Generative World Models: The Dreamer Models

Sanjiban Choudhury

Cornell Bowers C^IS **Computer Science**

The story so far ...

Robots have to act in the world

Hence, we learned various algorithms for decision making

But we assumed that we can observe the "state"

The story so far ...

But in the real world, no one tells you the "state"

All you see are observations

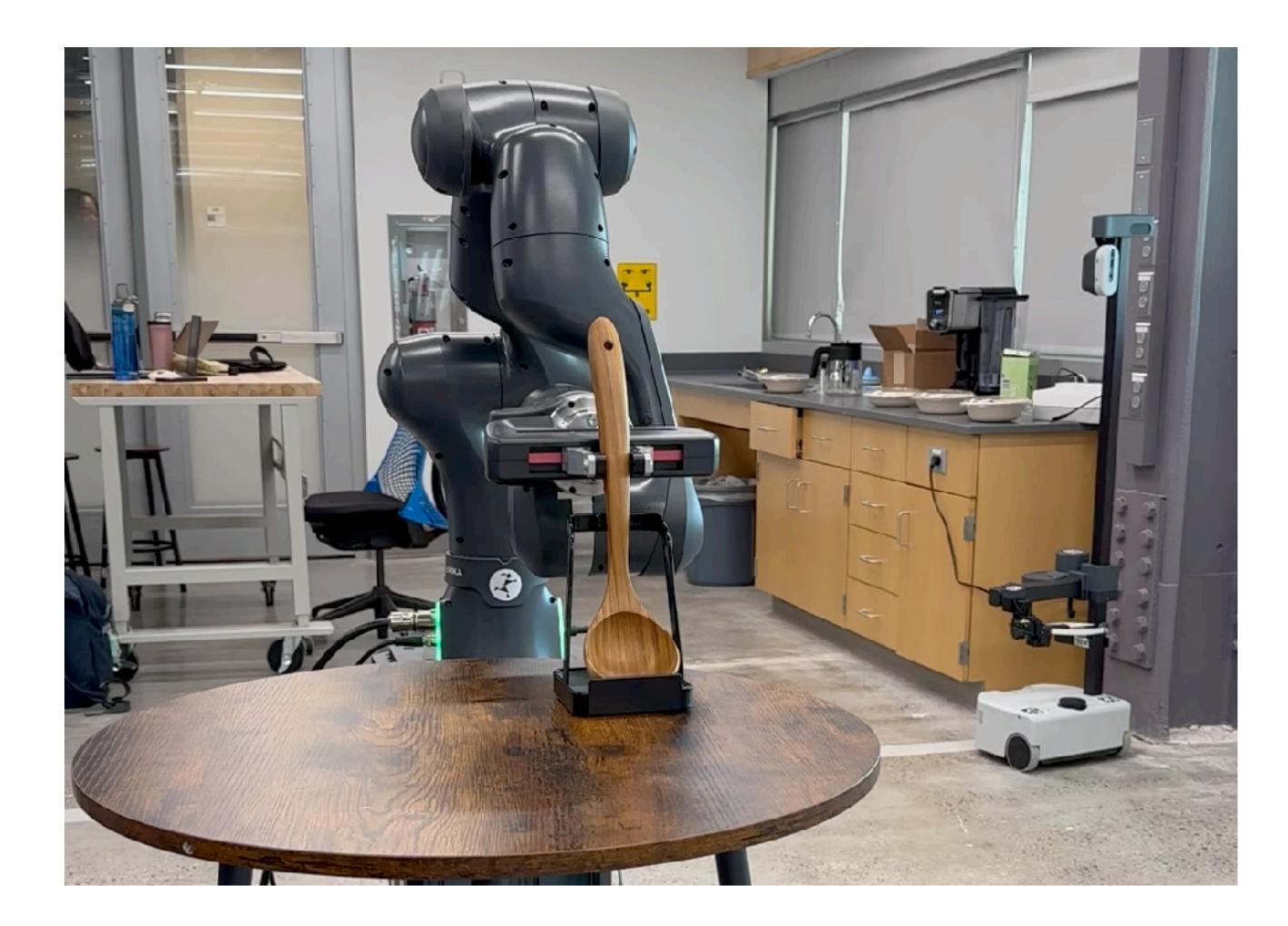
How do we learn from observations?

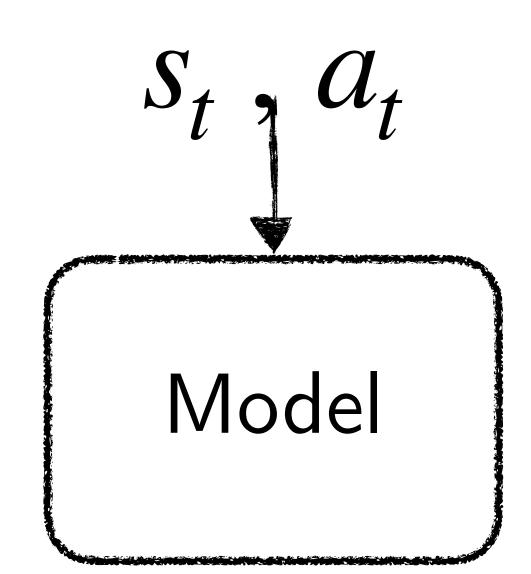
Our focus in this and future lectures will turn to learning representations

The story so far ...

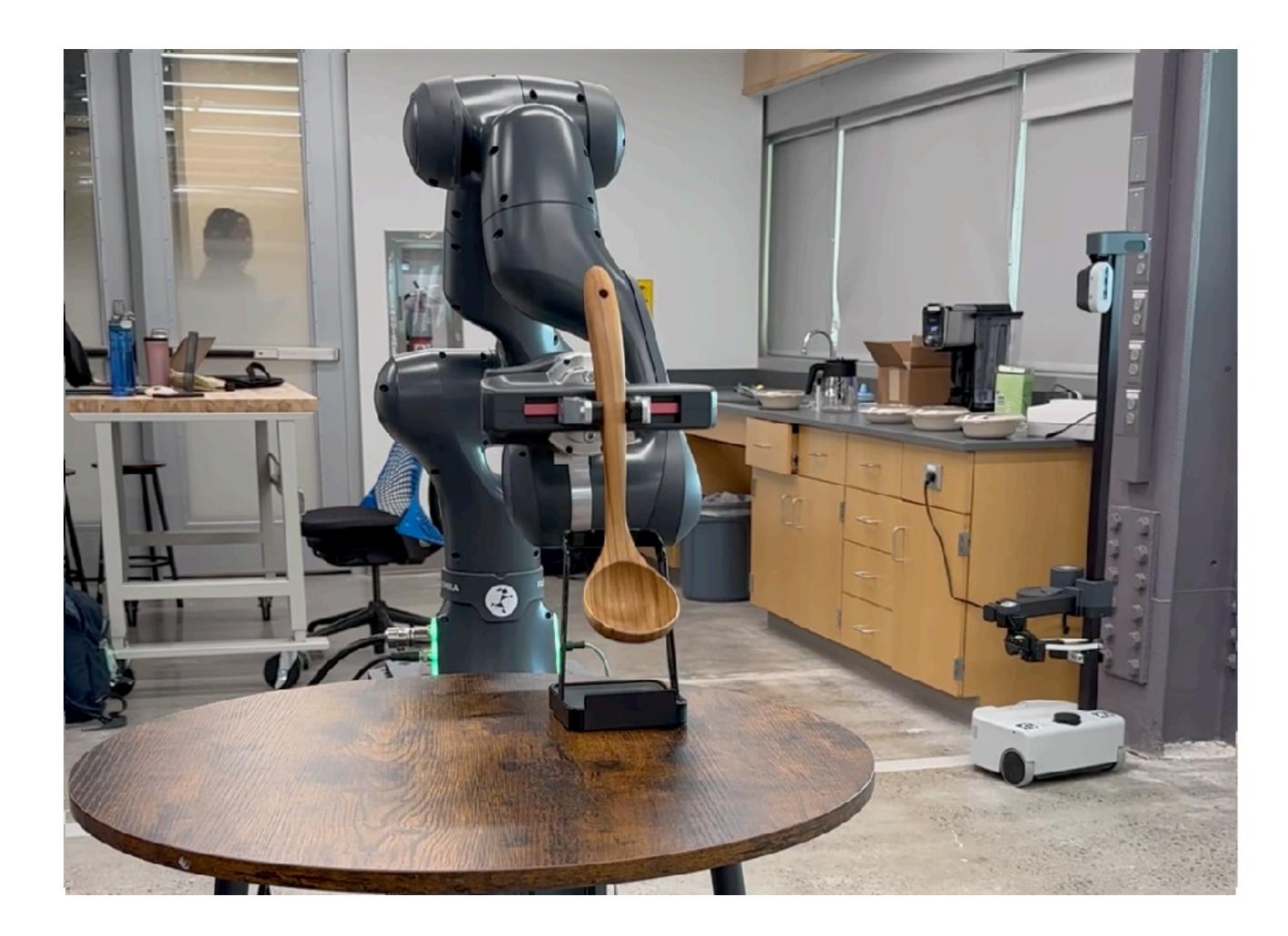
Models.

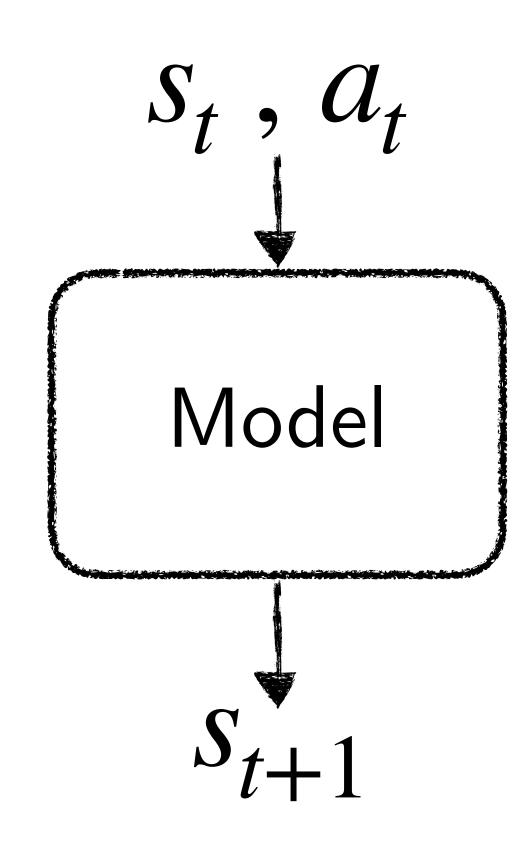
What is a model?





What is a model?



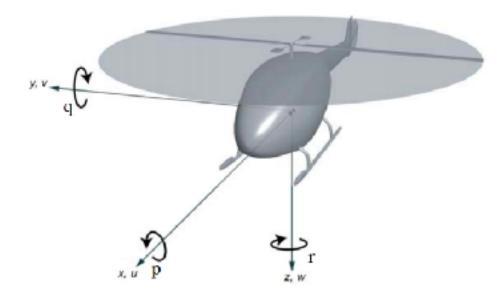


What is a model?

