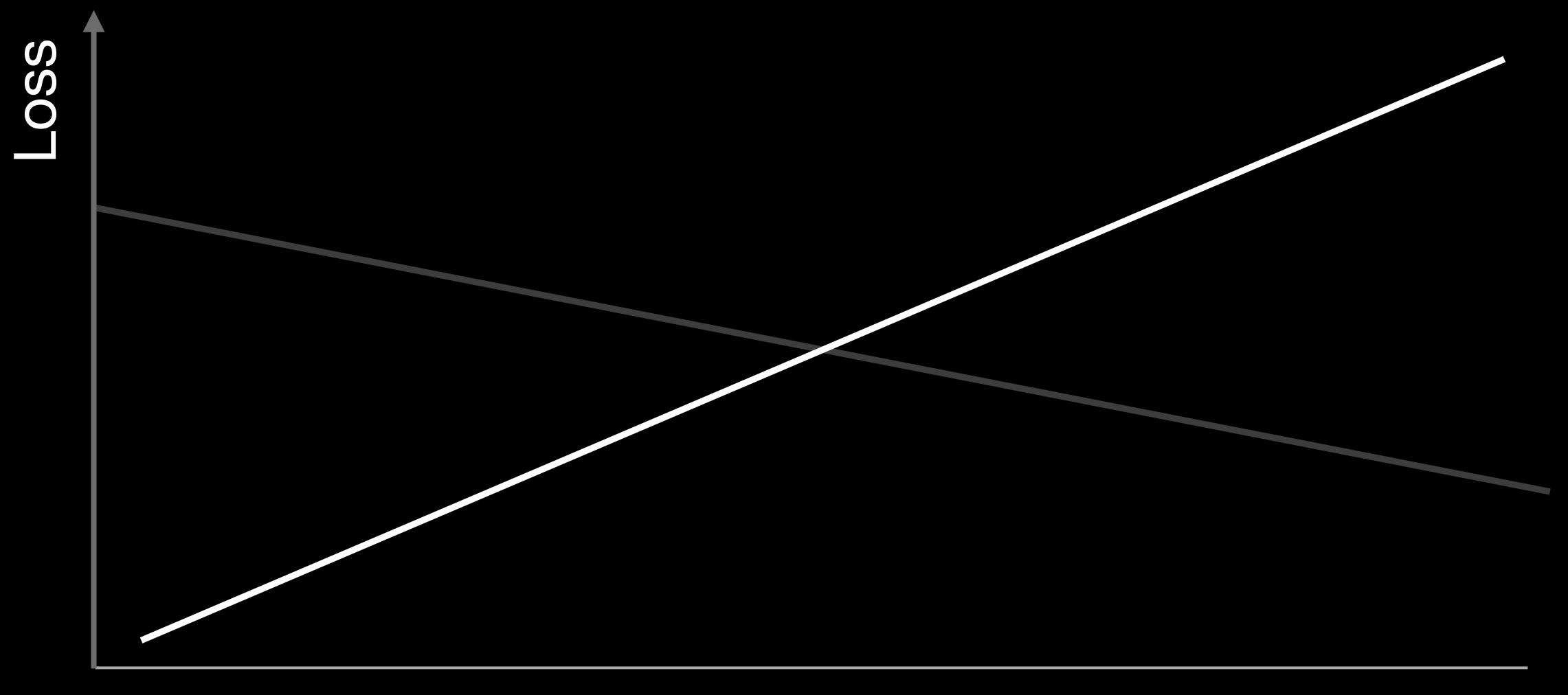
No-regret implies $O(\epsilon HT)$

The rabbit hole of online learning

When does FTL break?

