Review

Sanjiban Choudhury

Prelim

- In-class prelim, 75 minutes
- Format
- Multiple choice questions (similar to quizzes)
- Written questions (similar to written assignments A1, A3)
- Scope: Everything until last lecture (actor critic)

Today's plan

- Go through the greatest hits
- Answer questions YOU have
- Today we will spend more time on MDP, RL and less time on imitation learning

Fundamentals: MDP

Markov Decision Process

A mathematical framework for modeling sequential decision making

S
 ,A

θ_{t}

$$
\tau \quad \frac{1}{2} \theta^{2}+\frac{1}{2} \dot{\theta}^{2}+\frac{1}{2} \tau^{2}
$$

$$
\theta_{t+1}=\theta_{t}+\dot{\theta}_{t} \Delta_{t}
$$

$$
\dot{\theta}_{t}
$$

$$
\begin{gathered}
\dot{\theta}_{t+1}=\dot{\theta}_{t}+\ddot{\theta}_{t} \Delta_{t} \\
I \ddot{\theta}_{t}=m g l \sin (\theta)+\tau
\end{gathered}
$$

$\theta_{t} \in \mathbb{R}^{12}$
(All joints)
$\dot{\theta}_{t} \in \mathbb{R}^{12}$
(All joint vel)
x, y, ψ
(2d pos, heading)

Newton-Euler Equation

But need to know ground terrain (Which is typically unknown)
$c_{1}, c_{2}, c_{3}, c_{4}$
(Contact state of feet)

S

9
 A

 \mathscr{T}State of car

Steering
Gas

Penalty for not reaching goal

Dynamics of car (Known)
State of all
other agents

Penalty for violating constraints (Safety, rules)

Penalty for high control effort

Dynamics/intent of other agents (Unknown)

Transition of traffic light (Hidden variable)

The "Value" Function

$V^{\pi}\left(s_{t}\right)$

Read this as: Value of a policy at a given state and time

$V^{\pi}\left(S_{t}\right)=c_{t}+\gamma c_{t+1}+\gamma^{2} c_{t+2}+$

The Bellman Equation

$$
V^{\pi}\left(s_{t}\right)=c\left(s_{t}, \pi\left(s_{t}\right)\right)+\gamma \mathbb{E}_{s_{t+1}} V^{\pi}\left(s_{t+1}\right)
$$

Value of
Cost

Value of
future state

Optimal policy

$$
\pi^{*}=\arg \min _{\pi} \mathbb{E}_{s_{0}} V^{\pi}\left(s_{0}\right)
$$

Bellman Equation for the Optimal Policy

$$
\left.V^{\pi^{*}}\left(s_{t}\right)=\min _{a_{t}}\left[c\left(s_{t}, a_{t}\right)+\gamma \mathbb{E}_{s_{t+1}} V^{\pi^{*}}\left(s_{t+1}\right)\right)\right]
$$

Optimal
Value

Optimal
Value of
Next State

We use V^{*} to denote optimal value

$$
\left.V^{*}\left(s_{t}\right)=\min _{a_{t}}\left[c\left(s_{t}, a_{t}\right)+\gamma \mathbb{E}_{s_{t+1}} V^{*}\left(s_{t+1}\right)\right)\right]
$$

Optimal

Value

Cost
Optimal
Value of
Next State

The Bellman Equation

The "Action Value" Function

$Q^{\pi}\left(s_{t}, a_{t}\right)$

The Bellman Equation

$$
Q^{\pi}\left(s_{t}, a_{t}\right)=c\left(s_{t}, a_{t}\right)+\gamma \mathbb{E}_{s_{t+1}} Q^{\pi}\left(s_{t+1}, \pi\left(s_{t+1}\right)\right)
$$

Value of
current state

Cost

We use Q^{*} to denote optimal value

$$
\left.Q^{*}\left(s_{t}, a_{t}\right)=c\left(s_{t}, a_{t}\right)+\min _{a_{t+1}}\left[\gamma \mathbb{E}_{s_{t+1}} Q^{*}\left(s_{t+1}, a_{t+1}\right)\right)\right]
$$

Optimal
Value
Cost
Optimal
Value of
Next State

The Advantage Function

$$
A^{\pi}\left(s_{t}, a_{t}\right)=Q^{\pi}\left(s_{t}, a_{t}\right)-V^{\pi}\left(s_{t}\right)
$$

Questions?