$P_{\theta}(S_{t+1} \mid S_t, a_t)$

Learning Models

Simple



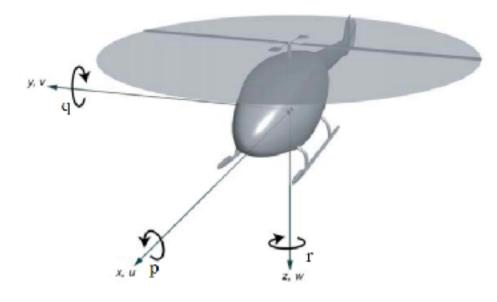
Physics Models

Simple

Known state

Strong prior on dynamics

11

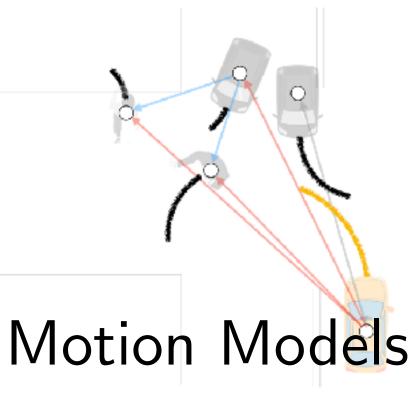


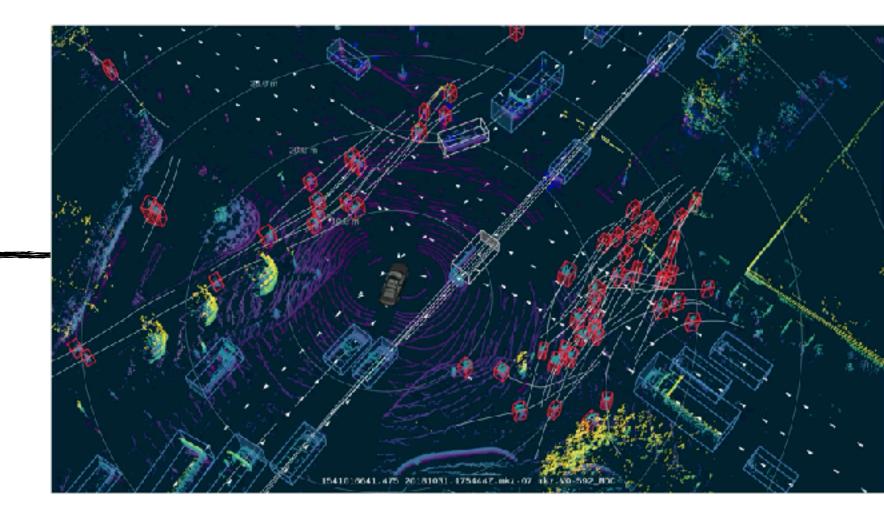
Physics Models

Simple

Known state

Strong prior on dynamics

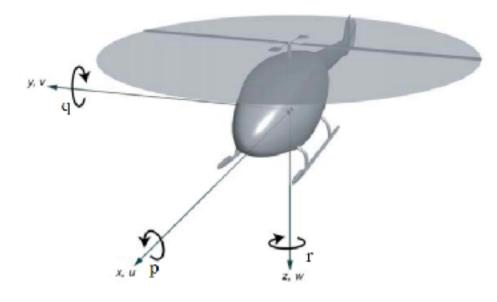




Known state

Unknown dynamics

12



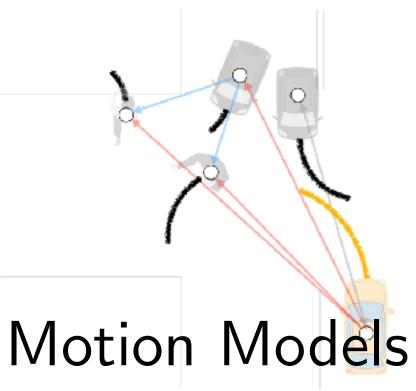
Physics Models

Simple

Known state

Strong prior on dynamics

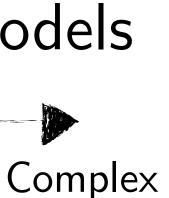
Known state

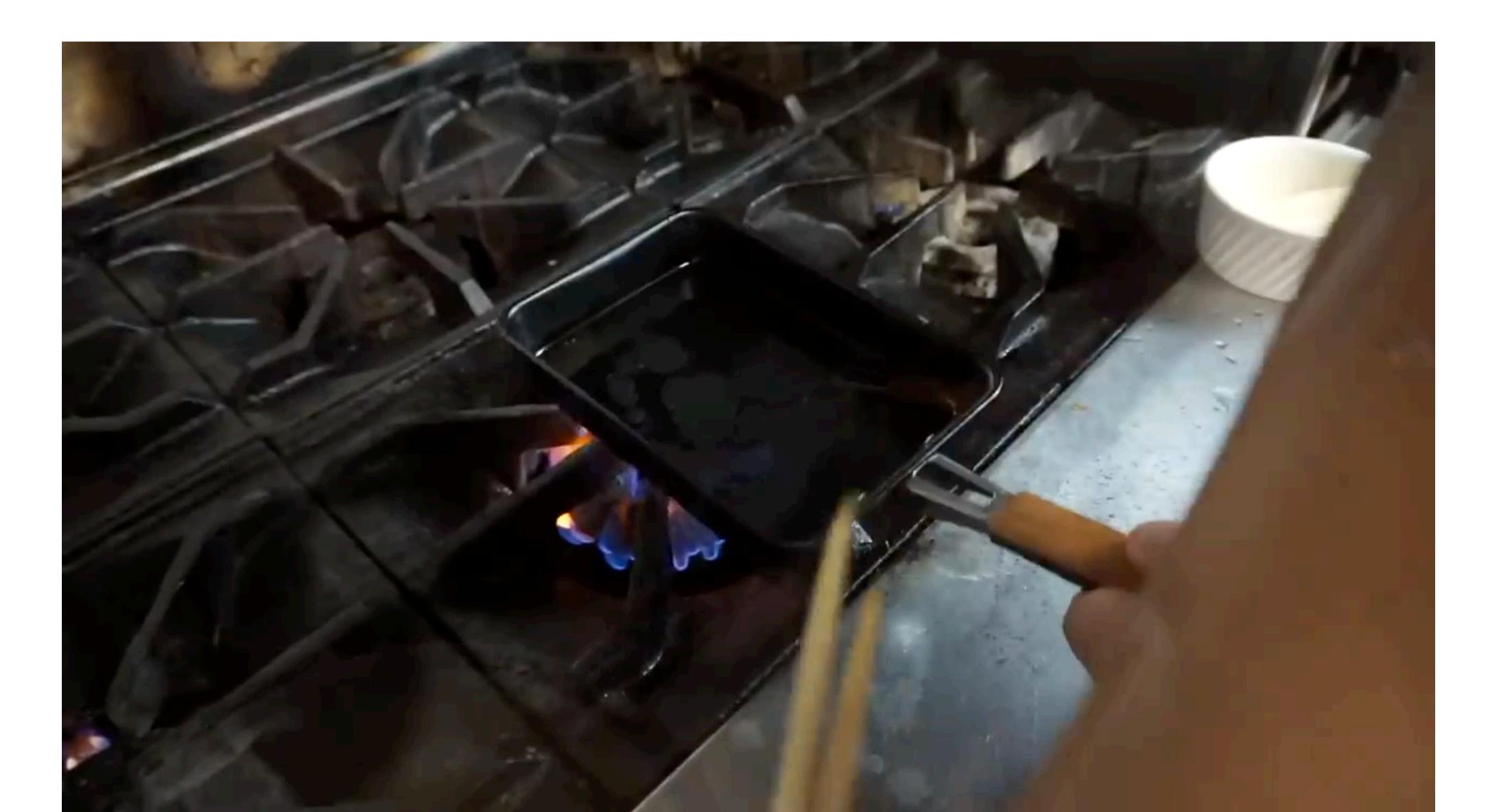


Open World Models

nknown dynamics Unknown state

Unknown dynamics





Modelling Tamago Sushi

Think-Pair-Share!

Think (30 sec): How would you model making tamago sushi?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

Challenges with learning complex models

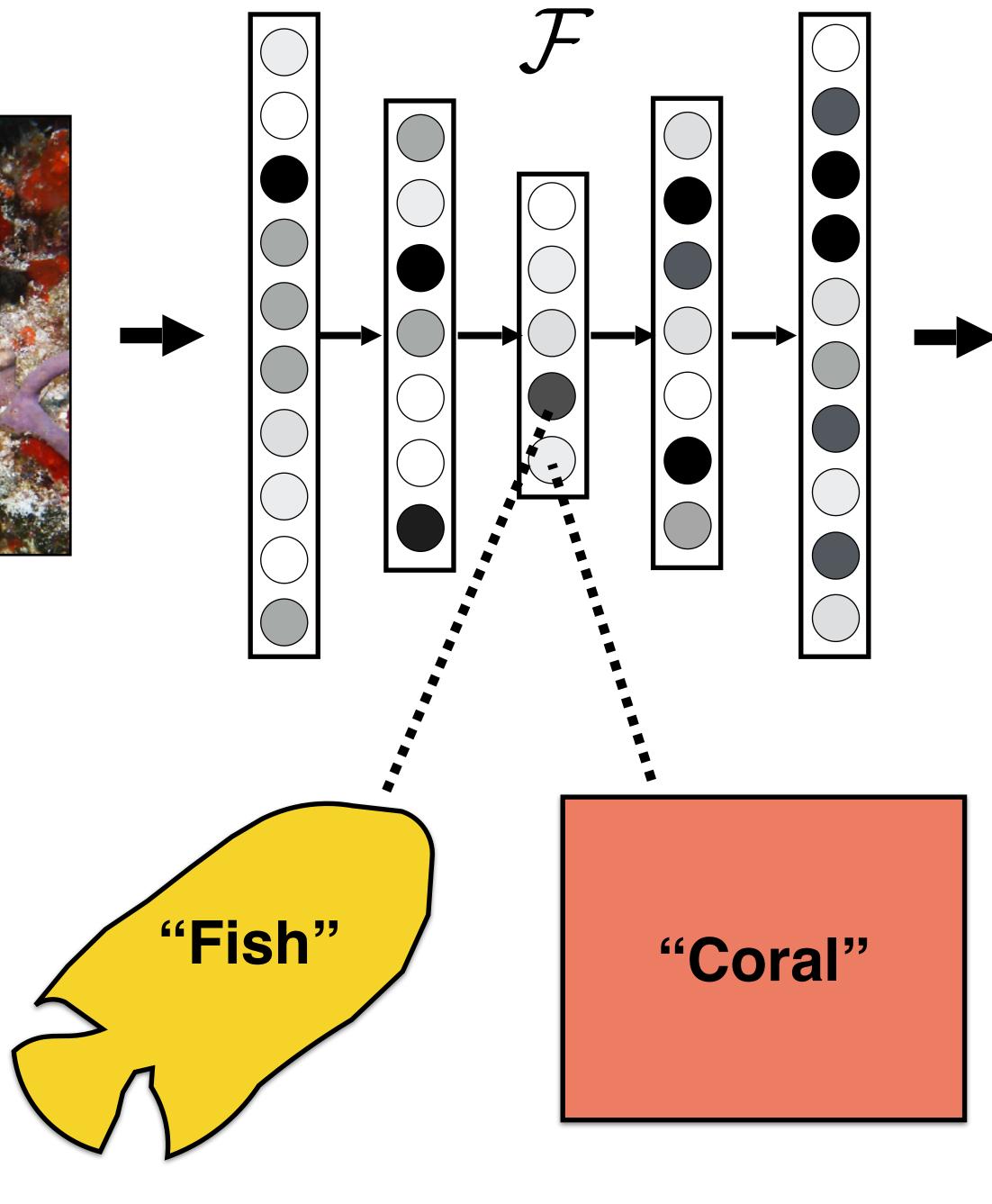
Challenge 1: Can't see state, only get high-dimensional observations

Challenge 2: Planning with complex dynamics

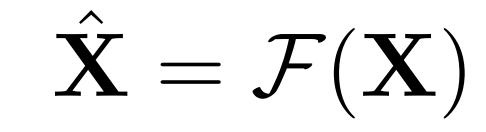
How can we learn latent low-dimensional state from high-dimensional observations?

Idea: Use "auto-encoder" trick from computer vision

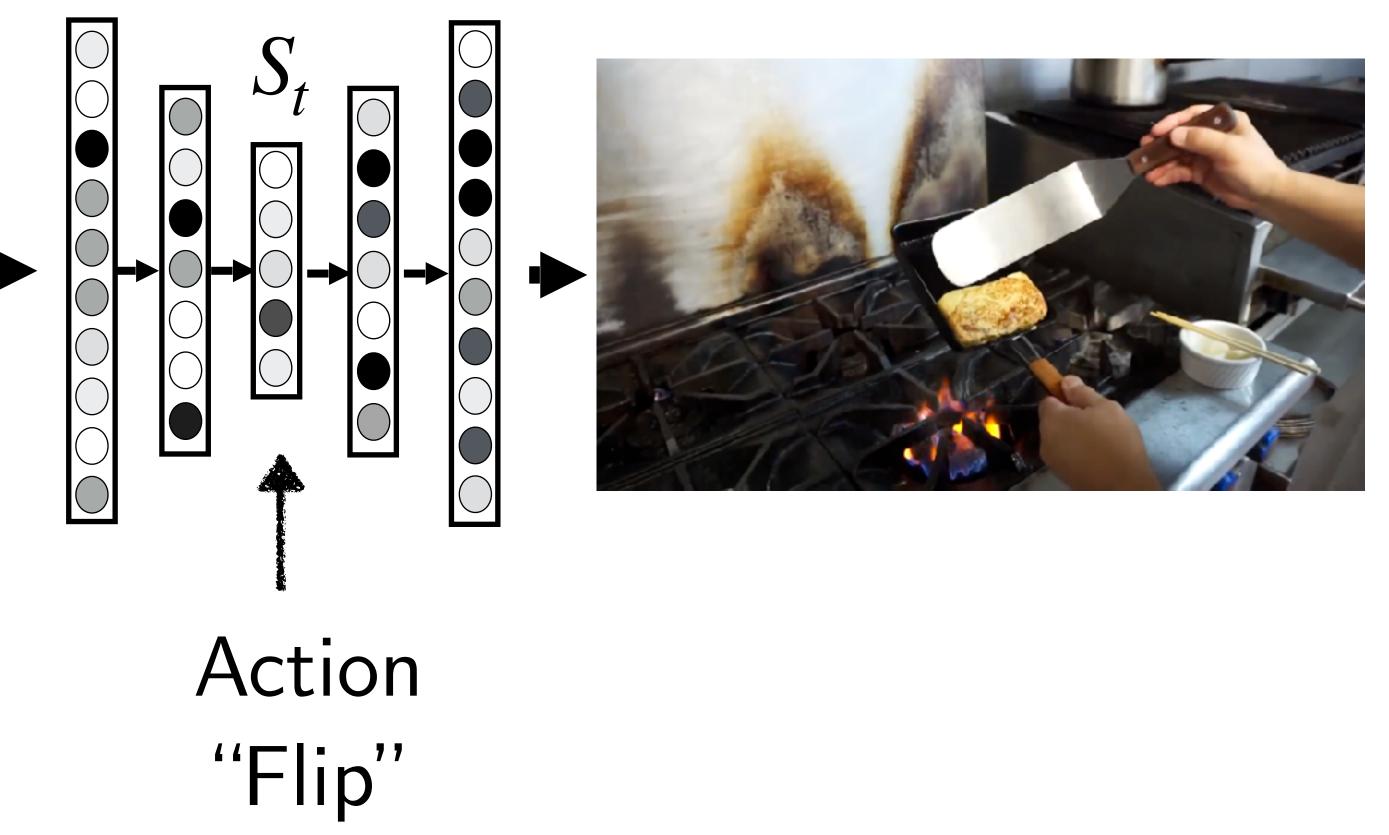
Image

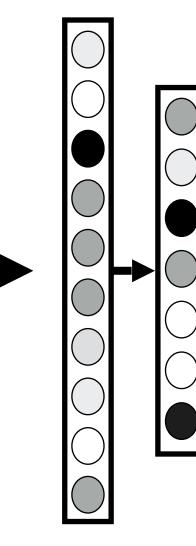


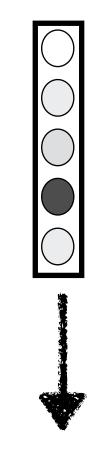
From MIT 6.8300/6.8301: Advances in Computer Vision



