
Review

Sanjiban Choudhury

1

Prelim

• In-class prelim, 75 minutes

• Format

• Multiple choice questions (similar to quizzes)

• Written questions (similar to written assignments A1, A3)

• Scope: Everything until last lecture (actor critic)

2

Today’s plan

• Go through the greatest hits

• Answer questions YOU have

• Today we will spend more time on MDP, RL and less time on imitation
learning

3

Fundamentals: MDP

Markov Decision Process

5

< S , A , C , 𝒯 >
A mathematical framework for modeling sequential decision making

6

S , A , C , 𝒯
θt
·θt

τ 1
2

θ2 +
1
2

·θ2 +
1
2

τ2
θt+1 = θt + ·θtΔt

·θt+1 = ·θt + ··θtΔt

I··θt = mgl sin(θ) + τ

7

S , A , C , 𝒯
θt ∈ ℝ12

τ ∈ ℝ12(All joints)

·θt ∈ ℝ12

(All joint vel)

x, y, ψ
(2d pos, heading)

Newton-Euler
Equation

But need to know
ground terrain

(Which is typically
unknown)

c1, c2, c3, c4
(Contact state of feet)

(12 torque)

Move at desired vel

Minimize torque

+

8

S , A , C , 𝒯
State of car

State of all
other agents

Steering
Gas

Penalty for
not reaching goal

Penalty for violating
constraints

(Safety, rules)

Penalty for high
control effort

Dynamics of car
(Known)

Dynamics/intent
of other agents

(Unknown)

State of
traffic lights

Transition of
traffic light
(Hidden
variable)

Vπ(st)
Read this as: Value of a policy at a given state and time

Vπ(st)

π st+1 π

= ct γct+1+ + γ2ct+2 +

st π

⋯

The “Value” Function

The Bellman Equation

Vπ(st) = c(st, π(st)) + γ𝔼st+1
Vπ(st+1)

Value of
current state

Value of
future state

Cost

Optimal policy

π* = arg min
π

𝔼s0
Vπ(s0)

Bellman Equation for the Optimal Policy

Vπ*(st) = min
at

[c(st, at) + γ𝔼st+1
Vπ*(st+1))]

Optimal
Value

Optimal
Value of

Next State

Cost

We use to denote optimal valueV*

V*(st) = min
at

[c(st, at) + γ𝔼st+1
V*(st+1))]

Optimal
Value

Optimal
Value of

Next State

Cost

The Bellman Equation

14

V*(st) = min
at

[c(st, at) + γ𝔼st+1
V*(st+1))]

Image courtesy Dan Klein

Qπ(st, at)

Qπ(st, at)

at
st+1 π

= ct γct+1+ + γ2ct+2 +

st π

⋯

The “Action Value” Function

The Bellman Equation

Qπ(st, at) = c(st, at) + γ𝔼st+1
Qπ(st+1, π(st+1))

Value of
current state

Value of
future state

Cost

We use to denote optimal valueQ*

Q*(st, at) = c(st, at) + min
at+1

[γ𝔼st+1
Q*(st+1, at+1))]

Optimal
Value

Optimal
Value of

Next State

Cost

Aπ(st, at) = Qπ(st, at) − Vπ(st)

The Advantage Function

Questions?

Questions

20

1. Express V as Q? Express Q in terms of V?

2. If a genie offered you V or Q, which one would you take? Why?

3. What is Bellman Equation over infinite horizon?

Solving Known MDP (Planning)

22

Value Iteration (Finite Horizon)

Initialize value function at last time-step

for t = T − 2,…,0

Compute value function at time-step t

V*(s, t) = min
a [c(s, a) + γ∑

s′

𝒯(s′ |s, a)V*(s′ , t + 1)]

V*(s, T − 1) = min
a

c(s, a)

23

Infinite Horizon Value Iteration

Initialize with any value function V*(s)

V*(s) = min
a [c(s, a) + γ∑

s′

𝒯(s′ |s, a)V*(s′)]

Repeat until convergence

24

Policy converges faster
than the value

Can we iterate over policies?