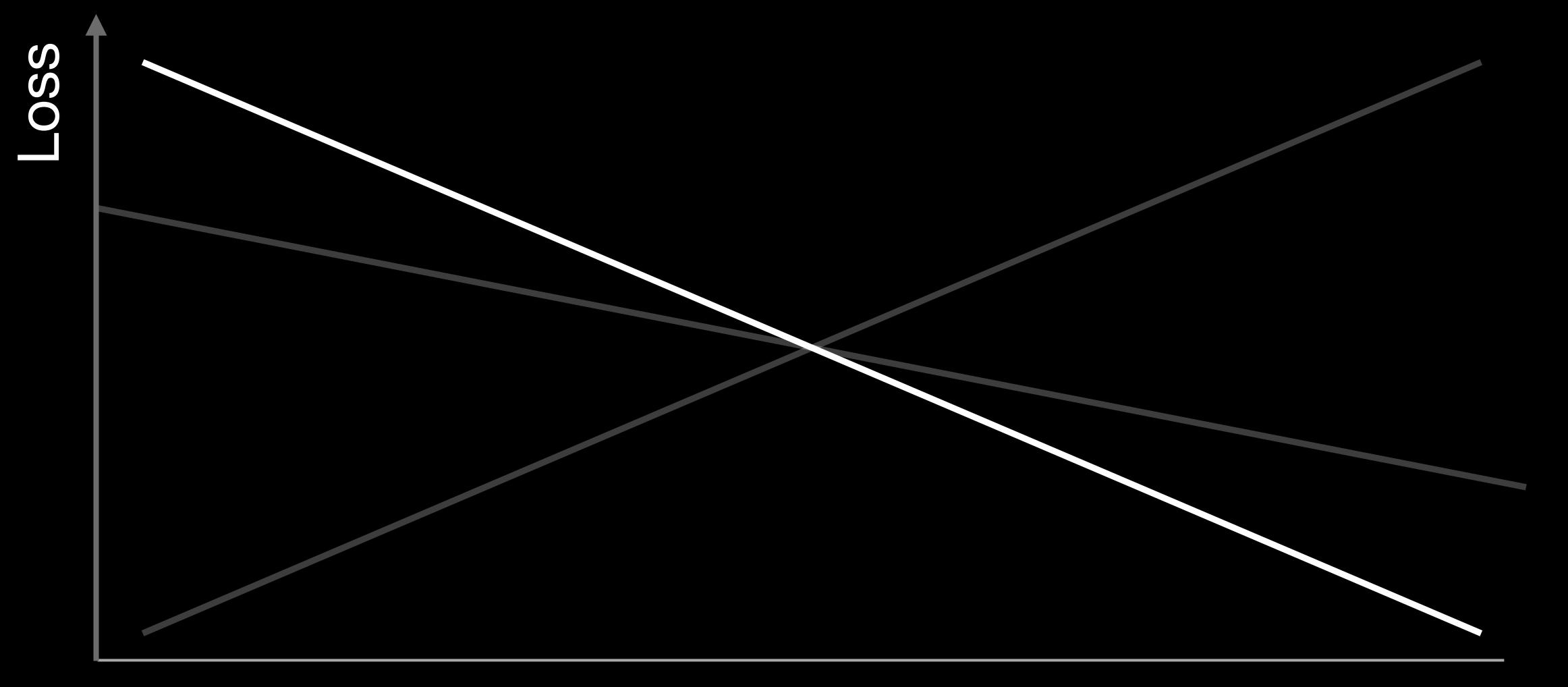
Loss = 0.75 Avg. Regret = 0.5





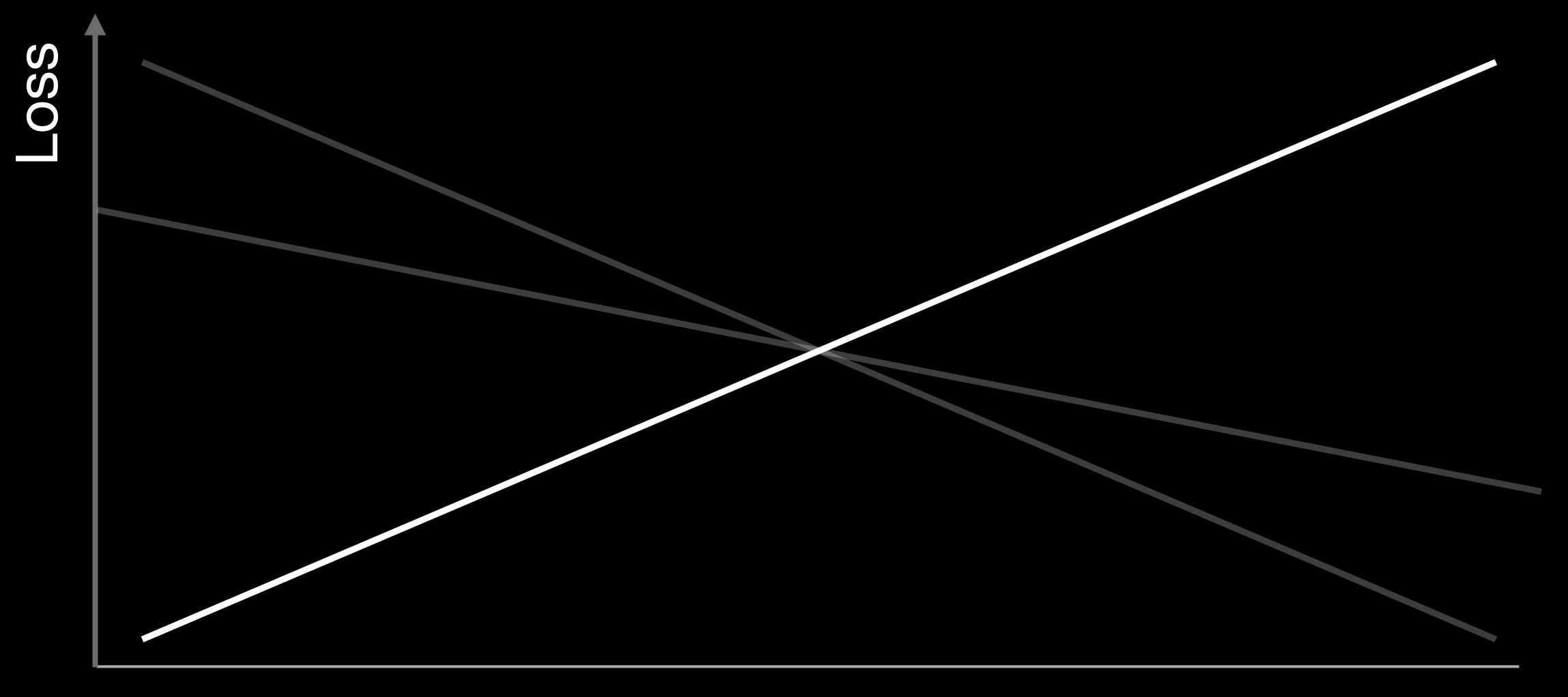
Choose π^1