Reconstructed image







Previous State S_{t-1}

Action "Flip"

The DREAMER Algorithms

Mastering Diverse Domains through World Models

2023

Danijar Hafner¹², Jurgis Pasukonis¹, Jimmy Ba², Timothy Lillicrap¹

¹DeepMind ²University of Toronto

MineRL Diamond Challenge

MineRL Diamond Challenge

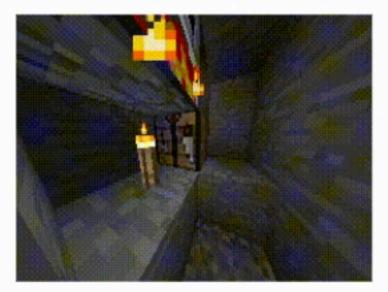
Gather Wood

Create Wood Pickaxe

Create Furnace

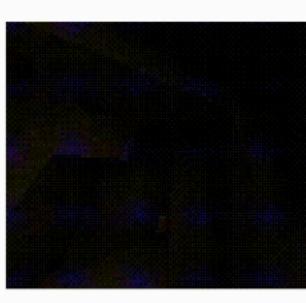
 \longrightarrow

Smelt Iron and Create Iron Pickaxe



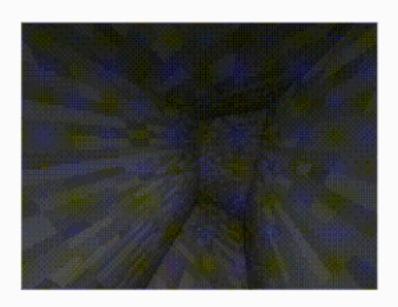
Mine Stone and Create Stone Pickaxe

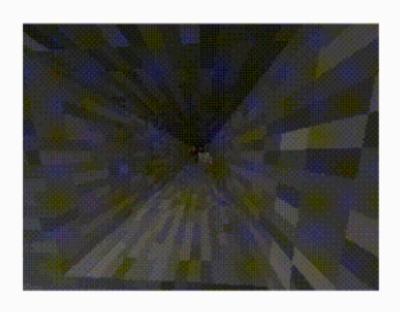
Mine Iron Ore



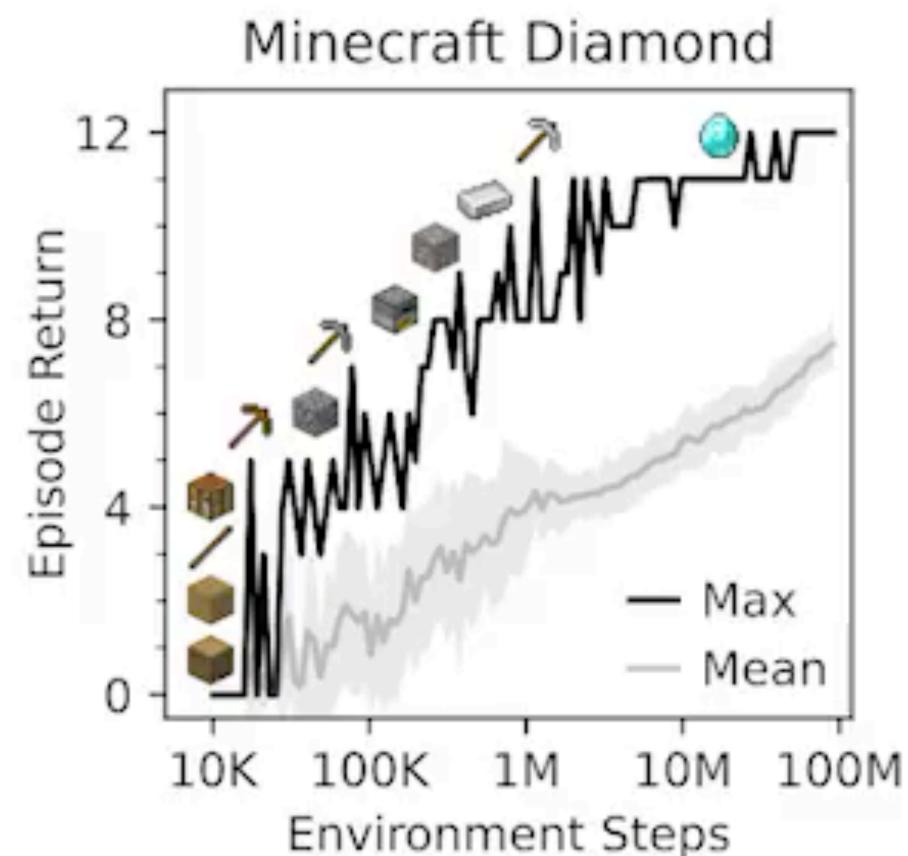
Search

Mine Diamond





DreamerV3 solved this task!



DreamerV3 First Diamond from Scratch

The DREAMER Algorithm

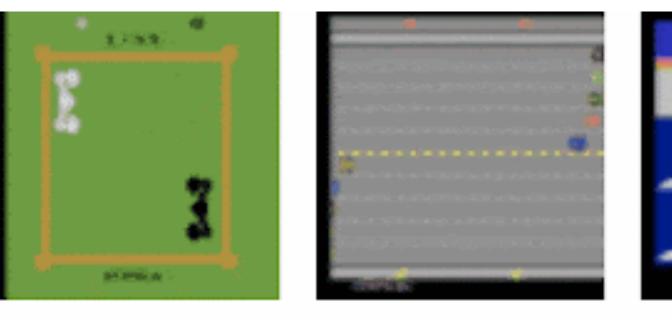
DREAM TO CONTROL: LEARNING BEHAVIORS BY LATENT IMAGINATION

Danijar Hafner * University of Toronto Google Brain Timothy LillicrapJimmy BaDeepMindUniversity of Toronto

Mohammad Norouzi Google Brain

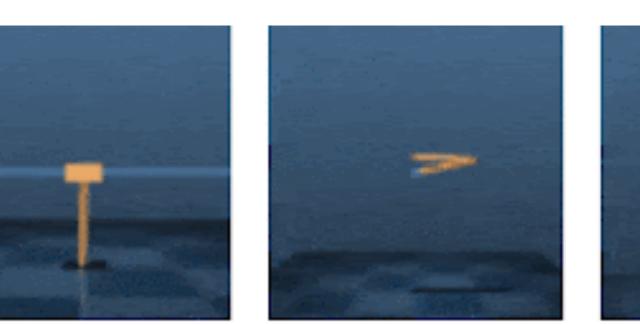
2020

Look at the videos below



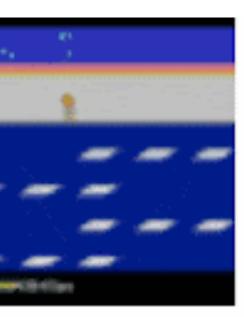
Boxing

Freeway



Sparse Cartpole Acrobot Swingup

Is this from the actual simulator or predictions made by a model?



Frostbite

Collect Objects

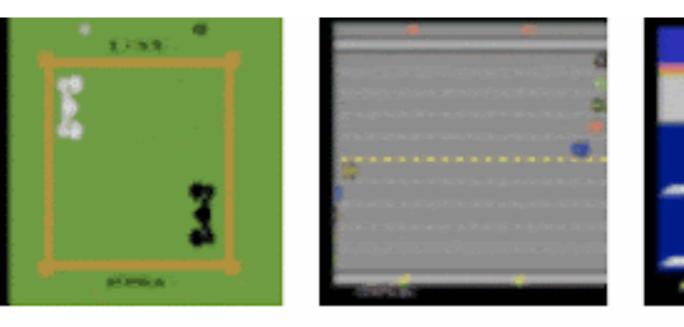
Watermaze

Hopper Hop

Walker Run

Quadruped Run

Look at the videos below

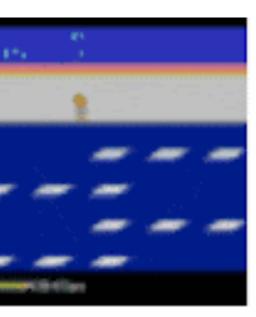


Boxing

Freeway

Sparse Cartpole Acrobot Swingup

Predictions by a model!



Frostbite

Collect Objects

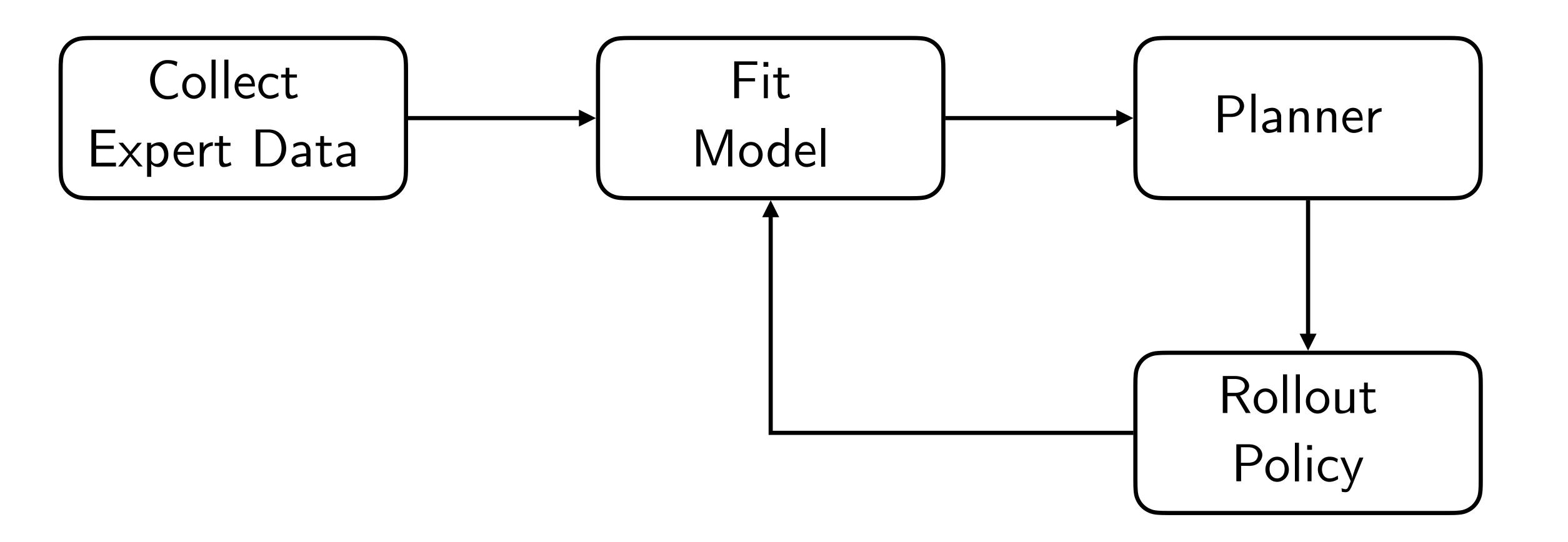
Watermaze

Hopper Hop

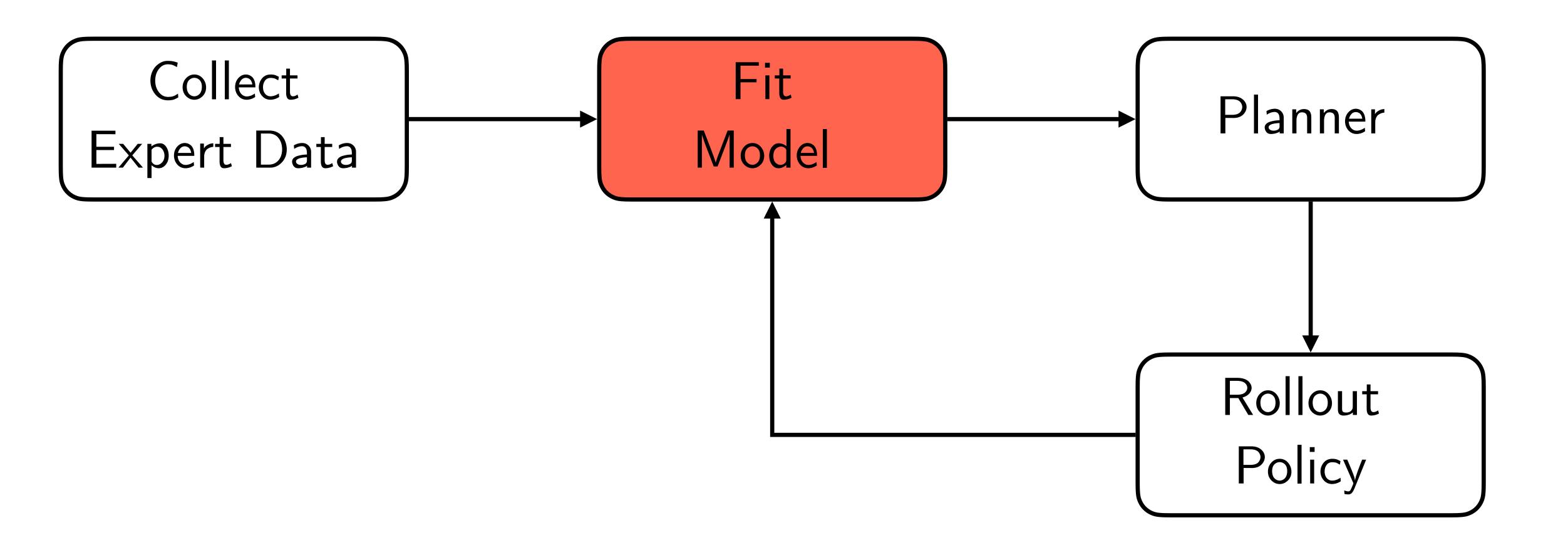
Walker Run

Quadruped Run

Recap: Model-based RL (Ross & Bagnell, 2012)



How does DREAMER fit a model?



