Reinforcement Learning from Human Feedback

Sanjiban Choudhury

The story so far ...

Decision-making

Perception

Models of humans

What humans want a robot to do?

Models of Humans

What humans do around robots?

Let's begin with Reinforcement Learning

We know how to make a RL block!

Your favorite RL algorithm

 $\bullet \ \pi^*(a \mid s)$

But how do we design reward function??

Your favorite RL algorithm

 $\pi^*(a \mid s)$

Think-Pair-Share

Designing R(s,a) for self-driving

Let's say we wanted the robot to smoothly nudge around a parked car

Your favorite RL algorithm

Think-Pair-Share!

Think (30 sec): What are the different components of the reward function you would code up? How would you assign weights to each component?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

Some components of reward function

Proximity

Boundary Violation

10

Manually tuning reward function to get the desired behavior is incredibly frustrating, time consuming, and does not scale

11

1. Solve tasks where humans can recognize or demonstrate behavior

2. Allow agents to be taught by non-expert users

3. Scale to large problems

4. Economic with user feedback

Desiderata

What are better ways for humans to provide feedback to robots?

13

Think-Pair-Share

Think-Pair-Share!

feedback to the self-driving car?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

Think (30 sec): What are the various ways for humans to provide

15

Different types of feedback!

Demonstrations

Interventions

E-stops

Improvements

Preference

Ranking

Language feedback

Let's look at an example

Demonstrations

E-stops

Improvements

Preference

Ranking

Language feedback

17

Recap: Learning to drive

[SCB+RSS'20]

Learnt policy

What can't we do DAGGER?

Problem: Impractical to query expert everywhere

Can we learn from natural human interaction, e.g., interventions?

Learn from natural human interventions?

TARASTAN AND THE TRANSPORTED TO THE STORE TO

Hands free, no corrections!

Take over and drive back!

Learn from natural human interventions?

But ... we want a general solution that incorporates all feedback

Demonstrations

E-stops

Improvements

Preference

Ranking

Language feedback

Is there a way to unify feedback?

Demonstrations

Interventions

E-stops

Improvements

Preference

Ranking

Language feedback

Is there a way to unify feedback?

Demonstrations Interventions Preference E-stops Ranking Language feedback Improvements

Reward Function R(s, a)

The simplest feedback: Preferences

Deep Reinforcement Learning from Human Preferences

Paul F Christiano OpenAI paul@openai.com

Jan Leike DeepMind leike@google.com

Miljan Martic DeepMind miljanm@google.com

Shane LeggDeepMind
legg@google.com

Tom B Brown nottombrown@gmail.com

> Dario Amodei OpenAI damodei@openai.com

Let's work out the math!

How well does it perform on Reacher?

RL with learnt reward approaches RL with real rewards

- real reward
- 1400 synthetic queries
- 700 synthetic queries
- 350 synthetic queries
- 750 human queries

How well does it perform on Ant?

RL with learnt reward approaches outperforms RL with real reward!

- real reward
- 1400 synthetic queries
- 700 synthetic queries
- 350 synthetic queries
- 750 human queries

How?!

33

How well does it perform on Ant?

On the Ant task the human feedback significantly outperformed the synthetic feedback, apparently because we asked humans to prefer trajectories where the robot was "standing upright," which proved to be useful reward shaping. (There was a similar bonus in the RL reward function to encourage the robot to remain upright, but the simple hand-crafted bonus was

not as useful.)

eal reward

- 1400 synthetic queries
- 700 synthetic queries
- 350 synthetic queries
- 750 human gueries

Failure cases

On Qbert, our method fails to learn to beat the first level with real human feedback; this may be because short clips in Qbert can be confusing and difficult to evaluate.

RL

10k synthetic labels 5.6k synthetic labels 3.3k synthetic labels 5.5k human labels

Quiz

When can we perfectly recover the ground truth reward from preference?

When poll is active respond at **PollEv.com/sc2582**

Send sc2582 to 22333

How do we generalize Preferences to Ranking?

Let's work out the math!

How do we generalize this idea to learning from interventions?

Learning Robot Objectives from Physical Human Interaction

Andrea Bajcsy*, Dylan P. Losey*, Marcia K. O'Malley, and Anca D. Dragan

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

How do we generalize this idea to learning from demonstrations?

Demonstrations are "preferred" trajectories

Key Idea: "Auto generate" negative trajectories by maximizing the current estimate of the reward

We can view demonstrations as positive trajectories.

But then where do we get negative trajectories from?

Inverse Reinforcement Learning

Apprenticeship Learning via Inverse Reinforcement Learning

Pieter Abbeel Andrew Y. Ng Computer Science Department, Stanford University, Stanford, CA 94305, USA

PABBEEL@CS.STANFORD.EDU ANG@CS.STANFORD.EDU

Generative Adversarial Imitation Learning

Jonathan Ho Stanford University hoj@cs.stanford.edu

Stefano Ermon Stanford University ermon@cs.stanford.edu Maximum Entropy Inverse Reinforcement Learning

Brian D. Ziebart, Andrew Maas, J.Andrew Bagnell, and Anind K. Dey

School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 bziebart@cs.cmu.edu, amaas@andrew.cmu.edu, dbagnell@ri.cmu.edu, anind@cs.cmu.edu

Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap

Gokul Swamy¹ Sanjiban Choudhury² J. Andrew Bagnell¹² Zhiwei Steven Wu³

44

-

Do as well as the expert on any given reward function

$\min \max J(\pi_F, R) - J(\pi, R)$ $\pi \in \Pi R \in \mathcal{R}$

57

Inverse Reinforcement Learning as a Game

Do as well as the expert on any given reward function

min max $J(\pi_F, R) - J(\pi, R)$ $\pi \in \Pi R \in \mathscr{R}$

Reward player (No-Regret) $R_i \leftarrow \arg\max_R \sum_{i} J(\pi_E, R) - J(\pi_j, R)$ [Swamy et al. '21]

Policy player (Best response)

 $\pi_{i+1} \leftarrow \arg \max J(\pi, R_i)$

Meta-algorithm for IRL

For i = 1, ..., N

Update policy $\pi_i \leftarrow \mathsf{RL}(R_i)$

