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What have we learnt so far?

1. How do define a MDP

2. How to solve a MDP given | know S, A, C, T



But there are challenges in applying this

Q1. What if | can write down my costs, but my transitions are
unknown?

Reinforcement Learning! (Later in the course)

Q2. But what if even writing down costs is hard?

Imitation Learning! (Today)



How do we program
robots to do tasks?



Programming a task ...
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Programming a task ...

l , E
tell the robot to make coffee .. -~ b L HR
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steal the neighbors coffee

don't make a mess
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The implicit rules of human driving
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Explicitly programming
rules may be tedious ...

.. but rules are implicit
iIn how we drive everyday!




Imitation Learning

Implicitly program robots







Think-Pair-Share!

Think (30 sec): What are the various ways to give input to a robot
to teach it a new task?

Pair: Find a partner

Share (45 sec): Partners exchange
ideas
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Imitation learning is everywhere

Helicopter Aerobatics
Game Al

Kozik et al. 2021

Abbeel et al. 2009

Sequence models in NLP Shared autonomy

“Two" "birds" “flying" "Two "birds" "running"”
‘ T T
. | 1 | 1 | |
‘ - »
BRNN > RBNN > RBNN

<Start> >  "Two" » "birds"

Javdani et al. 2015

Without Teacher Forcing

Ground Truth |

With Teacher Forcing

Daume et al. 2009



How do we solve imitation learning?



Treat robotics as a "simple” ML problem ...

Ultimately, we just need to learn a function

—»>
—»

Input Model Output
(State) (Policy) (Action)
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Behavior Cloning



Behavior Cloning

1. Collect data from a human demonstrator

[ (Slaaik)a (S29 Cl;), (S39 agk ° ]
2. Train a policy z : s, = a, on the data

3. Check validation error on held out dataset



Let's apply
Behavior Cloning!

1. Collect data from a human demonstrator

[ Gp.af), (5, af), (s3,a7), ... |

2. Train a policy 7 : s, = a, on the data

3. Check validation error on held out dataset




Let's apply
Behavior Cloning!

1. Collect data from a human demonstrator

[ Gp.af), (saf), (s3,a7), ... |

2. Train a policy 7 : s, = a, on the data

3. Check validation error on held out dataset




Why we love Behavior Cloning

It's EASY

If you can drive down validation error perfectly to 0,
it is guaranteed to do what the expert does

It may work often in practice, but ...

22



What do you see as practical challenges with BC?

When poll is active respond at PollEv.com/sc2582
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How things go wrong with BC
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Feedback drives

covariate shift
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Feedback Drives Covariate Shift

Supervised Learning assumes all datapoints are i.i.d
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An old problem

Road Intensity 45 Direction
Feedback Unit Output Units

8x32 Range Finder
Input Retina

e ——— 30x32 Video
Input Retina

Figure 1: ALVINN Architecture

“...the network must not solely be shown examples of accurate
driving, but also how to recover (i.e. return to the road center)
once a mistake has been made.”

D. Pomerleau

ALVINN: An Autonomous Land Vehicle In A Neural
Network, NeurlPS'89

Also observed by |LeCun’05]



Feedback is a pervasive problem in self-driving

i

the inertia problem. When the ego vehicle is stopped
(e.g., at a red traffic light), the probability it stays static is
indeed overwhelming in the training data. This creates a
spurious correlation between low speed and no acceleration,
inducing excessive stopping and difficult restarting in the

7

imitative policy ...’

“Exploring the Limitations of Behavior Cloning for Autonomous Driving.”
F. Codevilla, E. Santana, A. M. Lopez, A. Gaidon. ICCV 2019

i

During closed-loop inference, this breaks down because
the past history is from the net’'s own past predictions. For
example, such a trained net may learn to only stop for a stop
sign if it sees a deceleration in the past history, and will
therefore never stop for a stop sign during closed-loop
inference ..."”

“ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst”. M.
Bansal, A. Krizhevsky, A. Ogale, Waymo 2018

“... small errors in action predictions to compound over
time, eventually leading to states that human drivers
infrequently visit and are not adequately covered by
the training data. Poorer predictions can cause a
feedback cycle known as cascading errors ...”

“Imitating Driver Behavior with Generative Adversarial Networks".
A. Kuefler, J. Morton, T. Wheeler, M. Kochenderfer, IV 2017

Scenario A: Full Information

policy attends to brake indicator

“Causal Confusion in Imitation Learning".
P. de Haan, D. Jayaraman, S. Levine, NeurlPS ‘19
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eedback is an old adversary!

£8

/-"-

[SCB+ RSS'20]

Learnt policy
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Why did the robot crash?’

-~ X o - g 1 - s . - 3 - - . ] 1 v R < - - o " b o - - N o &3 >
S o ; : . = - S . g 5 . = s o S By g G
4 ny & » . - PR >y L N > . 5 0 . " - e N > .. 5 0 . " AN P -
- g B > - 2 D om g 2 a2 9 . - > - & p > LRS-, g 2 - - D O - D A- & L&CH = D a
ek SX AGRRE OO e DB L X ™ . A AL IR e IR o $ 2, DO S A B P > 0 Ao I S AT T TR e Oy 292 -S> & 4

Error: €

Demonstrations

2



Why did the robot crash?’
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_ / No training data,
Error: 1.0

Error: €

Demonstrations
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Error: €

Why did the robot crash?’

No training data,

Error: 1.0

No training data

Error: 1.0
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Demonstrations
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Can we mathematically
quantify how much
worse BC is compared
to the demonstrator?’
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First, let's define performance of a policy

T—1
J(7r) = |= | Z c(s,a,)]

a, ~ n(s,)
(Performance) _ =0
Sep1 ~ I (8 a,)



Second, let's define performance difference

J(x) — J(7™*)

(Performance (Performance
of my learner) of my demonstrator)

We want to minimize the performance difference
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How low can we drive performance difference?

Let's say my learner is not perfect and can only drive down
training / validation error to be ¢

AA

4

'~ The best we can hope for is that error grows linearly in time

J() — J(m™) < O(eT)

m The worst case is if error compounds quadratically in time

N/ J(n) — J(%) < O(eT?)
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Behavior cloning hits the worst case!

There exists an MDP where BC
has a performance difference of O(eT?)

We are going to such a MDP right now,
and you will see more in Al
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A Tree MDP
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The demonstrator always takes a left




Assume the following cost function

c(s,a) = l(a # 7*(s))

(0 if you agree with
expert, 1 otherwise)




Assume the following cost function

Note that you never
see what the expert
prefers in
other states

c(s,a) = l(a # 7*(s))
. (0 if you agree with

expert, 1 otherwise)



Show that BC has a performance difference of O(eT?)

c(s,a) = l(a # 7*(s))

(0 if you agree with
expert, 1 otherwise)




