3D Perception: **PointNet and NERFs**

Sanjiban Choudhury

Last Class: How does a robot identify objects?

Last Class: How does a robot identify objects?

Classification

Semantic Segmentation

Object **Detection**

Instance **Segmentation**

DOG, DOG, CAT

DOG, DOG, CAT

Multiple Object

This image is CC0 public domain

Slides from Stanford CS231N: Object Detection and Image Segmentation

But manipulating objects require 3D reasoning!

What sensors can we use to get 3D information?

Depth cameras give us 3D information!

Infrared dot matrix projector

What data structure represents 3D information?

Masked Depth Image -> Point Cloud

Think-Pair-Share

Think-Pair-Share!

learn where to grasp it? What are some informative features?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

Think (30 sec): Given a point cloud of an object, how would you

Part 1: PointNet

PointNet

End-to-end learning for scattered, unordered point data

PointNet

End-to-end learning for scattered, unordered point data

Unified framework for various tasks

Slides from Qi et al, CVP 2017 <u>http://stanford.edu/~rqi/pointnet/docs/cvpr17 pointnet slides.pdf</u>

- - -

Object Classification Object Part Segmentation Semantic Scene Parsing

PointNet

End-to-end learning for scattered, unordered point data

Unified framework for various tasks

Challenges with point clouds

Two Challenges

Challenge 1: Unordered point set as input Model needs to be invariant to N! permutation

Challenge 2: Invariance under geometric transformations Point cloud rotation should not alter classification results

Two Challenges

Challenge 1: **Unordered** point set as input Model needs to be invariant to N! permutation

Challenge 2: Invariance under **geometric** transformations Point cloud rotation should not alter classification results

Unordered Input

Point cloud: N orderless points, each represented by a D dim vector

Unordered Input

Point cloud: N orderless points, each represented by a D dim vector

Ν represents the same set as

Slides from Qi et al, CVP 2017 <u>http://stanford.edu/~rqi/pointnet/docs/cvpr17 pointnet_slides.pdf</u>

D

Unordered Input

Point cloud: N <u>orderless</u> points, each represented by a D dim vector

D Ν represents the same set as

Model needs to be invariant to N! permutations

$$f(x_1, x_2, \dots, x_n) \equiv$$

$$f(x_1, x_2, \dots, x_n) \equiv$$

Examples:

 $f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$ $f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$

Examples:

 $f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$ $f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$

How can we construct a family of symmetric functions by neural networks?

Observe:

$f(x_1, x_2, \dots, x_n) = \gamma \circ g(h(x_1), \dots, h(x_n))$ is symmetric if g is symmetric

Observe:

$f(x_1, x_2, \dots, x_n) = \gamma \circ g(h(x_1), \dots, h(x_n))$ is symmetric if g is symmetric

Observe:

h (1, 2, 3)(2,3,2)(2,3,4)

$f(x_1, x_2, \dots, x_n) = \gamma \circ g(h(x_1), \dots, h(x_n))$ is symmetric if g is symmetric

simple symmetric function 8

Observe:

h (1, 2, 3)(1,1,1) (2,3,2)(2,3,4)

$f(x_1, x_2, \dots, x_n) = \gamma \circ g(h(x_1), \dots, h(x_n))$ is symmetric if g is symmetric

simple symmetric function 8

PointNet (vanilla)

Basic PointNet Architecture

Empirically, we use multi-layer perceptron (MLP) and max pooling:

PointNet (vanilla)

Two Challenges

Challenge 1: Unordered point set as input Model needs to be invariant to N! permutation

Challenge 2: Invariance under geometric transformations Point cloud rotation should not alter classification results

Input Alignment by Transformer Network

Idea: Data dependent transformation for automatic alignment

Input Alignment by Transformer Network

The transformation is just matrix multiplication!

Slides from Qi et al, CVP 2017 <u>http://stanford.edu/~rqi/pointnet/docs/cvpr17 pointnet slides.pdf</u>

Results on Object Part Segmentation

Results on Semantic Scene Parsing

How do we use this for learning grasping?

PointNetGPD: Detecting Grasp Configurations from Point Sets

Liang et al.

PointNetGPD: Detecting Grasp Configurations from Point Sets

Liang et al.

What if we don't have good depth information?

Poll

What are the limits of depth camera?

When poll is active respond at **PollEv.com/sc2582**

Send sc2582 to 22333

Completely fails for transparent / reflective objects!

Real-world Scene

RealSense D410 Depth Image

41

Completely fails for transparent / reflective objects!

Dishwasher Real-world Scene

RealSense D410 Depth Image

Neural Radiance Fields (NeRFs)

Part 2:

Let's say I just have a set of images & camera poses

 $x_1, y_1, z_1, \theta_1, \phi_1$ $x_2, y_2, z_2, \theta_2, \phi_2$

 $x_3, y_3, z_3, \theta_3, \phi_3$

44

How do we predict a 3D structure?