Loss = 1.0 Avg. Regret = 0.5



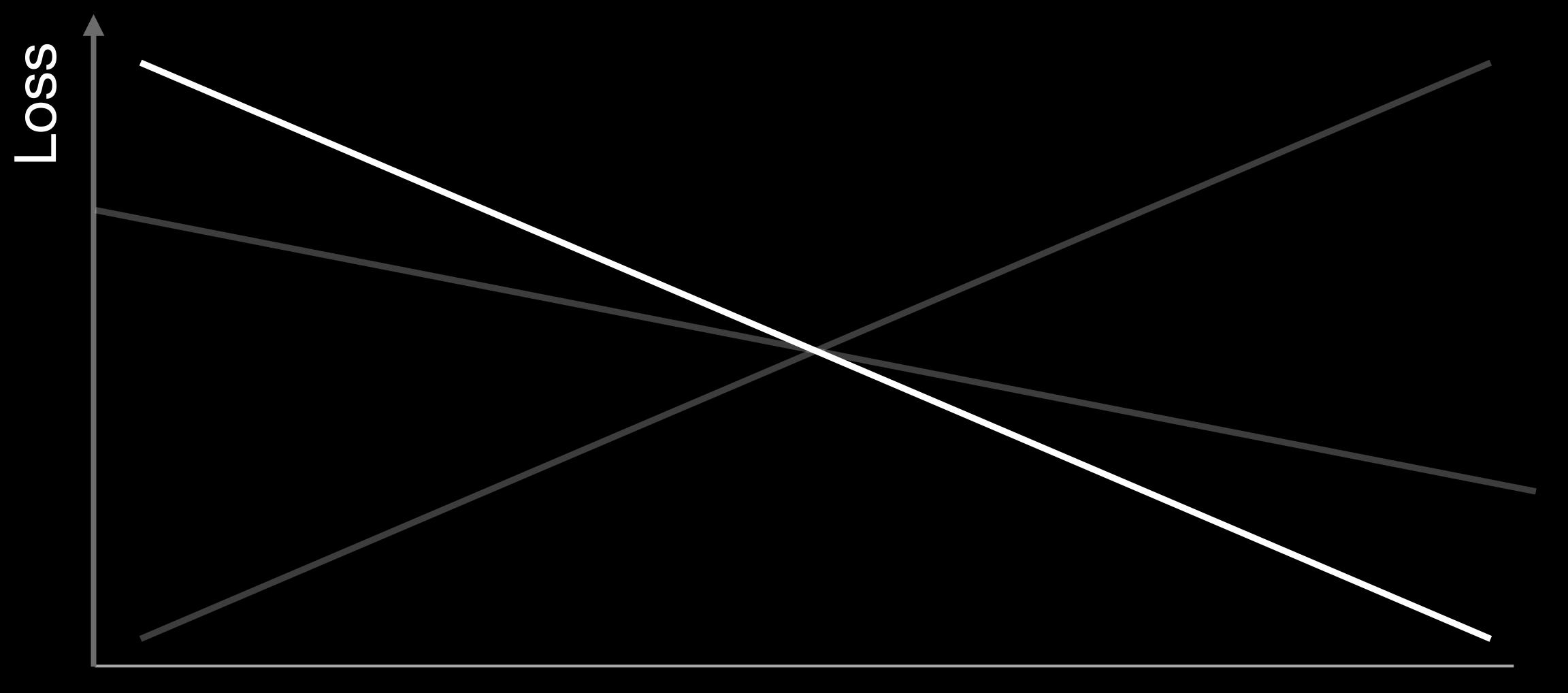
Choose π^1

Loss = 1.0 Avg. Regret = 0.5



Choose π^1

Loss = 1.0 Avg. Regret = 0.5