Goal: Fit a Model given data

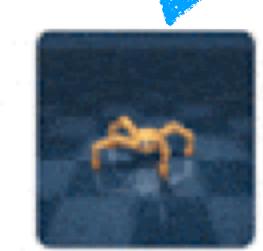
Given Data: Observations, rewards, actions

Goal: Fit a Model given data

Given: Observations, rewards, actions

Predict: States, Dynamics Function, Reward Function

0



a.,

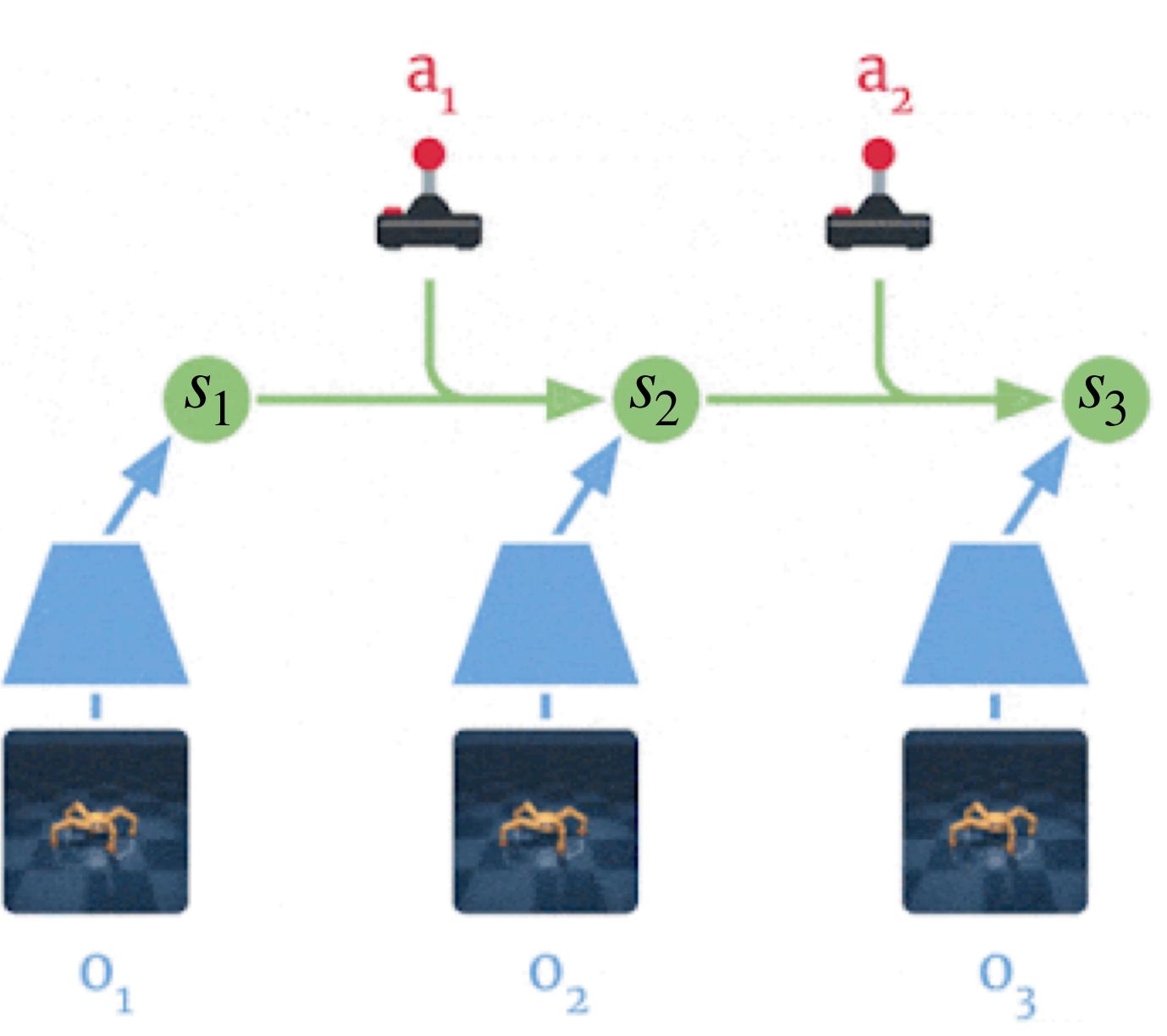
Actions

Observations

compute states

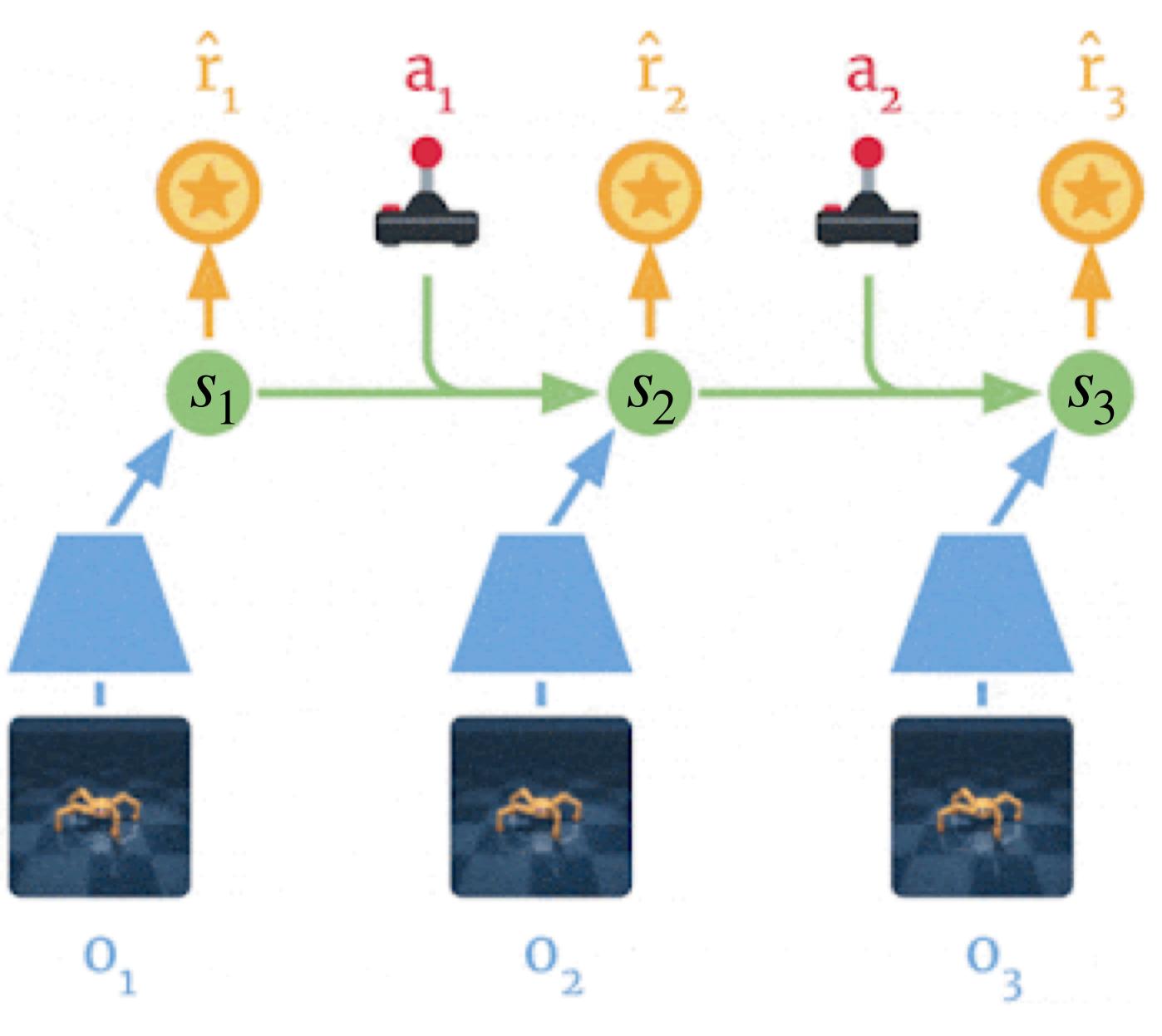
 $p_{\theta}(s_t | o_t, s_{t-1}, a_{t-1})$

State Encoder



 $\ell = (r_t - \hat{r}_t)^2$

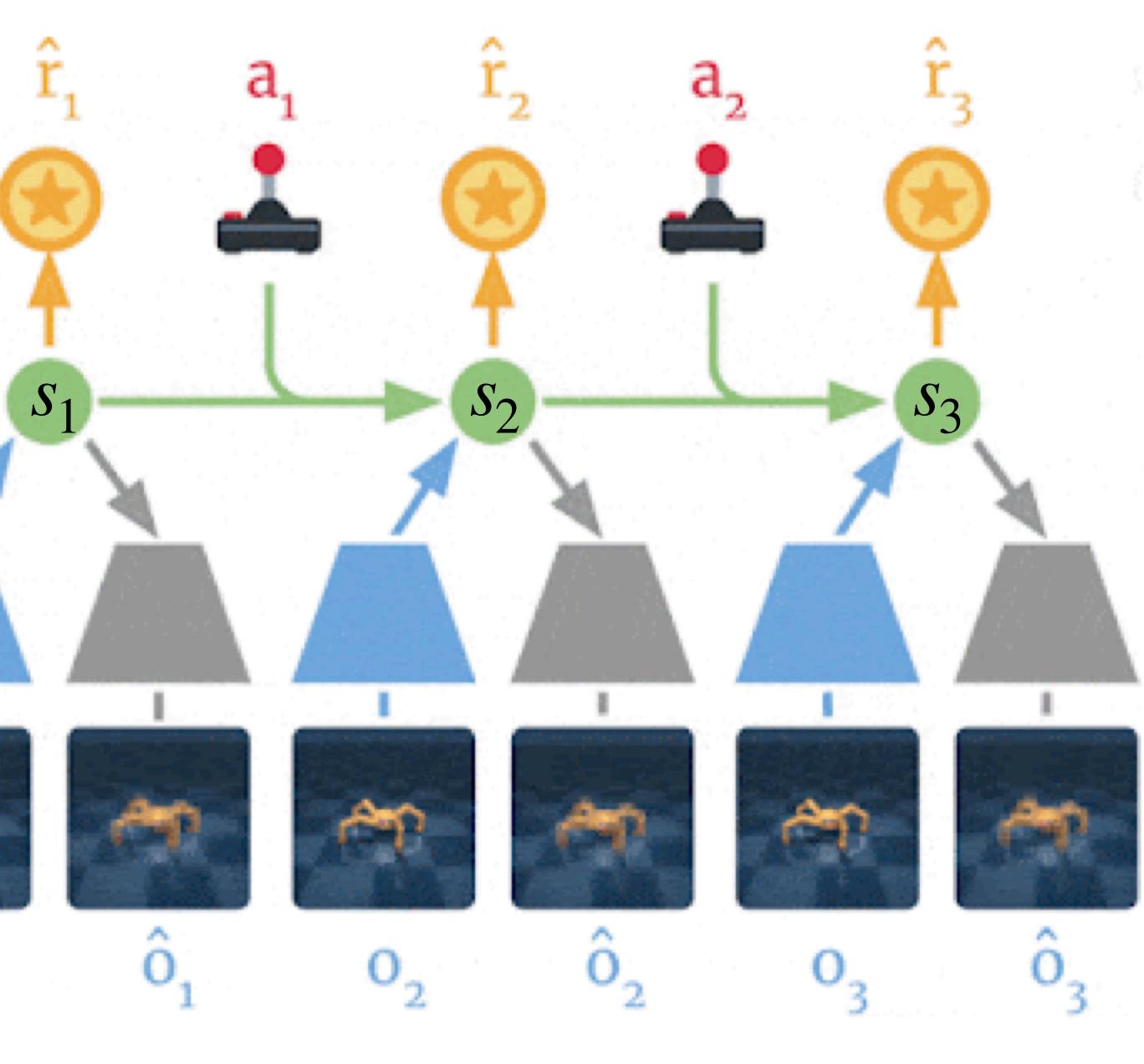
 $q_{\theta}(r_t \mid s_t)$ Reward Decoder