2D images

Camera Poses

3D structure

 $x_1, y_1, z_1, \theta_1, \phi_1$ $x_2, y_2, z_2, \theta_2, \phi_2$ $x_3, y_3, z_3, \theta_3, \phi_3$

If you can predict how the object will look from a novel viewpoint, you have *implicitly* modeled the 3D structure

46

Let's setup a learning problem

Neural Network

Predicted

 x, y, z, θ, ϕ

Novel viewpoint

Neural Network

Let's setup a learning problem

Predicted

Ground Truth

Simple idea:

Can't we just make the neural network predict a 3D voxel grid of RGB values?

Predict a 3D grid, render image from viewpoint Neural x, y, z, θ, ϕ Network Novel viewpoint Predicted

Predict a 3D grid, render image from viewpoint Neural x, y, z, θ, ϕ Network Novel viewpoint Predicted What are challenges with this approach?

Not differentiable! (Not a continuous projection)

Challenges

Discretization loses information!

Memory Inefficient!

What are Neural Radiance Fields (NeRFs)? Idea: Use a neural network to *implicitly* represent 3D volume!

How does a NERF *implicitly* represent 3D scene?

 $(x, y, z, \theta, \phi) \rightarrow$

Spatial location

Viewing direction

 $\rightarrow (r, g, b, \sigma)$ Output Output $F_{\mathbf{O}}$ color density Fully-connected neural network

9 layers, 256 channels Output

Differentiable Loss Function

 $\min_{\Theta} \sum_{i=1}^{n} ||\mathbf{render}_{i}(F_{\Theta}) - I_{i}^{gt}||^{2}$

What is the render() function? How is it differentiable?

NeRF scene: Generate views

NeRF scene: Generate views

Results

Novel View Synthesis

Inputs: sparsely sampled images of scene

Outputs: *new* views of same scene (rendered by our method)

More detailed and consistent than prior work that represents scene as discrete voxel grid

Neural Volumes [Lombardi 2019]

NeRF

One key trick to make it work ...

Naively passing in position creates blurry images!

Standard input

Let's say we train a network to memorize an image

Ground truth image

Standard fully-connected net

How do we make the image look sharper?

Idea: Encode low-dim coordinates to high-dim features

High-frequency embedding of input coordinates

Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains, Tancik et al.

Use positional encoding

Ground truth image

Standard fully-connected net

 $sin(\mathbf{x}), cos(\mathbf{x})$ $sin(2\mathbf{x}), cos(2\mathbf{x})$ $sin(4\mathbf{x}), cos(4\mathbf{x})$ $sin(2^N\mathbf{x}), cos(2^N\mathbf{x})$

Fourier feature input

Standard input

3D Shape

3D NeRF

Lots of extension and applications!

Generalization

Goal: Train a NeRF for arbitrary new scenes with fewer images

pixelNeRF: Neural Radiance Fields from One or Few Images

Unknown camera poses

Goal: Estimate poses given a trained NeRF

iNeRF: Inverting Neural Radiance Fields for Pose Estimation

Unknown camera poses + Scene

Goal: Simultaneously estimate pose and scene representation

BARF : Bundle-Adjusting Neural Radiance Fields

iMAP: Implicit Mapping and Positioning in Real-Time

MIRA: Mental Imagery for Robotic Affordances

MIRA represents the scene with a Neural Radiance Field (NeRF) and hence requires RGB-only inputs.

Before each action, it takes multi-view RGB images as inputs to optimize a NeRF of the scene.

Input: 30 images Optimization: ~10s Rendering: 60fps

novel view 2

Given a NeRF, MIRA uses orthographic ray casting to render novel views densely. We show 2 views for illustration.

novel view 1

Existing action-centric methods predict 3-DoF action (x, y, yaw) from a top-down image.

pixel with the best action value

pick

yaw is handled with rotation augmentation, see Transporter Networks, Zeng et al.

MIRA generalizes this idea to predict 6-DoF actions using images synthesized by NeRF.

novel view 2

It compares each novel view's best action value to decide the best pixel & the best view.

novel view 2

(novel VIEW pixel with the bestview 1

Pare best action value best veikelewrass pixel wiethshe best action value

It then uses the best view's viewing angle to parameterize the 6-DoF action's (roll, pitch).

best view

place angle = viewing angle

best pixel across all views.

To determine the output action's z, MIRA uses NeRF to predict the best pixel's depth.

We show the result of executing 6-DoF actions predicted by MIRA.

tl;dr

But manipulating objects require 3D reasoning!

13

What are Neural Radiance Fields (NeRFs)?

Idea: Use a neural network to *implicitly* represent 3D volume!