Choose π^1

Be stable

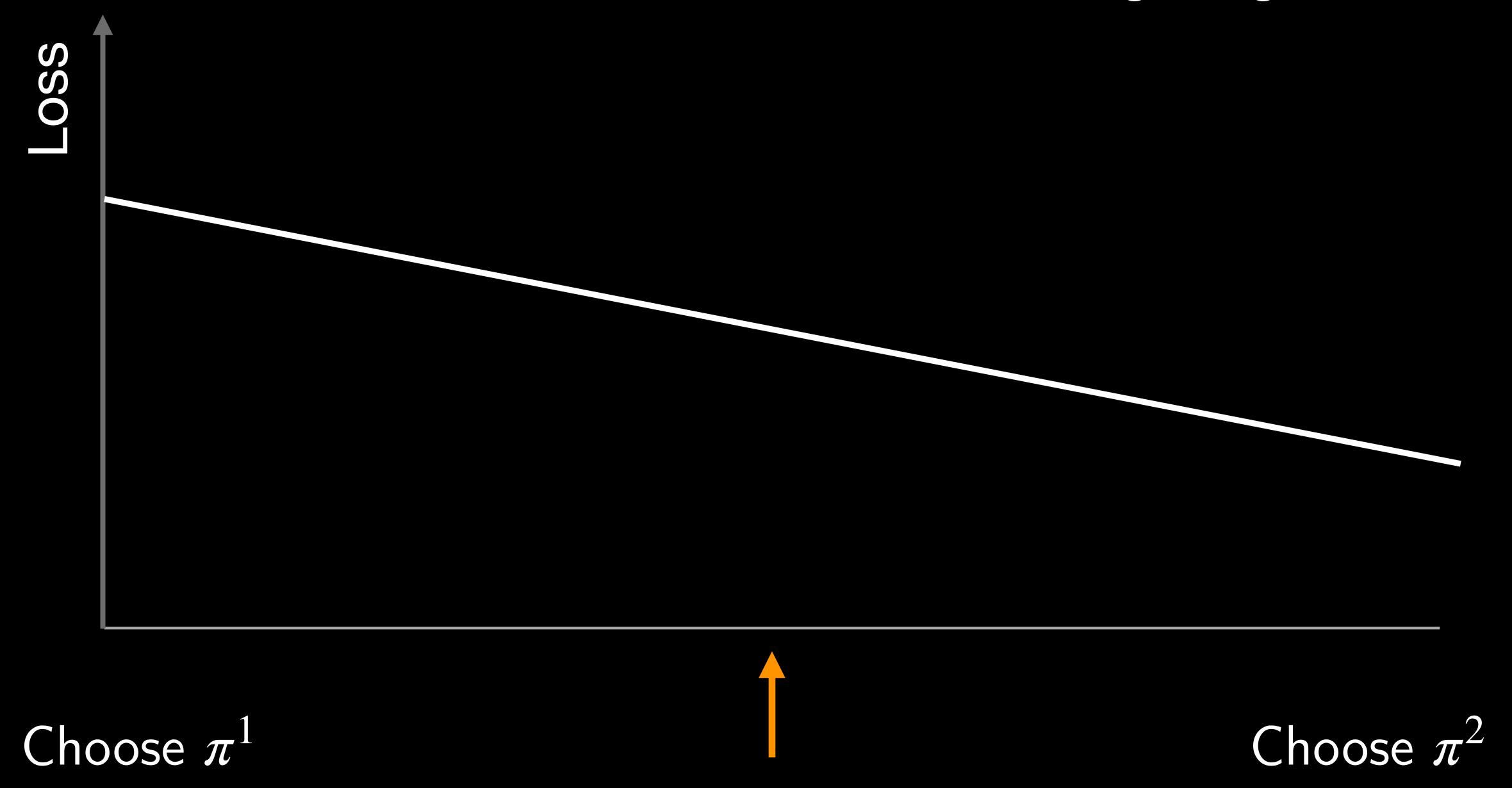
Slowly change predictions

Achieve no-regret

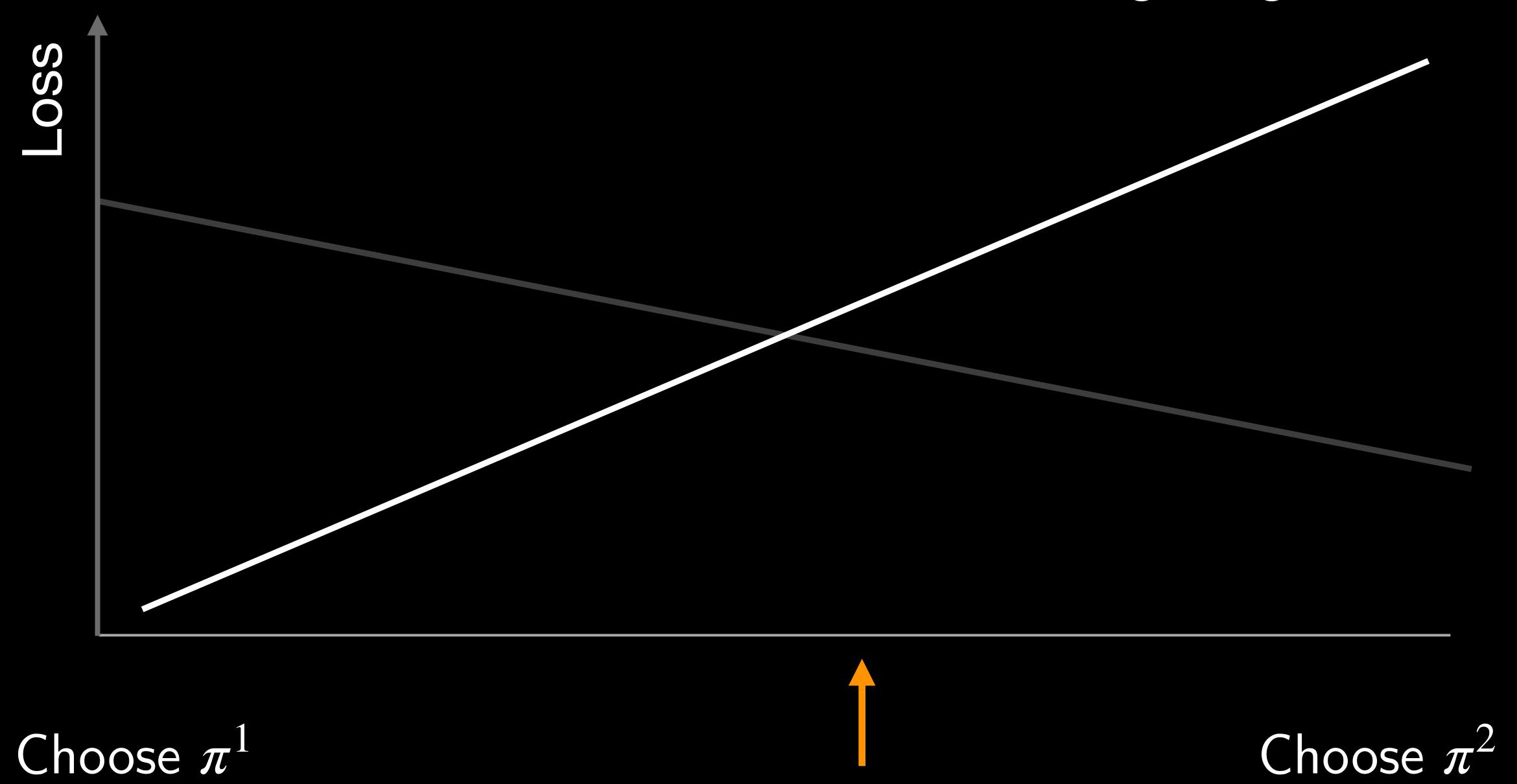
Follow the Regularized Leader

$$\pi_t = \arg\min_{\pi} \sum_{i=1}^{t-1} l_i(\pi) + \eta_t R(\pi)$$
Strong regularization!

