Reinforcement Learning from
Human Feedback

Sanjiban Choudhury

== | Cornell Bowers GIS
7 | Computer Science




The story so far ...

Decision-making

Perception

| Models of humans



Models of Humans

What humans do
around robots?

What humans want a
robot to do?




Let's begin with Reinforcement Learning



We know how to make a RL block!

Your favorite
RL algorithm




But how do we design reward function??

Your favorite
RL algorithm

w*(als)




Think-Pair-
Share




Designing R(s,a) for self-driving

Your favorite
RL algorithm

Let's say we wanted the robot to smoothly nudge around a

parked car



Think-Pair-Share!

Think (30 sec): What are the different components of the reward
function you would code up? How would you assign weights to
each component?

Pair: Find a partner

Share (45 sec): Partners exchange
ideas 2



Some components of reward function

Control
Effort

Proximity

Boundary
Violation
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Manually tuning
reward function to get
the desired behavior
IS incredibly

frustrating,

time consuming,
and does not scale
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Desiderata

1. Solve tasks where humans can recognize or demonstrate behavior
2. Allow agents to be taught by non-expert users
3. Scale to large problems

4. Economic with user feedback
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What are better ways for humans to provide
feedback to robots?’



Think-Pair-
Share




Think-Pair-Share!

Think (30 sec): What are the various ways for humans to provide
feedback to the self-driving car?

Pair: Find a partner

Share (45 sec): Partners exchange
ideas
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Different types of feedback!

Demonstrations Preference

Ranking
Interventions

E-stops Language feedback

Improvements

10



Let's look at an example

Demonstrations Preference

Ranking

- —_—

( Interventions

E-stops Language feedback

Improvements
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What can't we do DAGGER?



Problem: Impractical to query expert everywhere

Can we learn from natural human interaction, e.g., interventions?
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| earn from natural human interventions?

Hands free, no corrections!
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| earn from natural human interventions?

ra)

Take over and drive back!
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But ... we want a general solution that
incorporates all feedback

Demonstrations Preference

Ranking

( Interventions

- —_—

E-stops Language feedback

Improvements
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Is there a way to unify feedback?’

Demonstrations Preference

Ranking
Interventions

E-stops Language feedback

Improvements
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s there a way to unify feedback?’

////,
| .
* Demonstrations

i Interventions

Preference
E-stops | ’
Ranking

Language feedback

Improvements

Reward Function
R(s, a)
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predicted
reward

e le human
reward predictor RSIIE

observation

RL algorithm _ environment

action
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The simplest feedback:
Preferences
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| et's work out
the math!




How well does it perform on Reacher?

reacher 1e7l
iy = = "
j RL with learnt reward

i approaches RL with real
- rewards
_g - | - real reward

| = 1400 synthetic queries

- 700 synthetic queries

- 350 synthetic queries

-10 - — 750 human queries

0.0 0.5 1.0 1 09
timestep le/
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How well does it perform on Ant?

ant le7/
400
200 RL with learnt reward
0- approaches outperforms RL
2 00 with real reward!
=
& —400
- real reward
- 1400 synthetic queries
i - 700 synthetic queries HOW7|
350 synthetic queries
—800 - i <4 —— 750 human queries

0.0 0.5 1.0 1.5 2.0
timestep le/
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How well does it perform on Ant?

e ant i On the Ant task the human feedback significantly
outperformed the synthetic feedback, apparently
200 - because we asked humans to prefer trajectories
where the robot was ‘standing upright,” which
. proved to be useful reward shaping.
-(% ~200 - (There was a similar bonus in the RL reward
q% function to encourage the robot to remain
e G upright, but the simple hand-crafted bonus was
i not as useful.)
_800 - . real reward
- 1400 synthetic queries

1 1

T 700 synthetic queries
0.0 0.5 1.0 1 2.0 350 synthetic queries

timeStep le/ —— 750 human queries
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Failure cases

18000 r gbertr

16000 | ]

14000 ¢ On Qbert, our method fails to learn to beat the

12000 first level with real human feedback; this may be

10000 |- because short clips in Qbert can be confusing and
difficult to evaluate.

8000

6000 [

4000 |
2000 } | iy 2R

- 10k synthetic labels
1 - — 5.6k synthetic labels - % Eg -§§ %ﬁ -
. Oa B - . - 3.3k synthetic labels EENE 33
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When can we perfectly recover the ground truth reward
from preference?

When poll is active respond at PollEv.com/sc2582
Send sc2582 t0 22333
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How do we generalize Preferences to
Ranking?
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| et's work out
the math!




How do we generalize this idea to learning
from interventions’
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How do we generalize this idea to learning
from demonstrations?



Demonstrations are “preferred” trajectories

We can view demonstrations as positive trajectories.
But then where do we get negative trajectories from?

Key ldea: "Auto generate” negative trajectories by maximizing the
current estimate of the reward
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Inverse Reinforcement Learning
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Ry(S)

Animation from Sodhi et al. 2021

Begin with a guess of the reward function
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Ry(S)

A

Animation from Sodhi et al. 2021

Optimize the current reward function to generate negative
trajectories
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Push down

Animation from Sodhi et al. 2021




Ry(S)

Push up

----------------------

----------------------

Push down
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Animation from Sodhi et al. 2021
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Animation from Sodhi et al. 2021
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Animation from Sodhi et al. 2021




|Syed and Schappire'07,
Swamy et al. "21]

Inverse Reinforcement Learning as a Game

Do as well as the expert on any given reward function

min max J(zy, R) — J(7, R)
n€ll ReXA
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[Swamy et al. "21]

Inverse Reinforcement Learning as a Game

Do as well as the expert on any given reward function

min max J(zy, R) — J(7, R)
nell ReX

Reward player (No-Regret) Policy player (Best response)

R, < arg m}gx Z J(wp, R) — J(m;,, R) m;, < arg max J(z, R))

U
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Meta-algorithm for IRL

Fori=1,....N

Update reward estimate R; <« arg max Z J(rp, R) — J(7;, R)
R .
J

Update policy 7; < RL(R;)

7, < argmax J(z, R))
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