Robots as Markov Decision Problems

Sanjiban Choudhury

Sequential Decision Making

Tetris

Self-driving

Robot Baristas

What makes sequential decision making hard?

An Easy Example: Non-sequential decision making

Goal: Pick the action that maximizes reward $\underset{a}{\text{arg max }} R(a)$

What is the complexity of this optimization problem?

A Hard Example: Sequential decision making

Goal: Pick the sequence of actions that maximizes reward $\underset{a_1,a_2,...,a_T}{\text{arg}} \max R(a_1,a_2,...,a_T)$

What is the complexity of this optimization problem?

What assumption makes the optimization problem tractable?

The Markov Assumption

State

Summarize all past information into a compact state ...

... that is sufficient to predict the future

Previous actions

The Markov Assumption

State: statistic of history sufficient to predict the future

Markov Decision Process

A mathematical framework for modeling sequential decision making

State

Sufficient statistic of the system to predict future disregarding the past

Position

(S, A, C, S)

States can be shallow or deep

Shallow state looks at only the past few time steps Deeps state requires looking far back into the past

Activity!

Give an example of deep state

Join by Web PollEv.com/sc2582

Action

Doing something:
Control action / decisions

Cost

The instantaneous cost of taking an action in a state

Cost = -Reward

We will use these two interchangeably based on what makes sense

Transition

The next state given state and action

$$s' = \mathcal{I}(s, a)$$

$$s' \sim \mathcal{I}(s, a)$$

Deterministic

State, action, cost, next state ...

Goal: Minimize total sum of costs

$$\sum_{t=0}^{T-1} c(s_t, a_t)$$

Example 1: Tetris!

Example 2: Self-driving

Example 3: Coffee making robot

What does it mean to solve a MDP?

Solving an MDP means finding a Policy

$$\pi: S_t \rightarrow a_t$$

A function that maps state (and time) to action

Policy: What action should I choose at any state?

What makes a policy optimal?

Which policy is better?

Policy π_1

Policy π_2

What makes a policy optimal?

min
$$\mathbb{E}$$
 [$\sum_{t=0}^{T-1} c(s_t, a_t)$]

(Search over π $a_t \sim \pi(s_t)$ [$t=0$ [Sum over all costs)

(Sample a start state, then follow π till end of episode)

One last piece ...

Which of the two outcomes do you prefer?

Discount: Future rewards / costs matter less

At what discount value does it make sense to take \$50 today than \$1million in 1000 days?

What makes a policy optimal?

min
$$\mathbb{E}$$
 [$\sum_{t=0}^{T-1} \gamma^t c(s_t, a_t)$]

(Search over π $a_t \sim \pi(s_t)$ [$\sum_{t=0}^{T-1} \gamma^t c(s_t, a_t)$]

Policies) $s_{t+1} \sim \mathcal{F}(s_t, a_t)$ (Discounted sum of costs)

then follow π till end

of episode)

How do we solve a MDP?

Image courtesy Dan Klein

Let's start with how NOT to solve MDPs

What would brute force do?

$$\min_{\pi} \mathbb{E}_{a_t \sim \pi(s_t)} \left[\sum_{t=0}^{I-1} \gamma^t c(s_t, a_t) \right]$$

$$s_{t+1} \sim \mathcal{T}(s_t, a_t)$$

How much work would brute force have to do?

What would brute force do?

$$\min_{\pi} \mathbb{E}_{a_t \sim \pi(s_t)} \left[\sum_{t=0}^{T-1} \gamma^t c(s_t, a_t) \right]$$

$$s_{t+1} \sim \mathcal{T}(s_t, a_t)$$

- 1. Iterate over all possible policies
- 2. For every policy, evaluate the cost
 - 3. Pick the best one

There are $(A^S)^T$ Policies!!!!

MDPs have a very special structure

Introducing the "Value" Function

Read this as: Value of a policy at a given state and time

Introducing the "Value" Function

Read this as: Value of a policy at a given state and time

$$V^{\pi}(s_t) = c_t + \gamma c_{t+1} + \gamma^2 c_{t+2} +$$

The Bellman Equation

$$V^{\pi}(s_t) = c(s_t, \pi(s_t)) + \gamma \mathbb{E}_{s_{t+1}} V^{\pi}(s_{t+1})$$

Value of current state

Cost

Value of future state

Why is this true?

Optimal policy

$$\pi^* = \underset{\pi}{\operatorname{arg min}} \mathbb{E}_{s_0} V^{\pi}(s_0)$$

Bellman Equation for the Optimal Policy

$$V^{\pi^*}(s_t) = \min_{a_t} \left[c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} V^{\pi^*}(s_{t+1}) \right]$$

Optimal Value

Cost

Optimal Value of Next State

Why is this true?

Activity!