Questions

1. Express V as Q ? Express Q in terms of V ?
2. If a genie offered you V or Q , which one would you take? Why?
3. What is Bellman Equation over infinite horizon?

Solving Known MDP (Planning)

Value Iteration (Finite Horizon)

Initialize value function at last time-step

$$
\begin{aligned}
& V^{*}(s, T-1)=\min _{a} c(s, a) \\
& \text { for } t=T-2, \ldots, 0
\end{aligned}
$$

Compute value function at time-step t

$$
V^{*}(s, t)=\min _{a}\left[c(s, a)+\gamma \sum_{s^{\prime}} \mathscr{T}\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}, t+1\right)\right]
$$

Infinite Horizon Value Iteration

Initialize with any value function $V^{*}(s)$

Repeat until convergence

$$
V^{*}(s)=\min _{a}\left[c(s, a)+\gamma \sum_{s^{\prime}} \mathscr{T}\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}\right)\right]
$$

Policy converges faster than the value

Can we iterate over policies?

Policy Iteration (Infinite horizon)

Init with some policy π
Repeat forever

Evaluate policy

$$
\left.V^{\pi}(s)=c(s, \pi(s))+\gamma \mathbb{E}_{s^{\prime} \sim \mathscr{T}(s, a)} V^{\pi}\left(s^{\prime}\right)\right]
$$

Improve policy

$$
\left.\pi^{+}(s)=\arg \min _{a} c(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim \mathscr{T}(s, a)} V^{\pi}\left(s^{\prime}\right)\right]
$$

Policy Iteration: How do we evaluate values

$$
\left.V^{\pi}(s)=c(s, \pi(s))+\gamma \mathbb{E}_{s^{\prime} \sim \mathscr{T}(s, a)} V^{\pi}\left(s^{\prime}\right)\right]
$$

Idea 1: Start with an initial guess, and update (like value iteration)

$$
\left.V^{i+1}(s)=c(s, \pi(s))+\gamma \mathbb{E}_{s^{\prime} \sim \mathscr{T}(s, a)} V^{i}\left(s^{\prime}\right)\right]
$$

Idea 2: It's a linear set of equations (no max)!

$$
\overrightarrow{V^{\pi}}=\overrightarrow{c^{\pi}}+\gamma \mathscr{T}^{\pi} \overrightarrow{V^{\pi}} \quad \longrightarrow \overrightarrow{V^{\pi}}=\left(1-\mathscr{T}^{\pi}\right)^{-1} \overrightarrow{c^{\pi}}
$$

How we plan for real robots?

How do we handle continuous, high-dimensional state-actions

Landscape of Planning / Control Algorithms

Landscape of Planning / Control Algorithms

Low-level control

LQR

High-level path planning

LazySP

Linear Quadratic Regulator (LQR)

$$
V^{*}(s, t)=\min _{a} \underbrace{\left[c(s, a)+\gamma \sum_{s^{\prime}} \mathscr{T}\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}, t+1\right)\right]}_{\text {(Quadratic) }} \text { (Linear) (Quadratic) }
$$

How can we analytically do value iteration?

The LQR Algorithm

Initialize $V_{T}=Q$
For $\mathrm{t}=\mathrm{T}-1, \ldots, 1$

Compute gain matrix
$K_{t}=\left(R+B^{T} V_{t+1} B\right)^{-1} B^{T} V_{t+1} A$

Update value
$V_{t}=Q+K_{t}^{T} R K_{t}+\left(A+B K_{t}\right)^{T} V_{t+1}\left(A+B K_{t}\right)$

LQR Converges

Q is positive semi-definite
R is positive definite

$x^{T} Q x \geq 0$

$u^{T} R u>0$
 for $u \neq 0$

Costs are always non-negative
Costs are always positive

Landscape of Planning / Control Algorithms

General framework for motion planning

Create a graph

Search the graph

Interleave

Goal: Find a feasible
PATIF FROM START
Crfate a graph: (V, E)

