
Robots as

Markov Decision Problems

Sanjiban Choudhury

1

Sequential Decision Making

Self-driving Robot BaristasTetris

3

What makes sequential
decision making hard?

An Easy Example: Non-sequential decision making

4

a = U

a = S

a = D

Reward

100

-1000

1

Goal: Pick the action that maximizes reward arg max
a

R(a)

What is the complexity of this optimization problem?

A Hard Example: Sequential decision making

5

Goal: Pick the sequence of actions that maximizes reward
arg max

a1,a2,…,aT

R(a1, a2, …, aT)

What is the complexity of this optimization problem?

Black Box

A sequence of actions

for T time steps
a1, a2, a3, a4, . . . aT

Reward
-100

6

What assumption makes the
optimization problem tractable?

The Markov Assumption

7

t

a1, a2, …at−1

Previous actions

State … that is sufficient to predict
the future

Summarize all past information
into a compact state …

The Markov Assumption

8

Markov Decision Process

9

< S , A , C , 𝒯 >
A mathematical framework for modeling sequential decision making

10

< S , A , C , 𝒯 >State
Sufficient statistic of the system
to predict future disregarding

the past

s ∈ S

Trust

States can be shallow or deep

Shallow state looks at only the past few time steps

Deeps state requires looking far back into the past

Activity!

Give an example of deep state

14

< S , A , C , 𝒯 >Action
Doing something:

Control action / decisions a ∈ A

15

< S , A , C , 𝒯 >Cost
The instantaneous cost of
taking an action in a state c(s, a)

2 Ke et al.

(a) (b)

Fig. 1: Behavior cloning fails with multi-modal demonstrations. Experts go left or right
around obstacle. Learner interpolates between modes and crashes into obstacle.

Interestingly, this oddity is not restricted to behavior cloning. [4] show that
a more sophisticated approach, GAIL [5], also exhibits a similar trend. Their
proposed solution, InfoGAIL [4], tries to recover all the latent modes and learn
a policy for each one. For demonstrations with several modes, recovering all such
policies will be prohibitively slow to converge.

Our key insight is to view imitation learning algorithms as minimizing diver-
gence between the expert and the learner trajectory distributions. Specifically, we
examine the family of f -divergences. Since they cannot be minimized exactly,
we adopt estimators from [6]. We show that behavior cloning minimizes the
Kullback-Leibler (KL) divergence (M-projection), GAIL minimizes the Jensen-
Shannon (JS) divergence and DAgger minimizes the Total Variation (TV).
Since both JS and KL divergence exhibit a mode-covering behavior, they end
up interpolating across modes. On the other hand, the reverse-KL divergence
(I-projection) has a mode-seeking behavior and elegantly collapses on a subset
of modes fairly quickly.

The contributions and organization of the remainder of the paper are:

1. We introduce a unifying framework for imitation learning as minimization
of f -divergence between learner and trajectory distributions (Section 3).

2. We propose algorithms for minimizing estimates of any f -divergence. Our
framework is able to recover several existing imitation learning algorithms for
different divergences. We closely examine reverse KL divergence and propose
efficient algorithms for it (Section 4).

3. We argue for using reverse KL to deal with multi-modal inputs (Section 5).
We empirically demonstrate that reverse KL collapses to one of the demon-
strator modes on both bandit and RL environments, whereas KL and JS
unsafely interpolate between the modes (Section 6).

2 Related Work

Imitation learning (IL) has a long-standing history in robotics as a tool to pro-
gram desired skills and behavior in autonomous machines [7–10]. Even though
IL has of late been used to bootstrap reinforcement learning (RL) [11–15], we fo-
cus on the original problem where an extrinsic reward is not defined. We ask the

16

Cost = -Reward

We will use these two interchangeably
based on what makes sense

17

< S , A , C , 𝒯 >Transition
The next state given state and action

s′￼ = 𝒯(s, a) s′￼ ∼ 𝒯(s, a)
Deterministic Stochastic

Credit: Dan Klein

State, action, cost, next state ..

s0 a0 s1 a1

c(s1, a1)

s2 sT⋯

Goal: Minimize total sum of costs
T−1

∑
t=0

c(st, at)

 sampled from an initial
distribution over states

s0

P(s0)

c(s0, a0)Cost

 sampled from transition

 function

s1
𝒯(s0, a0)

“Episode”:

A sequence of 

state, action, costs

Example 1: Tetris!