Policy Iteration (Infinite horizon)

25

Repeat forever

Evaluate policy

Improve policy

Init with some policy π

Vπ(s) = c(s, π(s)) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′)]

π+(s) = arg min
a

c(s, a) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′)]

Policy Iteration: How do we evaluate values

26

Vπ(s) = c(s, π(s)) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′)]

Idea 1: Start with an initial guess, and update (like value iteration)

Vi+1(s) = c(s, π(s)) + γ𝔼s′ ∼𝒯(s,a)Vi(s′)]

Idea 2: It’s a linear set of equations (no max)!

⃗Vπ = ⃗cπ + γ𝒯π ⃗Vπ ⃗Vπ = (1 − 𝒯π)−1 ⃗cπ

How we plan for real robots?

How do we handle continuous, high-dimensional state-actions

Landscape of Planning / Control Algorithms

28

High-level path
planning

LazySP

Low-level control

LQR

lqr: the analytic mdp 29

Figure 2.3.1: Solving inverted
pendulum swing up using LQR
tracking.

LQR for Linear Time-Varying Dynamical Systems

Thus far, we have assumed that we were modeling a linear, time-
invariant system. As we will see, we might be interested in systems
that are linear, but time varying

xt+1 = Atxt + Btut (2.3.1)

c(xt, ut) = xt
>Qtxt + u>

t Rtut (2.3.2)

In this case, the LQR equations are simply updated to

Kt = �(B>
t Vt+1Bt + Rt)

�1B>
t Vt+1 At (2.3.3)

Vt = Qt + K>
t RtKt + (At + BtKt)

>Vt+1(At + BtKt) (2.3.4)

Affine Quadratic Regulation

Let’s now consider a generic affine system with time varying dynam-
ics At and Bt and a state offset xoff

t :

xt+1 = Atxt + Btut + xoff
t . (2.3.5)

Affine problems can be converted to linear problems by using homo-
geneous coordinates8: 8 https://en.wikipedia.org/wiki/

Homogeneous_coordinates

x̃ =

"
x
1

#
(2.3.6)

x̃t+1 =

"
At xoff

t
0 1

#
x̃t +

"
Bt

0

#
ut

.
= Ãt x̃t + B̃tut (2.3.7)

This is just a new LQR problem with modified state and dynamics
and a new cost defined as c(x̃t, ut) = x̃>

t Q̃t x̃t + u>
t Rtut, where the

choice of Q̃ is problem dependent. We will later see how we can
design Q̃ for the tracking problem. The Affine Quadratic Regulation
problem can then be solved in exactly the same way as the LQR
problem.9 9 Essentially the same trick can be

applied to enable us to have linear
cost functions terms in the controls as
well, but we defer this to the general
formulation derived at the end.

Landscape of Planning / Control Algorithms

29

High-level path
planning

LazySP

Low-level control

LQR

lqr: the analytic mdp 29

Figure 2.3.1: Solving inverted
pendulum swing up using LQR
tracking.

LQR for Linear Time-Varying Dynamical Systems

Thus far, we have assumed that we were modeling a linear, time-
invariant system. As we will see, we might be interested in systems
that are linear, but time varying

xt+1 = Atxt + Btut (2.3.1)

c(xt, ut) = xt
>Qtxt + u>

t Rtut (2.3.2)

In this case, the LQR equations are simply updated to

Kt = �(B>
t Vt+1Bt + Rt)

�1B>
t Vt+1 At (2.3.3)

Vt = Qt + K>
t RtKt + (At + BtKt)

>Vt+1(At + BtKt) (2.3.4)

Affine Quadratic Regulation

Let’s now consider a generic affine system with time varying dynam-
ics At and Bt and a state offset xoff

t :

xt+1 = Atxt + Btut + xoff
t . (2.3.5)

Affine problems can be converted to linear problems by using homo-
geneous coordinates8: 8 https://en.wikipedia.org/wiki/

Homogeneous_coordinates

x̃ =

"
x
1

#
(2.3.6)

x̃t+1 =

"
At xoff

t
0 1

#
x̃t +

"
Bt

0

#
ut

.
= Ãt x̃t + B̃tut (2.3.7)

This is just a new LQR problem with modified state and dynamics
and a new cost defined as c(x̃t, ut) = x̃>

t Q̃t x̃t + u>
t Rtut, where the

choice of Q̃ is problem dependent. We will later see how we can
design Q̃ for the tracking problem. The Affine Quadratic Regulation
problem can then be solved in exactly the same way as the LQR
problem.9 9 Essentially the same trick can be

applied to enable us to have linear
cost functions terms in the controls as
well, but we defer this to the general
formulation derived at the end.