Epcie enaluation

$$
\begin{aligned}
& \text { EPCIE EN } \\
& =\text { "is THE HCTION } \\
& \text { RETWEEN VO }
\end{aligned}
$$

Andpe is D-dimasinal siate of the rabet.

$$
\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\dot{\theta_{d}}
\end{array}\right]
$$

Edge evaluation is the most expensive step

Collision

 checking for robots is expensive
LazySP

Optimism Under Uncertainty

Update the Graph

LazySP

Optimism Under Uncertainty

Questions?

Questions

1. Why might we prefer policy iteration over value iteration?
2. How can I apply LQR if my MDP is not linear and quadratic?

Unknown MDP (Reinforcement Learning)

Approximate Value Iteration

Fitted Q-iteration

Given $\left\{s_{i}, a_{i}, c_{i}, s_{i}^{\prime}\right\}_{i=1}^{N}$
Init $Q_{\theta}(s, a) \leftarrow 0$
while not converged do

$$
D \leftarrow \varnothing
$$

Training is a regression problem

$$
\text { for } i \in 1, \ldots, N \quad \text { Use old copy of } Q
$$

$$
\ell(\theta)=\sum_{i=1}^{N}\left(Q_{\theta}\left(s_{i}, a_{i}\right)-\text { target }^{2}\right.
$$

$$
\text { input } \leftarrow\left\{s_{i}, a_{i}\right\} \text {, to set target }
$$

$$
\text { target } \leftarrow c_{i}+\gamma \min _{\theta} Q_{\theta}\left(s_{i}^{\prime}, a^{\prime}\right)
$$

$$
D \leftarrow D \cup\left\{\text { input, }{ }^{a} \text { output }\right\}
$$

$$
Q_{\theta} \leftarrow \operatorname{Train}(D)
$$

return Q_{θ}

Approximate Value Evaluation

Goal: Fit a function $V_{\theta}^{\pi}(s)$

Given $\left\{s_{i}, a_{i}, c_{i}, s_{i}^{\prime}\right\}_{i=1}^{N}$
Collected from π

Init $V_{\theta}(s) \leftarrow 0$
while not converged do

$$
D \leftarrow \varnothing
$$

$$
\text { for } i \in 1, \ldots, N
$$

$$
\text { input } \leftarrow\left\{s_{i}\right\}
$$

$$
\operatorname{target} \leftarrow c_{i}+\gamma V_{\theta}\left(s_{i}^{\prime}\right)
$$

$$
D \leftarrow D \cup\{\text { input, output }\}
$$

$$
V_{\theta} \leftarrow \operatorname{Train}(D)
$$

return V_{θ}

The problem of Bootstrapping!

Errors in approximation are amplified

Key reason is the minimization

Minimization operation visit states where approximate values is less than the true value of that state - that is to say, states that look more attractive than they should.

Typically states where you have very few samples

Let's work out an example

Approximate Policy Iteration

Init with some policy π
Repeat forever
Evaluate policy π

$$
\text { Rollout } \pi \text {, collect data }\left(s, a, s^{\prime}, a^{\prime}\right) \text {, fit a function } Q_{\theta}^{\pi}(s, a)
$$

Improve policy

$$
\pi^{+}(s)=\arg \min _{a} Q_{\theta}^{\pi}(s, a)
$$

Performance Difference Lemma (PDL)

$$
V^{\pi^{+}}\left(s_{0}\right)-V^{\pi}\left(s_{0}\right)=\sum_{t=0}^{T-1} \mathbb{E}_{s_{i} \sim d_{t}^{+}} A^{\pi}\left(s_{t}, \pi^{+}\right)
$$

Problem with Approximate Policy Iteration

$$
V^{\pi^{+}}\left(s_{0}\right)-V^{\pi}\left(s_{0}\right)=\sum_{t=0}^{T-1} \mathbb{E}_{s_{t} \sim d_{t}^{+}} A^{\pi}\left(s_{t}, \pi^{+}\right)
$$

PDL requires accurate Q_{θ}^{π} on states that π^{+}will visit! $\left(d_{t}^{\pi^{+}}\right)$
But we only have states that π visits $\left(d_{t}^{\pi}\right)$

If π^{+}changes drastically from π, then $\left|d_{t}^{\pi^{+}}-d_{t}^{\pi}\right|$ is big!