19

12 draft: modern adaptive control and reinforcement learning

Example

Consider the simplified game of Tetris, where randomly falling pieces
must be placed on the game board. Each horizontal line completed
is cleared from the board and scores points for the player. The game
terminates when the board fills up. The game of Tetris can be mod-
eled as a Markov Decision Process.

Figure 1.1.1: Example states
and transitions for a Tetris
scenario with figure from [3].

• States: Board configuration (each of k cells can be filled/not filled),
current piece (there are 7 pieces total). In this implementation,
there are therefore approximately 2k ⇥ 7 states. Note: not all con-
figurations are valid, for example, there cannot be a piece floating
in the air. This resulting in a smaller number of total valid states.

• Actions: A policy can select any of the columns and from up to 4
possible orientations for a total of about 40 actions (some orienta-
tion and column combinations are not valid for every piece).

• Transition Matrix: A deterministic update of the board plus the
selection of a random piece for the next time-step.

• Cost Function: There are several options to choose from, includ-
ing: reward = +1 for each line removed, 0 otherwise; # of free
rows at the top; +1 for not losing that round; etc.

Deterministic and Non-Deterministic MDP Algorithms

For Deterministic MDPs the transition model is deterministic or,
equivalently, we know with certainty what the next state x0 will
be given the current state x and the action a. Solving deterministic

< S , A , C , 𝒯 >

?

Example 2: Self-driving

20

< S , A , C , 𝒯 >

?

Example 3: Coffee making robot

21

< S , A , C , 𝒯 >

?

22

What does it mean to solve
a MDP?

Solving an MDP means finding a Policy

Policy: What action should I choose at  
any state?

π : st → at
A function that maps

state (and time) to action

What makes a policy optimal?
Which policy is better?

Policy π1 Policy π2

C=100

C=-100

C=100

C=-100

What makes a policy optimal?

min
π

𝔼
at ∼ π(st)

st+1 ∼ 𝒯(st, at)

[
T−1

∑
t=0

c(st, at)]

(Sample a start state,

then follow till end

of episode)
π

(Sum over all costs)

(Search over

Policies)

26

One last piece …

Which of the two outcomes do you prefer?

$50 today
$1 million

a 1000 days later

Discount: Future rewards / costs matter less

At what discount value does it make sense to take

$50 today than $1million in 1000 days?

What makes a policy optimal?

min
π

𝔼
at ∼ π(st)

st+1 ∼ 𝒯(st, at)

[
T−1

∑
t=0

γtc(st, at)]

(Sample a start state,

then follow till end

of episode)
π

(Discounted sum

of costs)

(Search over

Policies)

How do we solve a MDP?

Image courtesy Dan Klein

31

Let’s start with how NOT
to solve MDPs

What would brute force do?

min
π

𝔼
at ∼ π(st)

st+1 ∼ 𝒯(st, at)

[
T−1

∑
t=0

γtc(st, at)]

How much work would brute force have to do?

min
π

𝔼
at ∼ π(st)

st+1 ∼ 𝒯(st, at)

[
T−1

∑
t=0

γtc(st, at)]

1. Iterate over all possible policies

What would brute force do?

2. For every policy, evaluate the cost

3. Pick the best one

There are

Policies!!!!
(AS)T

34

MDPs have a very special
structure

Introducing the “Value” Function

Vπ(st)
Read this as: Value of a policy at a given state and time

Vπ(st)
Read this as: Value of a policy at a given state and time

Vπ(st)

π st+1 π

= ct γct+1+ + γ2ct+2 +

st π

⋯

Introducing the “Value” Function

The Bellman Equation

Vπ(st) = c(st, π(st)) + γ𝔼st+1
Vπ(st+1)

Value of

current state

Value of

future state

Cost

Why is this true?

Optimal policy

π* = arg min
π

𝔼s0
Vπ(s0)

Bellman Equation for the Optimal Policy

Vπ*(st) = min
at

[c(st, at) + γ𝔼st+1
Vπ*(st+1))]

Optimal

Value

Optimal

Value of

Next State

Cost

Why is this true?

Activity!

