Predicting Humans around Robots

Sanjiban Choudhury

The story thus far ...

Decision-making

Perception

Models of humans Aligning robots to human values Today-> Predicting humans around robots

Today's class

Why do we need prediction / forecasting?

Forecasting as a Machine Learning problem
 Model?
 Loss?
 Data?

Connection between Forecasting and Model-based RL

Why do robots need to *forecast* humans?

4

Two motivating applications

Two motivating applications

Self-driving

Self-driving

What do these have in common?

Two motivating applications

Self-driving

Why do robots need to forecast humans?

To enable safe, responsive, and interpretable actions

©2021 | Aurora Proprietary

1541016641.475 20181031.175444Z.mkz-07.mkz.VO-592_MDC

Two motivating applications

Self-driving

Forecasting human motion is essential

No human prediction: Unresponsive robots are discomforting

12

Forecasting human motion is essential

No human forecast: Unresponsive robots are discomforting

Human forecast: Robot anticipates human and makes room

Forecasting human motion is essential

Pose Estimator

1x Autonomy

14

Why do robots need to *forecast* humans?

To enable safe, responsive, and interpretable actions

Pose Estimator

Today's class

- Why do we need prediction / forecasting? (Enable safe, responsive, and interpretable robot actions)
- Forecasting as a Machine Learning problem □ Model? Loss? Data?

Connection between Forecasting and Model-based RL

Merging on the Highway

17

©2021 | Aurora Proprietary

Think-Pair-Share

Learn forecasts for merging actors

Forecast 5s future trajectory

Once we have the forecast, we can plan to merge safely

Train a learner to forecast 5s future.

Model: Input / Output?

Data?

Loss?

Think-Pair-Share!

Think (30 sec): Train a learner to forecast 5s future.

Pair: Find a partner

Share (45 sec): Partners exchange ideas

Model: Input / Output?

Data?

Loss?

A first attempt at model, data, and loss

Model: Use a *sequence* model that maps past sequence (input) to future sequence (output)

Data: Drive around the car and collect data

26

Loss: L2 Loss from Ground Truth

Ground Truth: $s_{t+1}, s_{t+2}, ..., s_{t+k}$

Loss: L2 Loss from Ground Truth

Suppose I am predicting both mean and variance

Ground Truth: $s_{t+1}, s_{t+2}, ..., s_{t+k}$

 $\sum_{\tau=\tau}^{t+k} \frac{(s_{\tau} - \hat{\mu}_{\tau})^2}{\hat{\sigma}_{\tau}}$ Loss:

Today's class

- Why do we need prediction / forecasting? (Enable safe, responsive, and interpretable robot actions)
- □ Model? \Box Loss? Data?

General Forecasting as a Machine Learning problem (First attempt)

Connection between Forecasting and Model-based RI

We have model, data, loss.

Let's deploy the model!

Forecasts have huge variance! Forces robot to brake aggressively!

©2021 | Aurora Proprietary

Why is the forecast so whacky?

Why is the forecast so whacky?

There are two modes in the data

Mode A: Robot merges after

Mode B: Robot merges before

What happens when you try to fit a single Gaussian on multi-modal data?

Ground truth data distribution

Gaussian averages (marginalizes) over both modes

Okay .. so why can't we just predict multi-modal distributions?

Multi-modal forecasts do not solve the issue

We are (incorrectly) telling the planner both modes can happen simultaneously

Forecast humans conditioned on what the robot will do

"If I slow down, what will happen?"

Solution: Train a conditional forecast

Forecast

 $S_{t+1}, S_{t+2}, S_{t+3}, S_{t+4}$

Today's class

- Why do we need prediction / forecasting? (Enable safe, responsive, and interpretable robot actions)
- General Forecasting as a Machine Learning problem Model? (Conditional vs marginal forecasts) Loss? Data?

Connection between Forecasting and Model-based RI

Two motivating applications

Self-driving

Are all time steps equally important in the loss?

We need accurate forecasts when humans come in close proximity

How does forecasting error vary over time?

humans are far apart.

Time (s)

Error shoots up here! And it's a very important state as humans in close proximity!

How does forecasting error vary over time?

Why is the error low here

but higher here?

A simple fix: Upweight critical transition points

Importance Sampling Identify "transitions" when the human comes into the robot's workspace

Task 1

Task 2

Task 3

Importance Sampling Identify "transitions" when the human comes into the robot's workspace

Task 1

Task 2

Task 3

Train equally on all data + transition data

All Data

 $\forall \xi_R, \xi_H$

Train equally on all data + transition data

All Data

 $\forall \xi_R, \xi_H$

 $\forall \boldsymbol{\xi}_{R}, \boldsymbol{\xi}_{H}$

Transition Data

Generalization of the idea:

Forecasts should match the ground truth in terms of the cost it induces

Solution: Replace L2 loss with cost weighted loss

 $\forall \xi_R, \xi_H$ minimize $\mathbb{E} \left| C(\xi_R, \xi_H) - C(\xi_R, \hat{\xi}_H) \right|$

where, ξ_H is the observed future human motion and, $\hat{\xi}_{H}$ is the predicted / forecasted human motion and, ξ_R is the planned robot trajectory

Evaluation across different tasks

Today's class

- Why do we need prediction / forecasting?
 (Enable safe, responsive, and interpretable robot actions)
- Forecasting as a Machine Learning problem
 Model? (Conditional vs marginal forecasts)
 - ✓ Loss? (Cost-weighted vs L2 loss)
 - Data?

Connection between Forecasting and Model-based RL

Quiz

When poll is active respond at **PollEv.com/sc2582**

Send sc2582 to 22333

Refresher on Model-based RL

In model-based RL, what data distribution should we train transition models on?

What happens when we deploy model?

Robot: "The car will probably merge ahead, so I can slow down very smoothly ..."

Human: "What the heck does this truck want to do, go ahead or behind ?!?!"

What went wrong?

What went wrong?

Robot: "The car will probably merge ahead, so I can slow down very smoothly …"

Humans never drive in such an ambiguous manner during merges!

We trained on data when human was driving

We trained on human driving data

We are testing on robot driving

If robot driving is different from human driving, we have a train-test mismatch

64

DAGGER for Forecasting!

Today's class

- Why do we need prediction / forecasting?
 (Enable safe, responsive, and interpretable robot actions)
- Forecasting as a Machine Learning problem
 Model? (Conditional vs marginal forecasts)
 - ✓ Loss? (Cost-weighted vs L2 loss)
 - Model Data? (Train on-policy on robot data)

Connection between Forecasting and Model-based RL

Forecasts are really just transition models

Forecasting <-> Model-based RL

Conditional Forecasts

 $P(S_{t:t+k} \mid S_{t:t-k}, a_{t:t+k})$

We know how to solve model-based RL (previous lecture!)

Model

$M(s_{t+1} \mid s_t, a_t)$

Today's class

- Why do we need prediction / forecasting?
 (Enable safe, responsive, and interpretable robot actions)
- Forecasting as a Machine Learning problem
 Model? (Conditional vs marginal forecasts)
 - ✓ Loss? (Cost-weighted vs L2 loss)
 - Model Data? (Train on-policy on robot data)

Connection between Forecasting and Model-based RL