Policy Gradients

$$
\nabla_{\theta} J=E_{s \sim d^{\pi_{\theta}}(s), a \sim \pi_{\theta}(a \mid s)}\left[\nabla_{\theta} \log \pi_{\theta}(a \mid s) Q^{\pi_{\theta}}(s, a)\right]
$$

$$
\nabla_{\theta} J=E_{d^{\pi_{\theta}(s)}} E_{\pi_{\theta}(a \mid s)}\left[\nabla_{\theta} \log \left(\pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a)\right]\right.
$$

Actor-Critic Framework

Start with an arbitrary initial policy $\pi_{\theta}(a \mid s)$
while not converged do
Roll-out $\pi_{\theta}(a \mid s)$ to collect trajectories $D=\left\{s^{i}, a^{i}, r^{i}, s_{+}^{i}\right\}_{i=1}^{N}$
Fit value function $\hat{V}^{\pi_{\theta}}\left(s^{i}\right)$ using TD, i.e. minimize $\left(r^{i}+\gamma \hat{V}^{\pi_{\theta}}\left(s_{+}^{i}\right)-\hat{V}^{\pi_{\theta}}\left(s^{i}\right)\right)^{2}$

Compute advantage $\hat{A}^{\pi_{\theta}}\left(s^{i}, a^{i}\right)=r\left(s^{i}, a^{i}\right)+\gamma \hat{V}^{\pi_{\theta}}\left(s_{+}^{i}\right)-\hat{V}^{\pi_{\theta}}\left(s^{i}\right)$

Compute gradient

$$
\nabla_{\theta} J(\theta)=\frac{1}{N}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}\left(a_{t}^{i} \mid s_{t}^{i}\right) \hat{A}^{\pi_{\theta}}\left(s^{i}, a^{i}\right)\right]
$$

Update parameters

$$
\theta \leftarrow \theta+\alpha \nabla_{\theta} J(\theta)
$$

Questions?

Unknown MDP (Imitation Learning)

Behavior Cloning

Expert runs away after demonstrations

The Big Problem with BC

Train
$\sum_{t=0}^{T-1} \mathbb{E}_{s_{t} \sim d_{t}^{\pi^{\star}}}\left[\ell\left(s_{t}, \pi\left(s_{t}\right)\right)\right]$

Test

$$
\sum_{t=0}^{T-1} \mathbb{E}_{s_{t} \sim d_{t}^{T}}\left[\ell\left(s_{t}, \pi\left(s_{t}\right)\right)\right]
$$

The Goal

Can we bound this to $O(\epsilon T)$?

DAgger (Dataset Aggregation)

Initialize with a random policy $\pi_{1} \quad \#$ Can be BC Initialize empty data buffer $\mathscr{D} \leftarrow\}$
For $i=1, \ldots, N$
Execute policy π_{i} in the real world and collect data

$$
\mathscr{D}_{i}=\left\{s_{0}, a_{0}, s_{1}, a_{1}, \ldots\right\}
$$

\# Also called a rollout

Query the expert for the optimal action on learner states

$$
\mathscr{D}_{i}=\left\{s_{0}, \pi^{\star}\left(s_{0}\right), s_{1}, \pi^{\star}\left(s_{1}\right), \ldots\right\}
$$

Aggregate data $\mathscr{D} \leftarrow \mathscr{D} \cup \mathscr{D}_{i}$
Train a new learner on this dataset $\pi_{i+1} \leftarrow \operatorname{Train}(\mathscr{D})$
Select the best policy in $\pi_{1: N+1}$

The DAGGER Argument

We can frame interactive imitation learning as online learning

FTL is no-regret if the loss is strongly convex

DAGGER is FTL

No-regret implies $O(\epsilon H T)$

