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Behavior Cloning

Expert runs
away after
demonstrations




The Big Problem with BC
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The Goal
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Can we bound this to O(eT) ?
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[Ross et al’11]

DAgger: Initializations

Human drives
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DAgger: lteration 1
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DAgger: lteration 2




[Ross et al’11]

DAgger: Iteration N

=

Robot z, drives 0,0

After many iterations ....
we are able to drive like a human!




DAgger (Dataset Aggregation)

Initialize with a random policy x;
Initialize empty data buffer & « {}

Fori=1,....N
Execute policy 7; in the real world and collect data

91. — {S(), Cl(), Sl,al, }

Query the expert for the optimal action on learner states
D; = {0 ﬂ*(So)a 51 ﬂ*(51)a con )
Aggregate data Y <« Y U I,

Train a new learner on this dataset 7;,; < Irain(Y)

Select the best policy in 7.y,
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The DAGGER Guarantee

DAGGER returns a policy 7 such that

J(r) — J(n*) < O(eHT)

H is the recoverability coefficient that says if | make a mistake,
how much does an expert have to pay to recover
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Lee et al, Learning quadrupedal locomotion over
challenging terrain (2020)

Choudhury et al, Data Driven Planning via
Imitation Learning (2018)

imitation
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Chen et al Learning by Cheating(2020)

Pan et al Imitation learning for agile autonomous
driving (2019)
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How do we actually apply DAGGER in practice?

Asking a human expert to label every state
the robot visits is hard
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Option 1: Extend DAGGER to different
degrees of human feedback

Can we extend DAGGER to handle easier forms of human feedback
preferences, interventions, etc?’

Yes (*Future lectures!)
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Option 2: Use an algorithmic oracle

What if we had a powerful algorithm
that we can run in train time
but not at test time?
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With audio

Learning quadrupedal locomotion
over challenging terrain

Joonho Lee'!, Jemin Hwangbo'?1, Lorenz Wellhausen’,
Viadlen Koltun?, Marco Hutter’

"Robotic Systems Lab, ETH Zurich
>Robotics & Artificial Intelligence Lab, KAIST

*>Intelligent Systems Lab, Intel

TSubstantial part of the work was carried out during his stay at 1

ETHzirich X%3SL (D

Robotic Systems Lab Intelligent Systems Lab




But why does
aggregating data work?’
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From
Imitation Learning
Lo
Interactive
No-Regret Learning




Interactive Learning

7~
Learner Adversary
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Interactive Learning

_Learner Adversary
JU 1 [policy]

Initialize pOIICy \
ll( : ) [loss]

Chooses loss

Chooses loss



What i1s the best that | can do in such an
adversarial setting?



From
Imitation Learning
Lo
Interactive
No-Regret Learning




How do we design algorithms that
are no-regret’

I
Regret = Z [ () —
=1

(Learner) (Best in
hindsight)



At every round f, choose
FOLLOW THE LEADER the best policy Iin hindsight

—1
7T, = arg min Z [(m)
=Y

(lowest total loss)
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s FTL no-regret?



FTL is no-regret it

1. We are in the continuous setting

2. Loss is strongly convex
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Back to the
proof !




L et's recap!

We can frame interactive imitation learning as online learning

FTL is no-regret it the loss is strongly convex

DAGGER is FTL

No-regret implies O(eHT)
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The rabbit hole of online learning
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Loss = 1.0 Avg. Regret = 0.5
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Be stable

Slowly change
predictions

Achieve
No-regret
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Follow the Reqgularized Leader

Strong
regularization!




Loss = 0.5 Avg. Regret = 0.25
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Loss = 0.6 Avg. Regret = 0.17

| 0SS

1 2

Choose 7 Choose 7



loss=0.7/8 Avg. Regret = 0.21

| 0SS

1 2

Choose 7 Choose 7



Loss = 0.6 Avg. Regret = 0.18

| 0SS

1 2

Choose 7 Choose 7



loss=0.7/8 Avg. Regret = 0.2

| 0SS

1 2

Choose 7 Choose 7