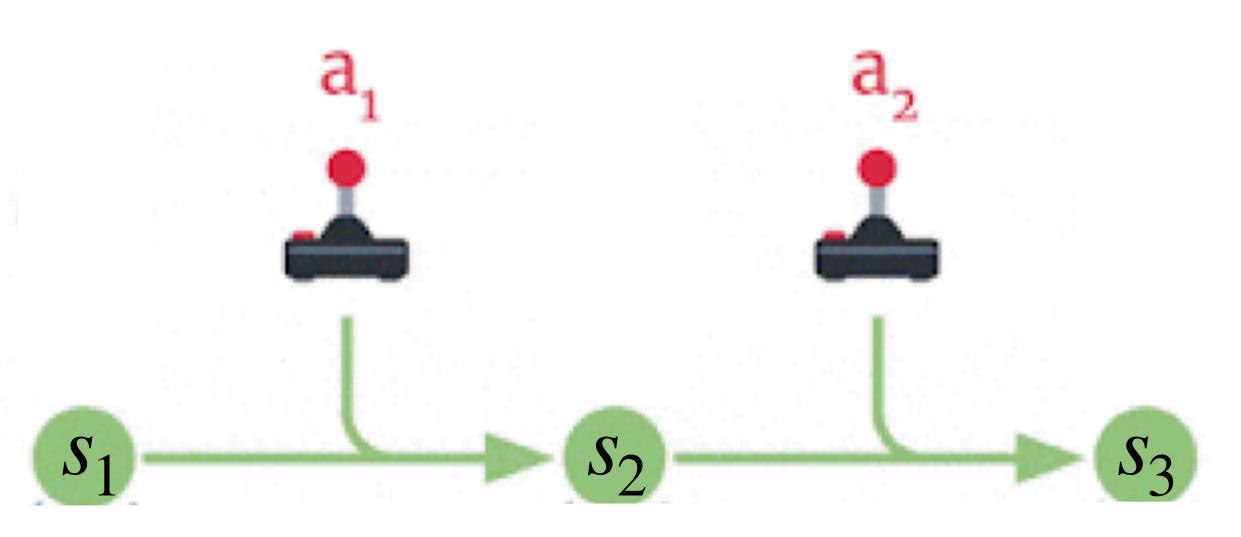
 $\ell = (o_t - \hat{o}_t)^2$

$q_{\theta}(o_t | s_t)$ Observation Decoder

A

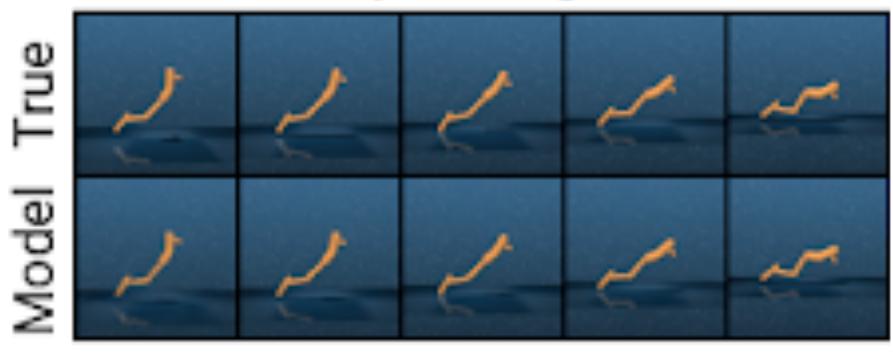


$q_{\theta}(s_t | s_{t-1}, a_{t-1})$ Dynamics Function



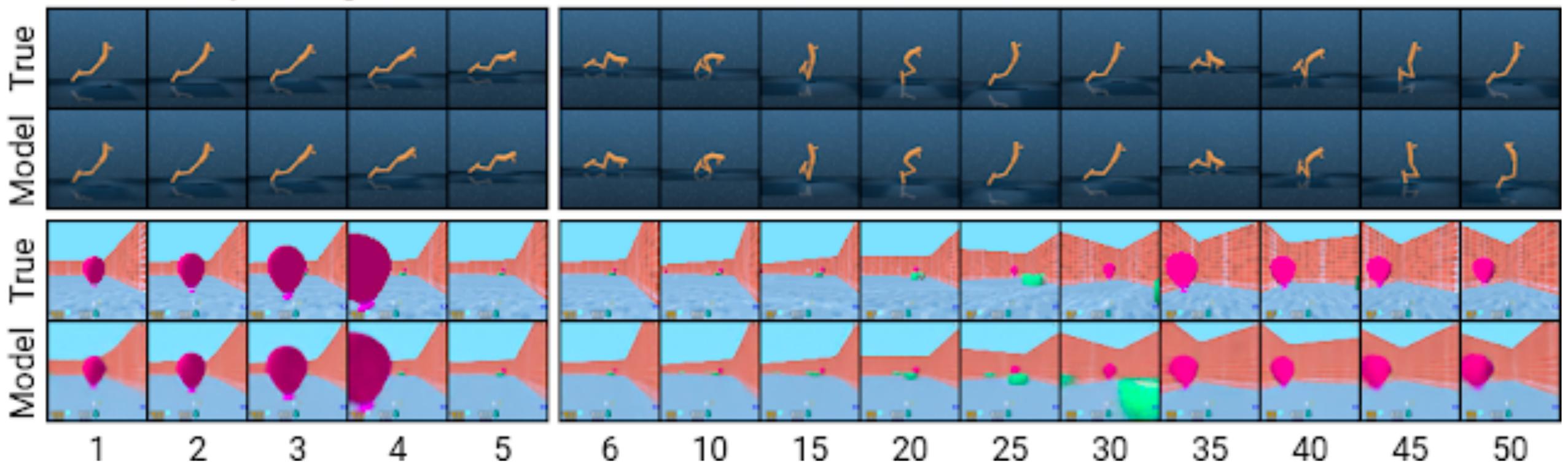
Results: Learning World Model

Input Images



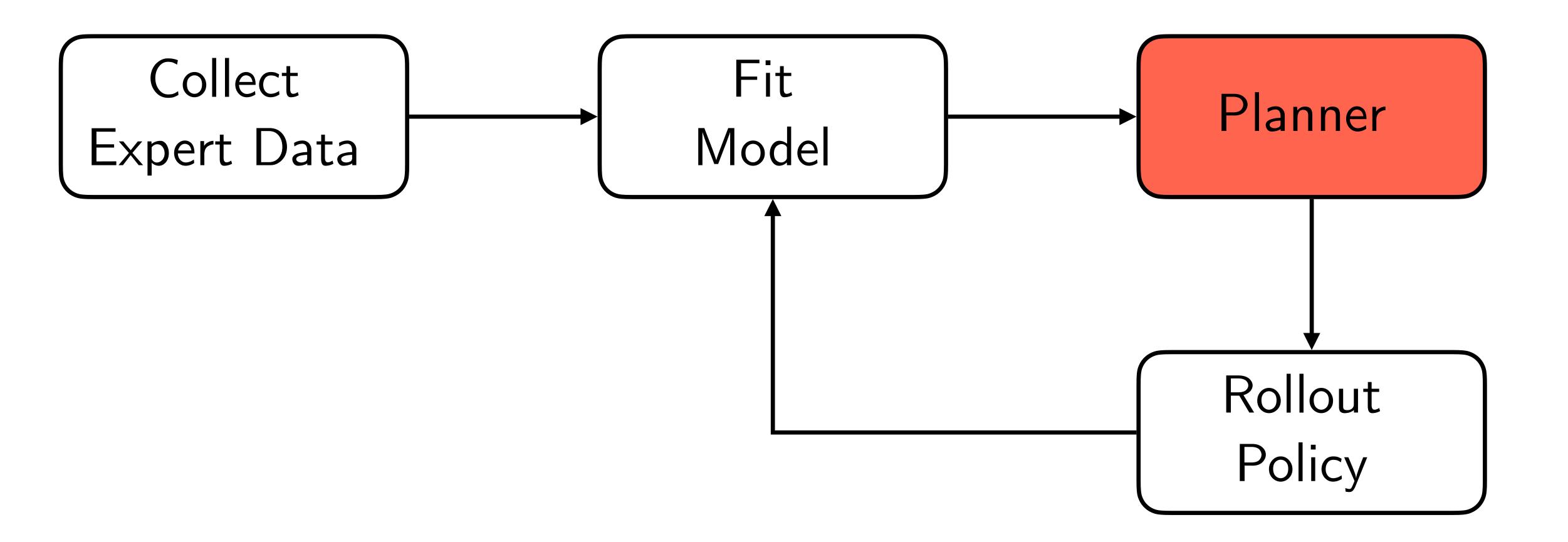
Results: Learning World Model

Input Images



Future Outcomes

How does DREAMER do planning?



Goal: Learn a Policy using Actor-Critic

 $\pi_{\phi}(a_t \mid s_t)$

Actor

From rollouts in the model

 $q_{\theta}(s_t)$

$V_{\psi}(s_t)$

Critic

$$S_{t-1}, a_{t-1})$$

Recall: Actor-Critic

Start with an arbitrary initial policy $\pi_{\theta}(a \mid s)$ while not converged do

Compute advantage $\hat{A}(s^{i}, a^{i}) = r(s^{i}, a^{i}) + \gamma V_{w}(s^{i}_{+}) - V_{w}(s^{i})$

$$\begin{aligned} & \nabla_{\phi} J(\phi) = \frac{1}{N} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\phi}(a_t^i \mid s_t^i) \, \hat{A}(s^i, a^i) \right] \\ & \text{Update parameters} \qquad \phi \leftarrow \phi + \alpha \, \nabla_{\phi} J(\phi) \end{aligned}$$

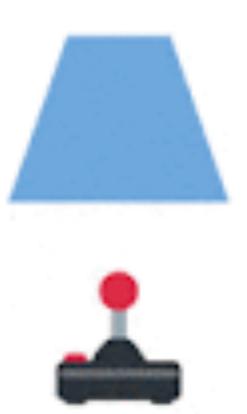
Roll-out $\pi_{\phi}(a \mid s)$ in the model $q_{\theta}(s' \mid s, a)$ to collect trajectories $D = \{s^i, a^i, r^i, s^i_+\}_{i=1}^N$ Fit value function $V_{\psi}(s^i)$ using TD, i.e. minimize $(r^i + \gamma V_{\psi}(s^i_+) - V_{\psi}(s^i))^2$