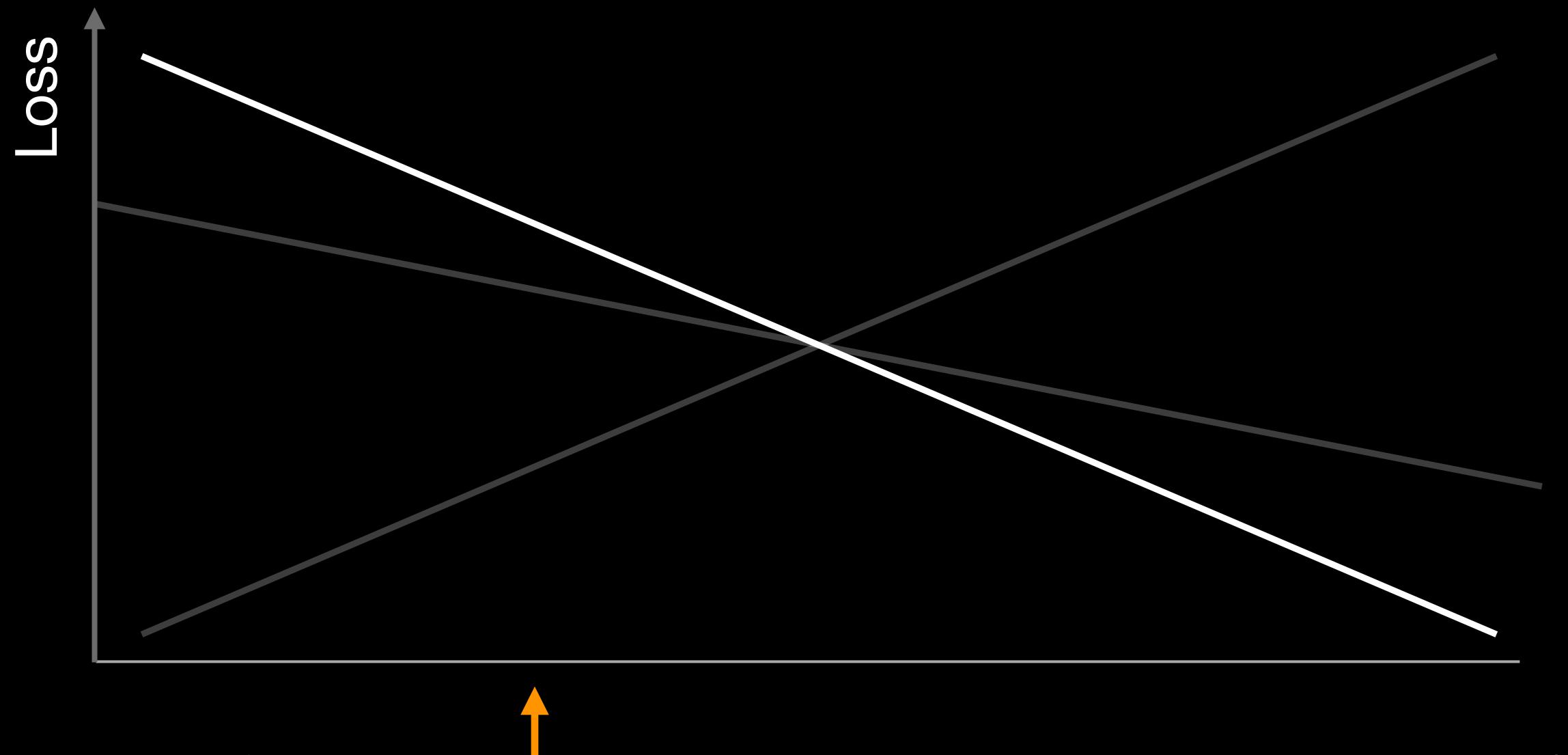
Loss = 0.5 Avg. Regret = 0.25



Loss = 0.6 Avg. Regret = 0.17