Linear Quadratic Regulator (LQR)

30

V*(s, t) = min
a [c(s, a) + γ∑

s′

𝒯(s′ |s, a)V*(s′ , t + 1)]
(Quadratic)(Linear)(Quadratic)(Quadratic)

How can we analytically do value iteration?

θ

·θ

The LQR Algorithm

For t = T-1, …, 1

Compute gain matrix
Kt = (R + BTVt+1B)−1BTVt+1A

Initialize VT = Q

Update value
Vt = Q + KT

t RKt + (A + BKt)TVt+1(A + BKt)

LQR Converges

xTQx ≥ 0

Q is positive semi-definite R is positive definite

uTRu > 0
Costs are always non-negative Costs are always positive

for u ≠ 0

Landscape of Planning / Control Algorithms

33

High-level path
planning

LazySP

Low-level control

LQR

lqr: the analytic mdp 29

Figure 2.3.1: Solving inverted
pendulum swing up using LQR
tracking.

LQR for Linear Time-Varying Dynamical Systems

Thus far, we have assumed that we were modeling a linear, time-
invariant system. As we will see, we might be interested in systems
that are linear, but time varying

xt+1 = Atxt + Btut (2.3.1)

c(xt, ut) = xt
>Qtxt + u>

t Rtut (2.3.2)

In this case, the LQR equations are simply updated to

Kt = �(B>
t Vt+1Bt + Rt)

�1B>
t Vt+1 At (2.3.3)

Vt = Qt + K>
t RtKt + (At + BtKt)

>Vt+1(At + BtKt) (2.3.4)

Affine Quadratic Regulation

Let’s now consider a generic affine system with time varying dynam-
ics At and Bt and a state offset xoff

t :

xt+1 = Atxt + Btut + xoff
t . (2.3.5)

Affine problems can be converted to linear problems by using homo-
geneous coordinates8: 8 https://en.wikipedia.org/wiki/

Homogeneous_coordinates

x̃ =

"
x
1

#
(2.3.6)

x̃t+1 =

"
At xoff

t
0 1

#
x̃t +

"
Bt

0

#
ut

.
= Ãt x̃t + B̃tut (2.3.7)

This is just a new LQR problem with modified state and dynamics
and a new cost defined as c(x̃t, ut) = x̃>

t Q̃t x̃t + u>
t Rtut, where the

choice of Q̃ is problem dependent. We will later see how we can
design Q̃ for the tracking problem. The Affine Quadratic Regulation
problem can then be solved in exactly the same way as the LQR
problem.9 9 Essentially the same trick can be

applied to enable us to have linear
cost functions terms in the controls as
well, but we defer this to the general
formulation derived at the end.

General framework for motion planning

Create a graph Search the graph

Interleave

35

Edge evaluation is the most expensive step

36

Collision
checking for

robots is
expensive

LazySP
Optimism Under Uncertainty

Lazy Search for
Shortest Path

Evaluate Path

Update the Graph

LazySP
Optimism Under Uncertainty

Lazy Search for
Shortest Path

Evaluate Path

Update the Graph

Questions?

Questions

40

1. Why might we prefer policy iteration over value iteration?

2. How can I apply LQR if my MDP is not linear and quadratic?

Unknown MDP
(Reinforcement Learning)

Approximate Value Iteration

42

Regular Q-iteration

while not converged do
for s ∈ S, a ∈ A

Qnew(s, a) = c(s, a) + γ𝔼s′
min

a′

Q(s′ , a′)

Q ← Qnew

return Q

Q(s, a) ← c(s, a)

Fitted Q-iteration

Init Qθ(s, a) ← 0
while not converged do

for i ∈ 1,…, N

Qθ ← Train(D)
return Qθ

D ← ∅

input ← {si, ai}
target ← ci + γ

′

min
a

Qθ(s′ i, a′)
D ← D ∪ {input, output}

Given {si, ai, ci, s′ i}N
i=1

ℓ(θ) =
N

∑
i=1

(Qθ(si, ai) − target)2

Training is a regression problem
Use old copy of Q

to set target

43

Regular Q-iteration

while not converged do
for s ∈ S, a ∈ A

Qnew(s, a) = c(s, a) + γ𝔼s′
min

a′

Q(s′ , a′)