0,

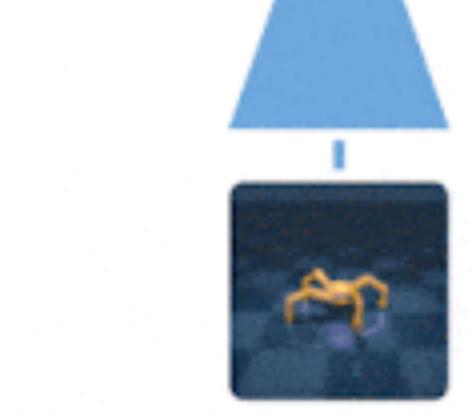
ΨU

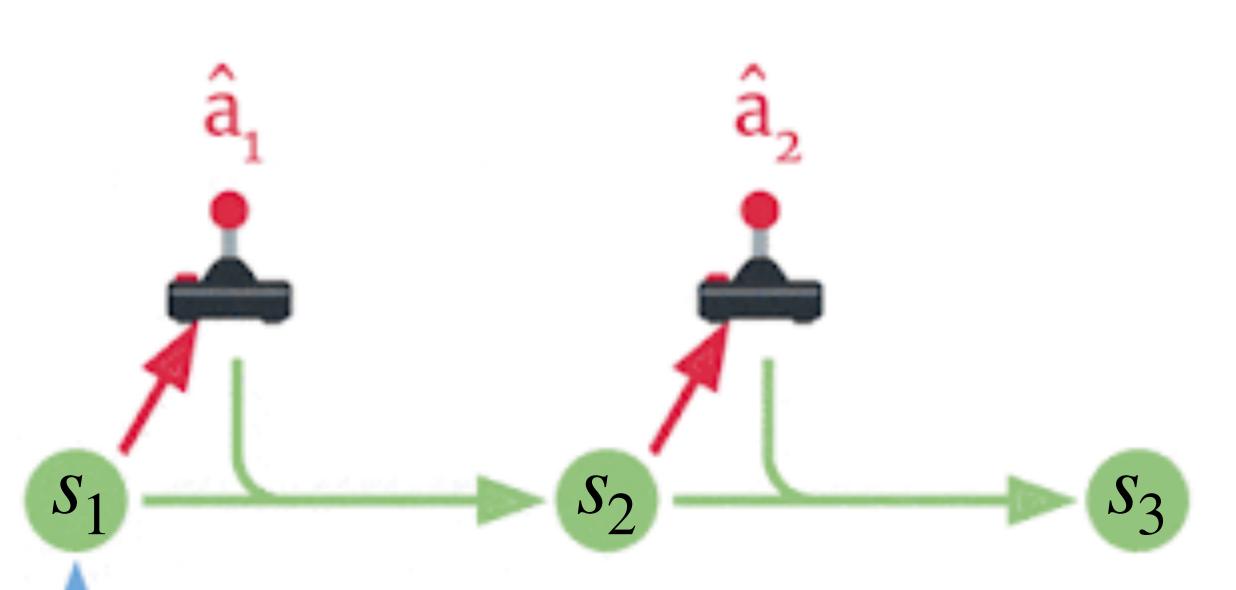
0

'+ 1



imagine ahead



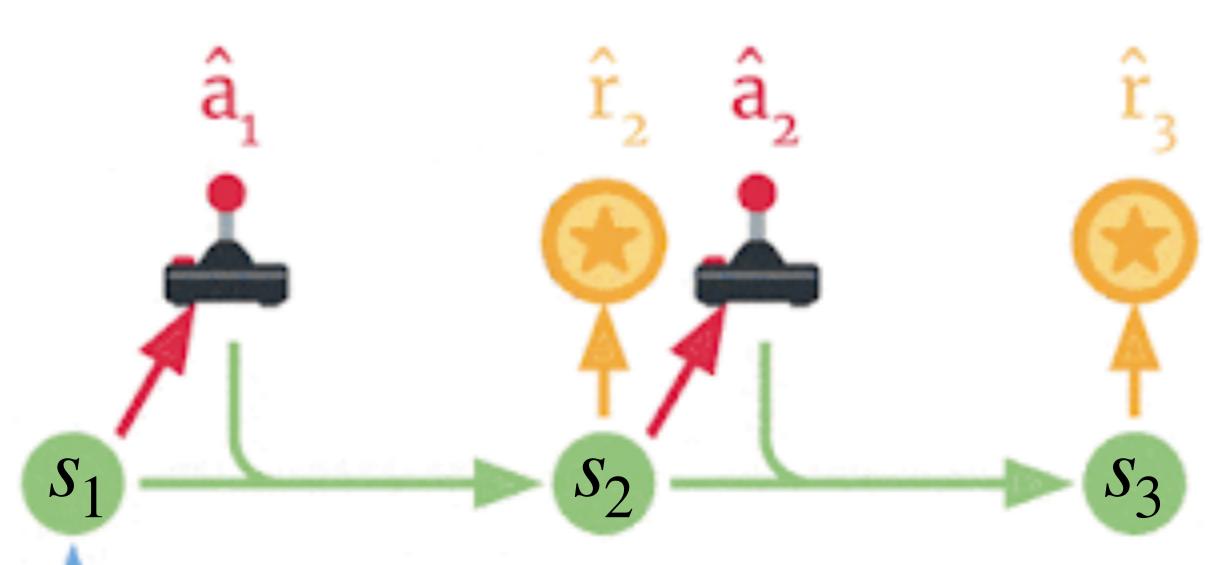


Rollout policy $\pi_{\phi}(a_t | s_t)$

40

imagine ahead

predict rewards

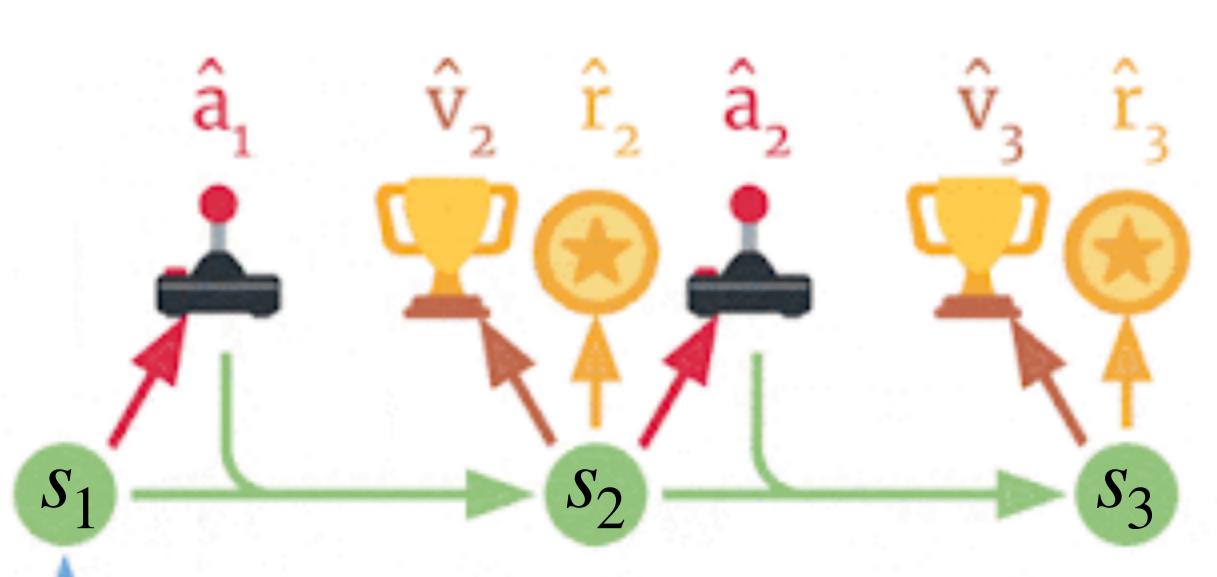


Predict rewards (Freeze gradients) $q_{\theta}(r_t | s_t)$

imagine ahead

predict rewards

predict values

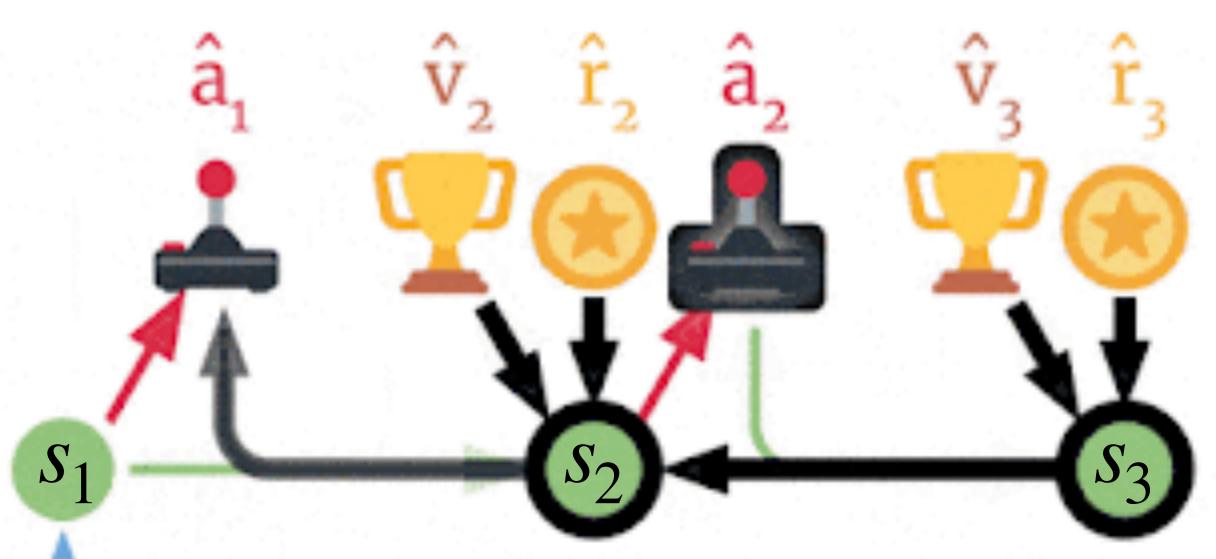


Update critic $V_{\psi}(s_t)$

 $\mathbf{U}\mathbf{U}$



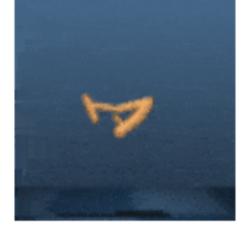
predict values



Update actor $\pi_{\phi}(a_t | s_t)$

UТ

DREAMER: Results

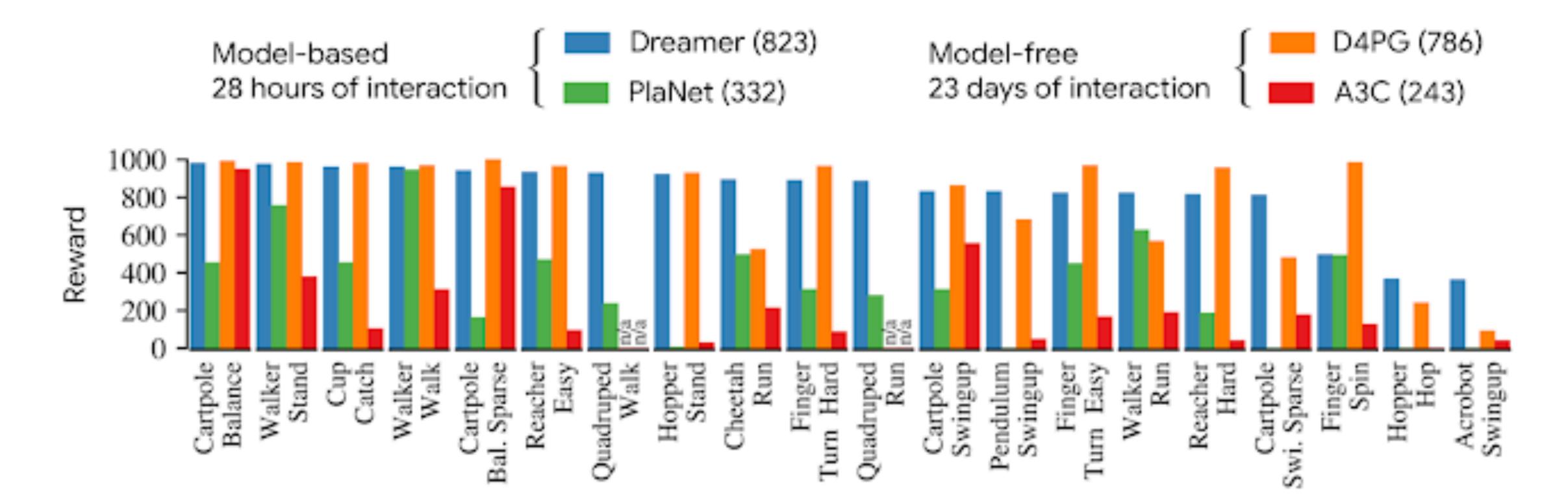


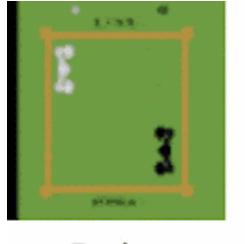
Sparse Cartpole Acrobot Swingup

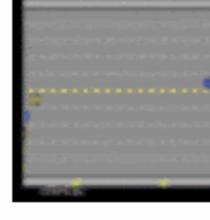
Hopper Hop

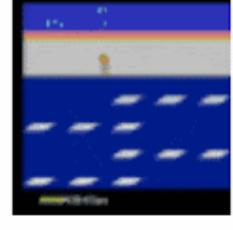
Walker Run

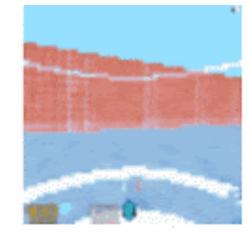
Quadruped Run











Boxing

Freeway

Frostbite

Collect Objects

DREAMER is a template for Model-based RL

But there are many challenges as we scale to harder real-world applications

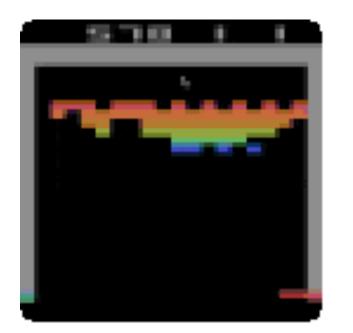
DREAMER V2:

