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Sequential Decision Making

Robot Baristas

Tetris



What makes sequential
decision making hard?’



An Easy Example: Non-sequential decision making

Reward

100

Goal: Pick the action that maximizes reward arg max R(a)
a

What is the complexity of this optimization problem?



A Hard Example: Sequential decision making

A sequence of actions Reward
. for T time steps

Black Box

Goal: Pick the sequence of actions that maximizes reward

arg max R(a;,a,,...,ar)
a(,Qy,. .. ,A7

What is the complexity of this optimization problem?



What assumption makes the
optimization problem tractable?’



The Markov Assumption

Summarize all past information

State ... that is sufficient to predict

Into a compact state ...
the future
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The Markov Assumption

predict
data about future

data about past |

compress I expand

state

bottleneck

State: statistic of history sufficient to predict the future



Markov Decision Process

A mathematical framework for modeling sequential decision making

<S,A,C.,T >




State

Sufficient statistic of the system
to predict future disregarding
the past

Momentum

Position
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States can be shallow or deep

data about past data about future

bottleneck

Shallow state looks at only the past few time steps

Deeps state requires looking far back into the past






Give an example of deep state

Join by Web PollEv.com/sc2582




Action

Doing something:
Control action / decisions
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Cost

The instantaneous cost of
taking an action in a state
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Cost = -Reward

We will use these two interchangeably
based on what makes sense



Transition

The next state given state and action

s'=T(s,a) s’ '~ J(s,a)

Deterministic Stochastic

Credit: Dan Klein
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State, action, cost, next state ..

Cost c(sy, ag) (s, a,)

® 0 O
@ A sequence of
state, action, costs
so sampled from an initial
distribution over states s, sampled from transition
P(so) function I (s, ay)
T—1

Goal: Minimize total sum of costs Z c(s, a,)
=0



Example 1: Tetris!

<S,A,C,T >
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Example 2: Selt-driving

20



Example 3: Coffee making robot

<S.A.C.T9 >
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What does it mean to solve
a MDP?



Solving an MDP means finding a Policy

TS, —da,

A function that maps
state (and time) to action

Policy: What action should | choose at
any state?



What makes a policy optimal’

Which policy is better?

Policy x; Policy x,



What makes a policy optimal?

-1
min E | Z c(s,,a,)]

(Search over 7 a, ~ (s —0)

. ~ T
Policies) Stv1 ™~ 7 (5> @) (Sum over all costs)

(Sample a start state,
then follow 7 till end
of episode)



One last piece ...



Which of the two outcomes do you prefer?
$1 million
550 today @ a 1000 days later

4N
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Discount: Future rewards / costs matter less

vV 9 &
1 Y | v

Worth Now Worth Next Step Worth In Two Steps

At what discount value does it make sense to take
$50 today than $1million in 1000 days?



What makes a policy optimal?

T—1
min E [ Z v'ie(s, a,)]

(Search over 7 a, ~ (s —0)

Policies) Sl ~ J (S ay) (Discounted sum

of costs
(Sample a start state, )

then follow x till end
of episode)



How do we solve a MDP?

Image courtesy Dan Klein



| et's start with how NOT
to solve MDPs



What would brute force do?

T—1
min E [ Z y'ie(s, a,)]

JT a, ~ ﬂ(St) =0
Sip1 ~ I (8 @)

How much work would brute force have to do?



What would brute force do?

T—1
min E [ Z v'ie(s, a,)]

JT a, ~ ﬂ(St)

=0
Sep1 ~ I (8 ay)
There are
1. Iterate over all possible policies (A
Policies!!!]

2. For every policy, evaluate the cost

3. Pick the best one



MDPs have a very special
structure



Introducing the "Value" Function

Vi(s,)

Read this as: Value of a policy at a given state and time



Introducing the "Value" Function

Vi(s,)

Read this as: Value of a policy at a given state and time
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The Bellman Equation

VAGs) = c(sp, () + vEg Vi(s40)
Value of Value of
Cost
current state future state

Why is this true?



Optimal policy

* = argmin kg V7(sp)



Bellman Equation for the Optimal Policy

s - : s
2
Optimal Cost Optimal
Value Value of
Next State

Why is this true?