Q ← Qnew

return Q

Q(s, a) ← c(s, a) Init Vθ(s) ← 0
while not converged do

for i ∈ 1,…, N

Vθ ← Train(D)
return Vθ

D ← ∅

input ← {si}
target ← ci + γVθ(s′ i)
D ← D ∪ {input, output}

Given {si, ai, ci, s′ i}N
i=1

Approximate Value Evaluation

Goal: Fit a function Vπ
θ (s) Collected from π

The problem of Bootstrapping!

44

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

min()

Errors in approximation are amplified

Key reason is the minimization

Minimization operation visit states
where approximate values is less than
the true value of that state – that is
to say, states that look more
attractive than they should.

Typically states where you have very
few samples

Let’s work out
an example

Approximate Policy Iteration

46

Repeat forever

Evaluate policy π

Improve policy

Init with some policy π

Qπ(s, a) = c(s, a)) + γ𝔼s′ ∼𝒯(s,a)Qπ(s′ , π(s′))]

π+(s) = arg min
a

Qπ(s, a)

∀(s, a)

∀s

Rollout , collect data , fit a function π (s, a, s′ , a′) Qπ
θ (s, a)

π+(s) = arg min
a

Qπ
θ (s, a)

Performance Difference Lemma (PDL)

47

Vπ+(s0) − Vπ(s0) =
T−1

∑
t=0

𝔼st∼dπ+
t

Aπ(st, π+)

Problem with Approximate Policy Iteration

48

PDL requires accurate on states that will visit! ()Qπ
θ π+ dπ+

t

Vπ+(s0) − Vπ(s0) =
T−1

∑
t=0

𝔼st∼dπ+
t

Aπ(st, π+)

But we only have states that visits ()π dπ
t

If changes drastically from , then is big!π+ π |dπ+

t − dπ
t |

Policy Gradients

49

Actor-Critic Framework

50

Start with an arbitrary initial policy πθ(a |s)

while not converged do

Roll-out to collect trajectories πθ(a |s) D = {si, ai, ri, si
+}N

i=1

Compute gradient

∇θJ(θ) =
1
N [

T−1

∑
t=0

∇θlog πθ(ai
t |si

t) ̂Aπθ(si, ai)]
θ ← θ + α∇θJ(θ)Update parameters

Fit value function using TD, i.e. minimize ̂Vπθ(si) (ri + γ ̂Vπθ(si
+) − ̂Vπθ(si))2

Compute advantage ̂Aπθ(si, ai) = r(si, ai) + γ ̂Vπθ(si
+) − ̂Vπθ(si)

Questions?

Unknown MDP
(Imitation Learning)

Behavior Cloning

53

Expert runs
away after

demonstrations

54

The Big Problem with BC
Train

T−1

∑
t=0

𝔼st∼dπ⋆
t

[ℓ(st, π(st))]
T−1

∑
t=0

𝔼st∼dπ
t
[ℓ(st, π(st))]

Test

The Goal

55

T−1

∑
t=0

𝔼st∼dπ
t
[ℓ(st, π(st))]

Can we bound this to ?O(ϵT)

DAgger (Dataset Aggregation)

56

For i = 1,…, N

Initialize with a random policy π1 # Can be BC

Execute policy in the real world and collect dataπi
Also called a rollout 𝒟i = {s0, a0, s1, a1, …}

Query the expert for the optimal action on learner states
𝒟i = {s0, π⋆(s0), s1, π⋆(s1), …}

Train a new learner on this dataset πi+1 ← Train(𝒟)

Initialize empty data buffer 𝒟 ← {}

Aggregate data 𝒟 ← 𝒟 ∪ 𝒟i

Select the best policy in π1:N+1

The DAGGER Argument

57

We can frame interactive imitation learning as online learning

FTL is no-regret if the loss is strongly convex

DAGGER is FTL

No-regret implies O(ϵHT)