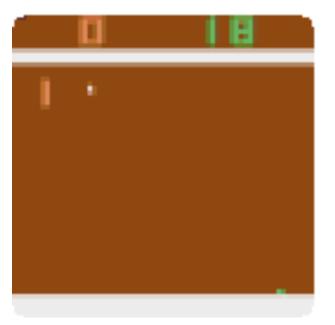
Tackling the world of Atari Games

MASTERING ATARI WITH DISCRETE WORLD MODELS

Danijar Hafner * Google Research

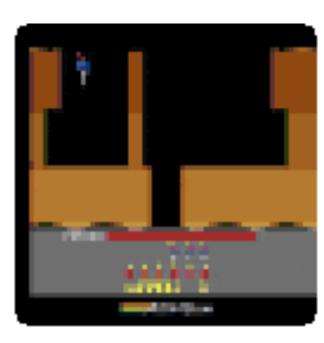
Timothy Lillicrap DeepMind

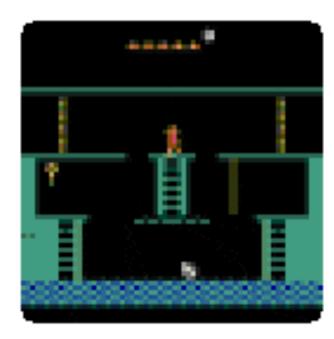


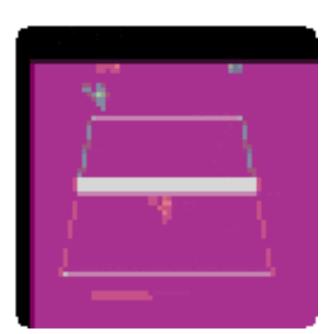


Mohammad Norouzi Google Research

Jimmy Ba University of Toronto

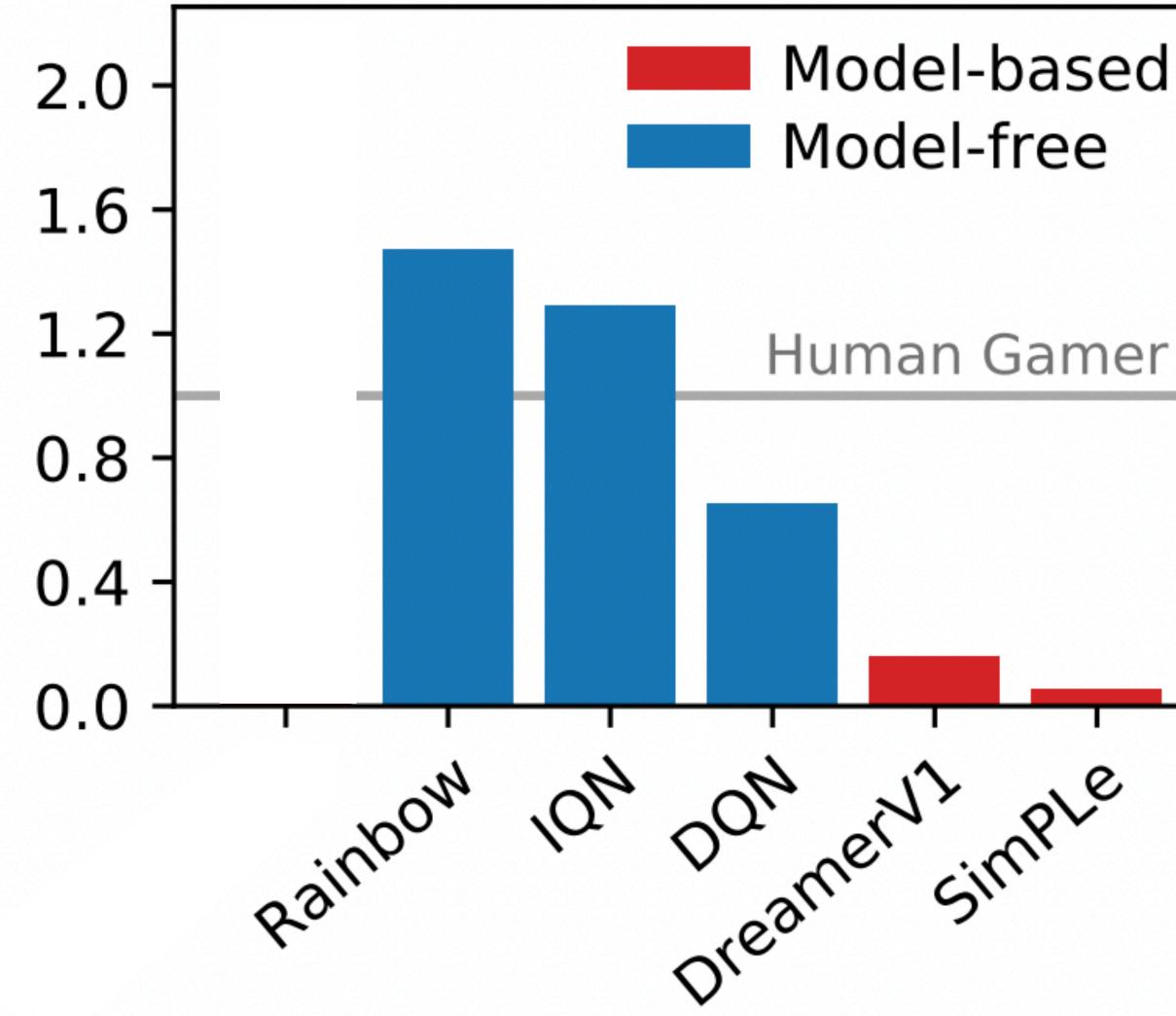


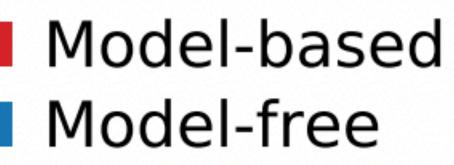




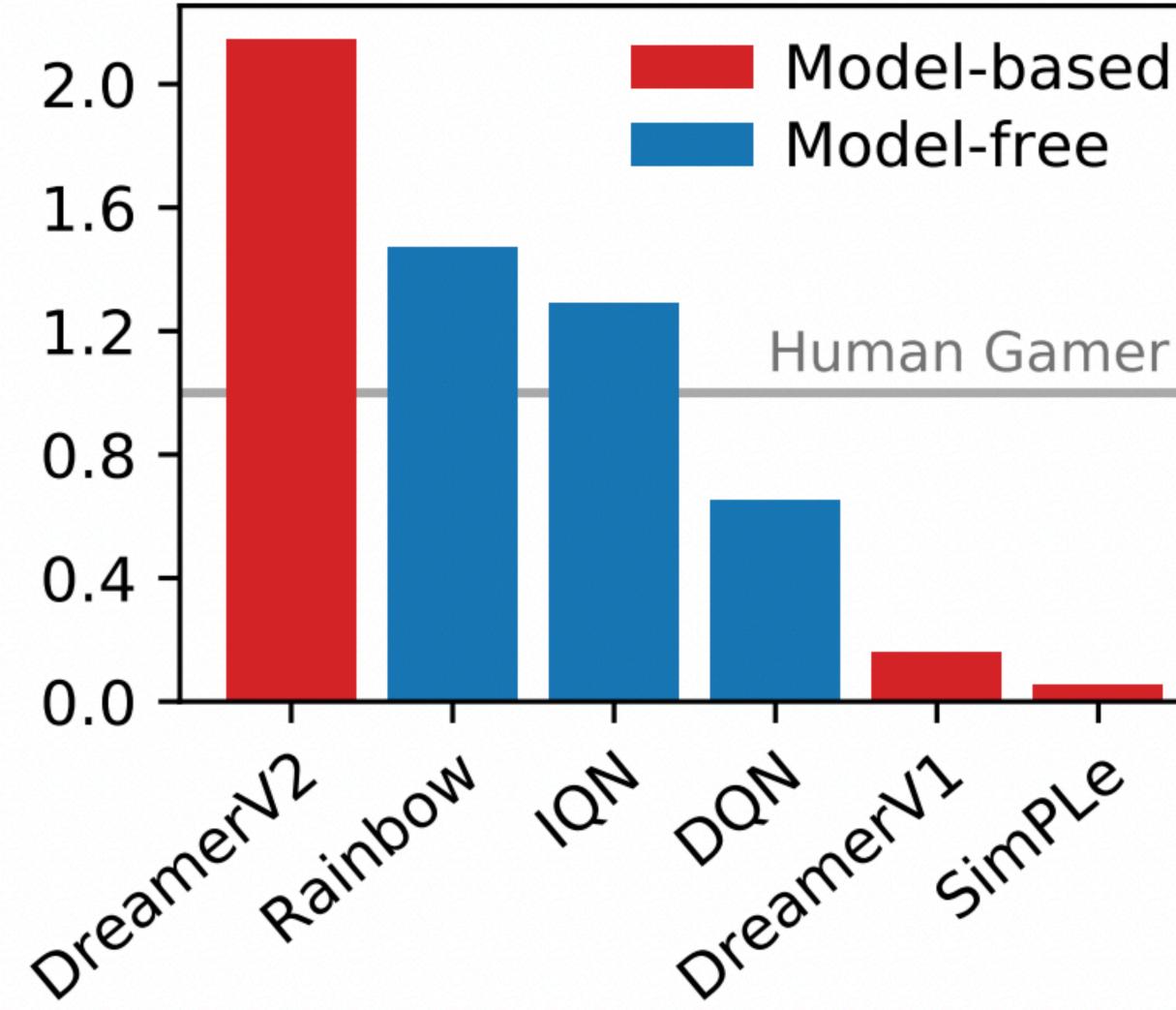
Atari was hard for Model Based RL

Atari Performance

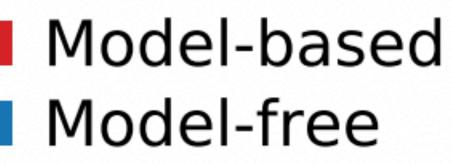


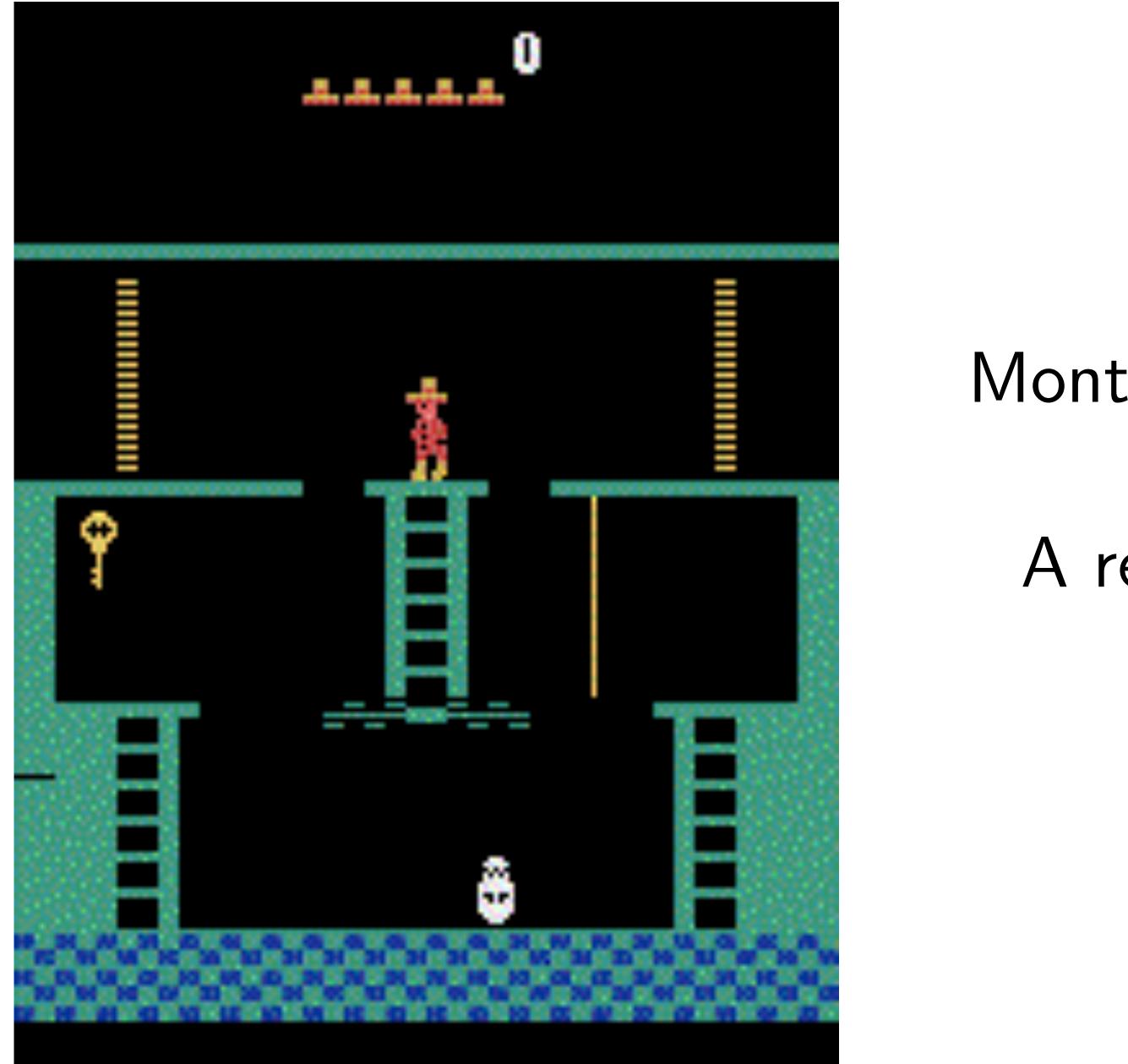


DreamerV2 beats all model free!