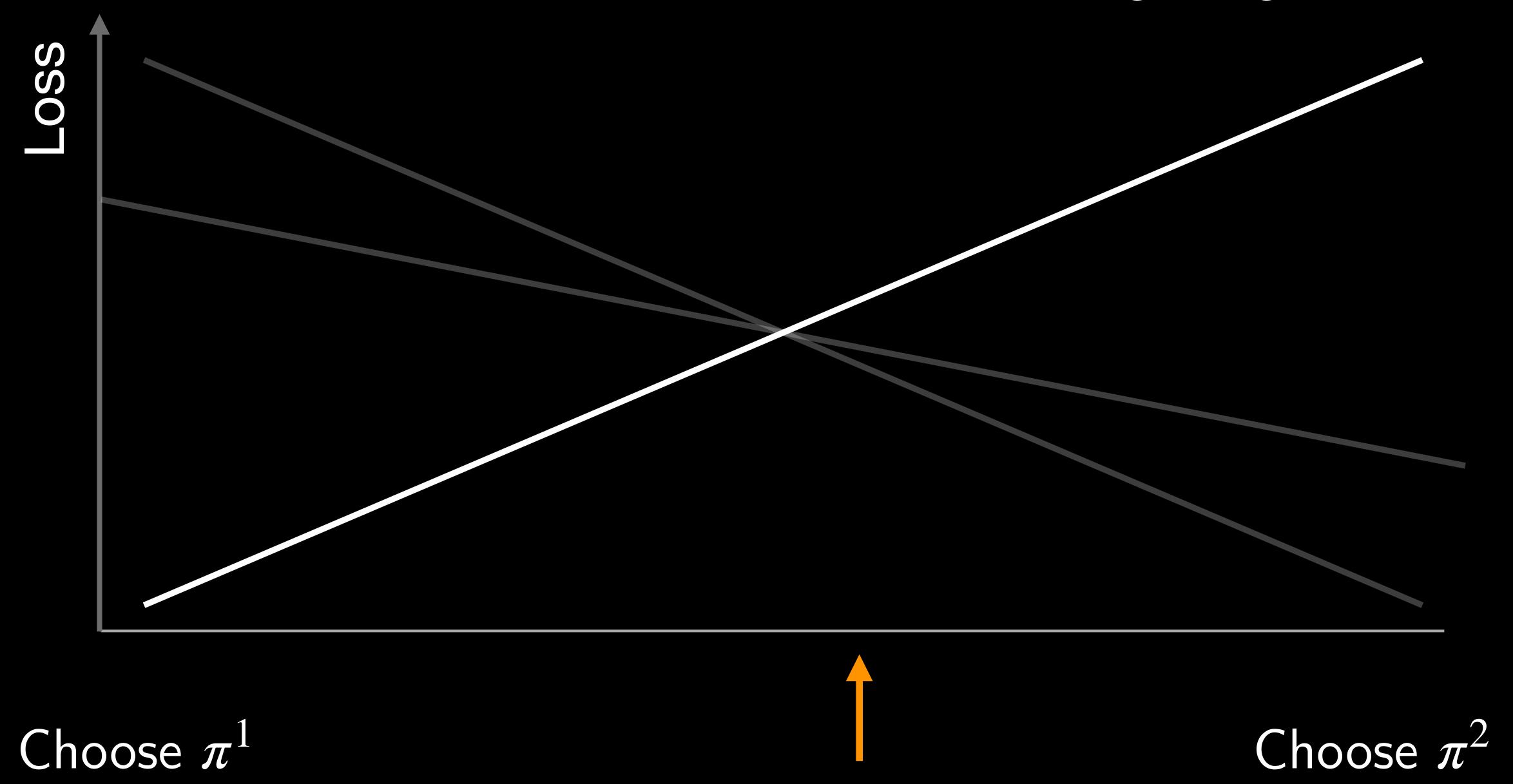


Loss = 0.78 Avg. Regret = 0.21

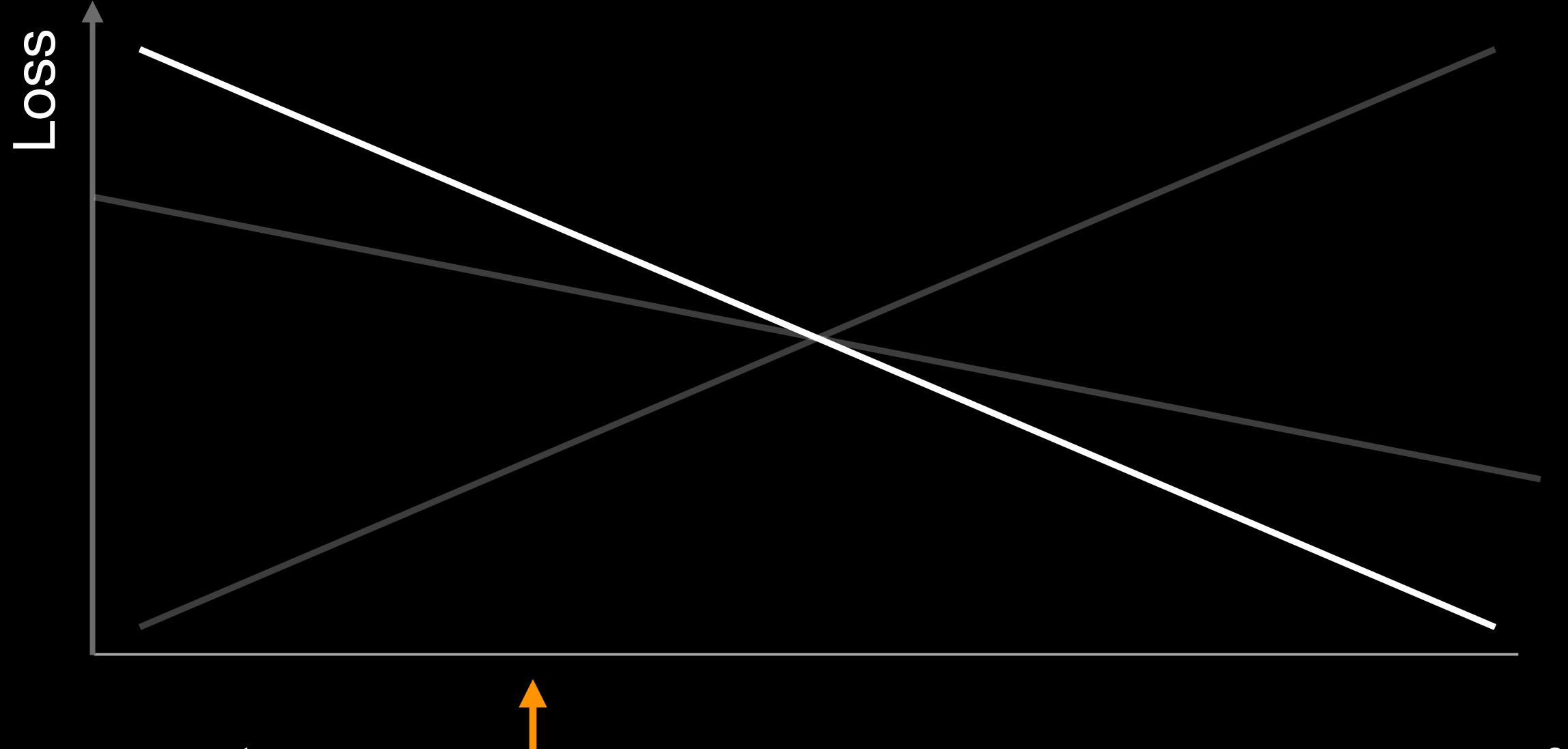


Choose π^1

Loss = 0.6 Avg. Regret = 0.18



Loss = 0.78 Avg. Regret = 0.2



Choose π^1