Atari Performance



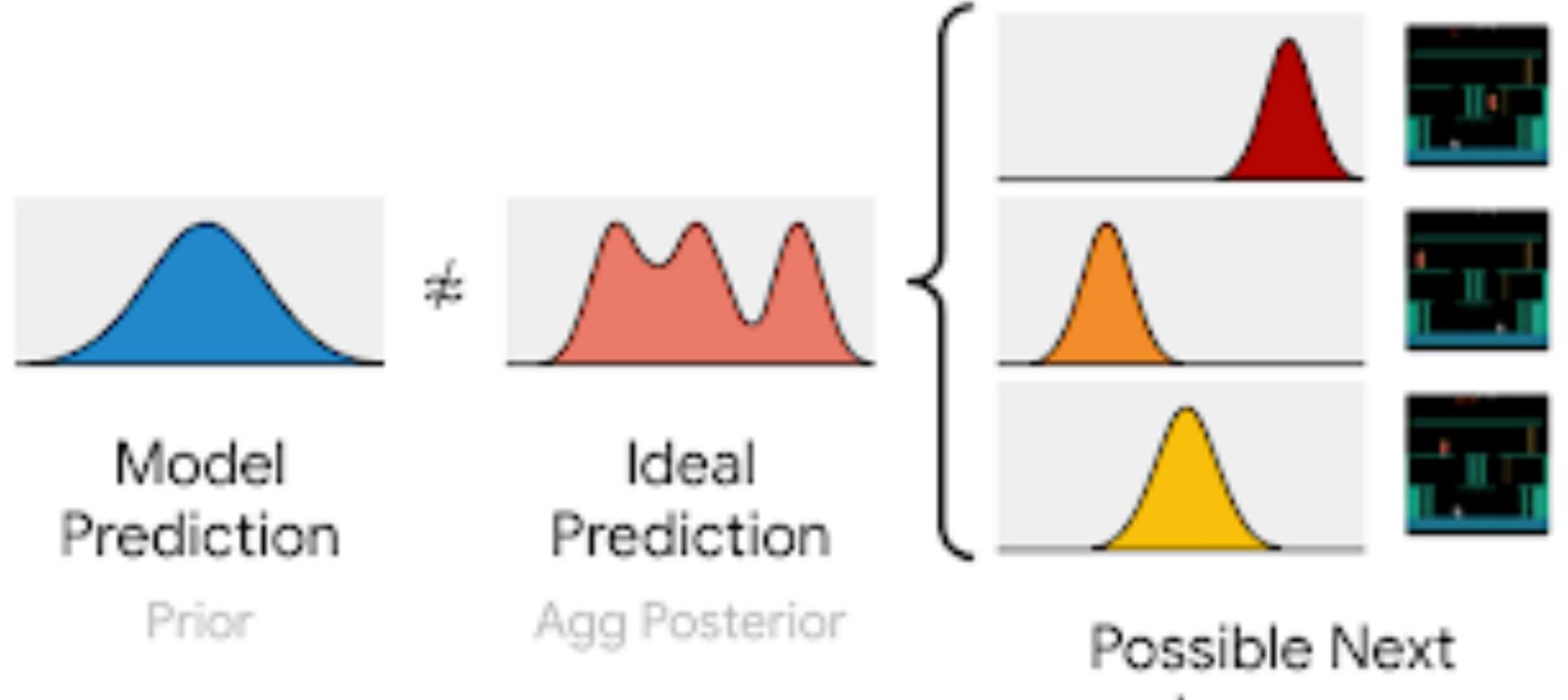


Montezuma's Revenge:

A really challenging Atari Game!

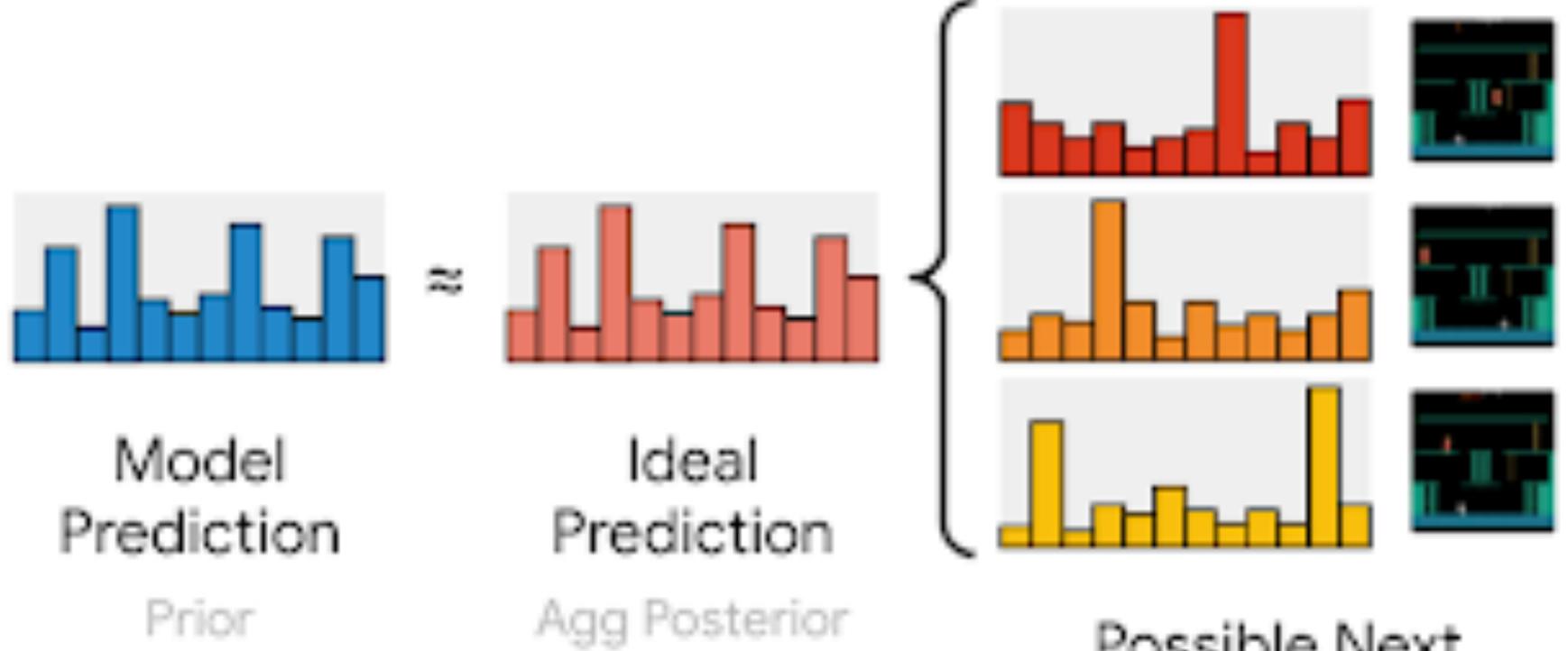
Challenge: Dreamer V1 predicts a single mode of <u>ovnamics</u>

Dreamer V1 predicts single mode dynamics

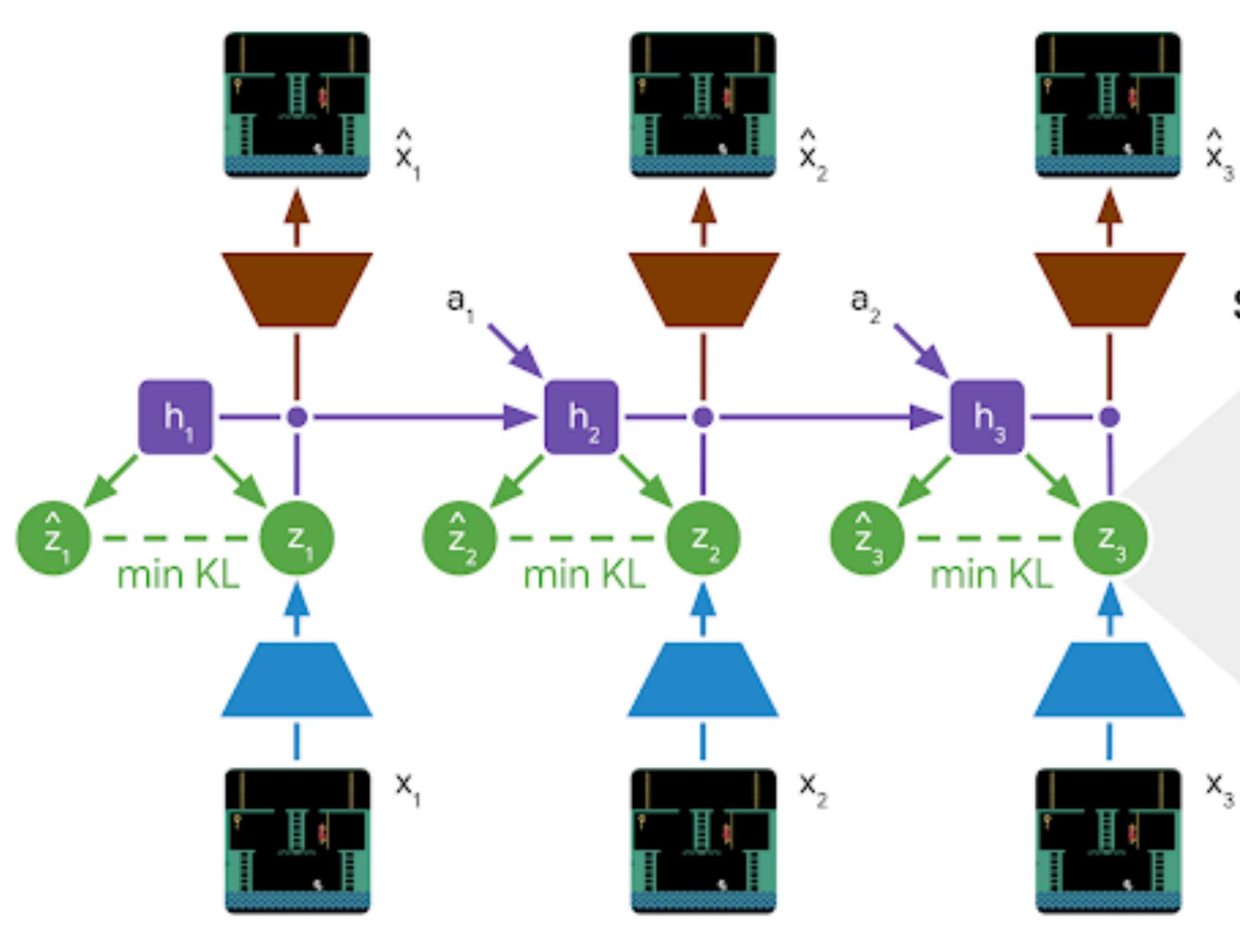


Images Posteriors

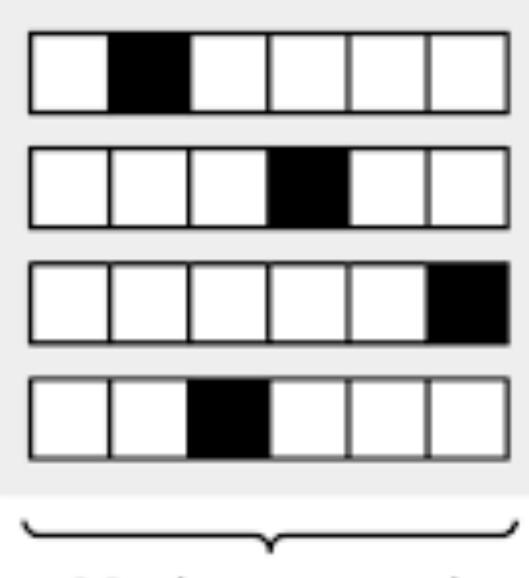
Idea: Predict multiple discrete modes!



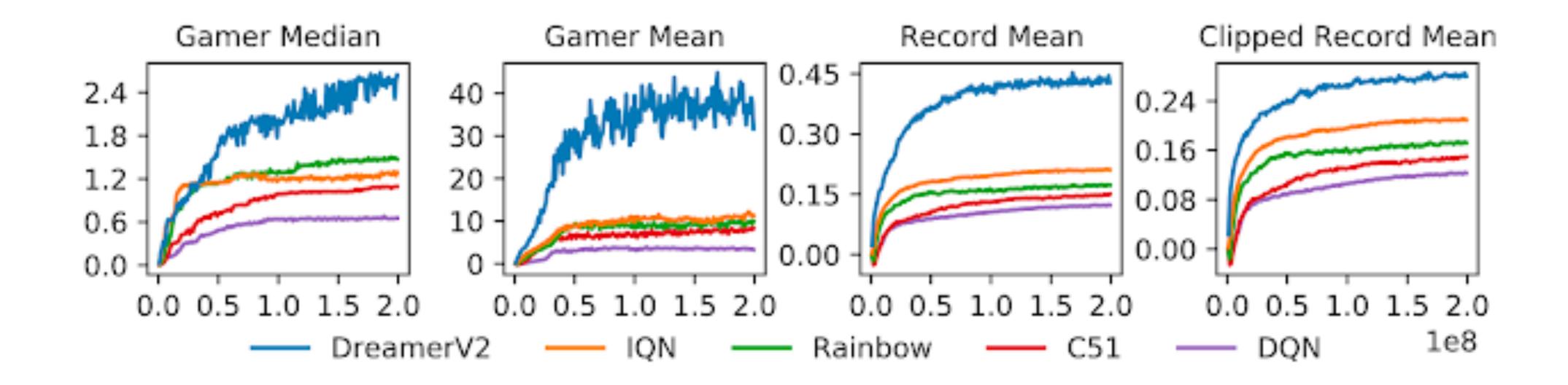
Possible Next Images Posteriors



Sparse Representation



32 classes each



Model

