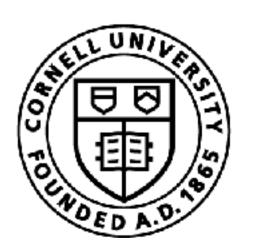
Approximate Value and Policy Iteration

Sanjiban Choudhury



The story thus far ...

The sub- sub- supervise of the supervise of the supervised of

2

The story thus far

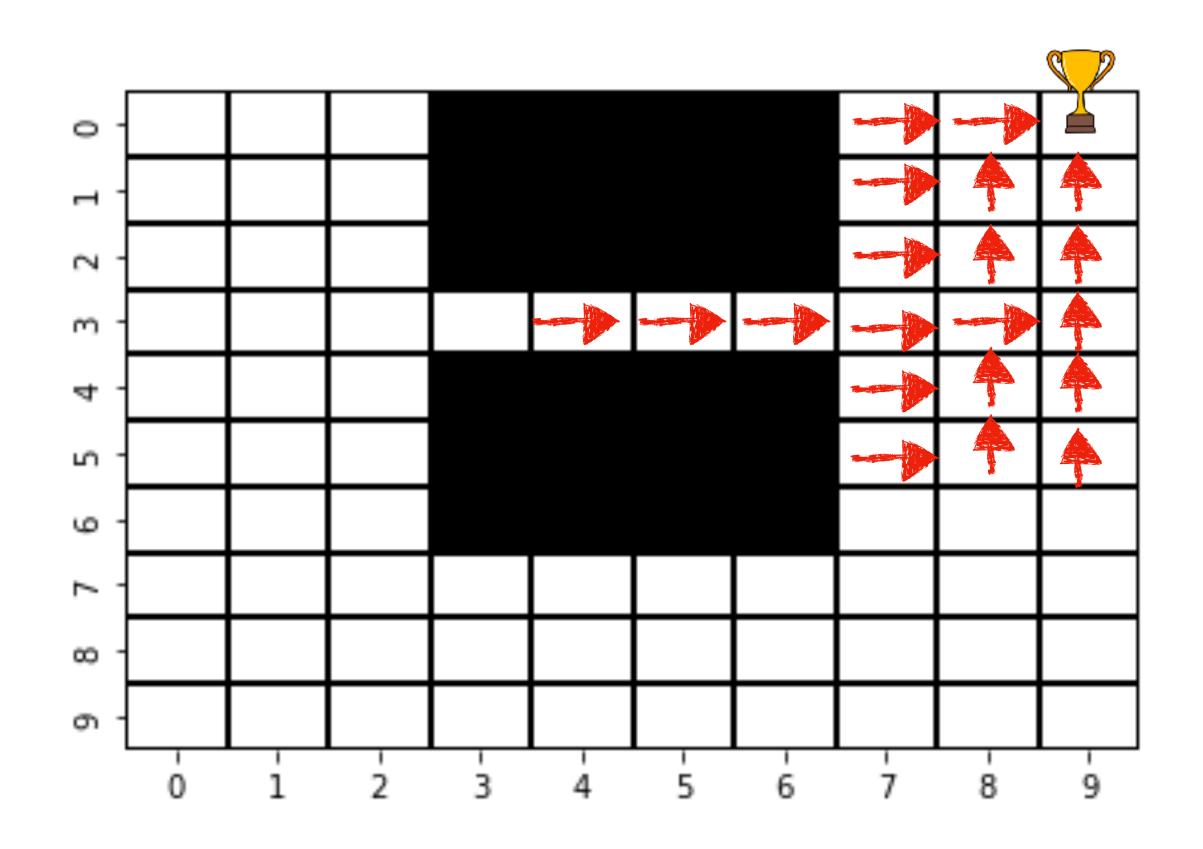
We know how to define an MDP

We know how to solve a MDP

What happens if the MDP is unknown?

If the MDP is known (i.e. I know my costs and my transition)

Known MDP

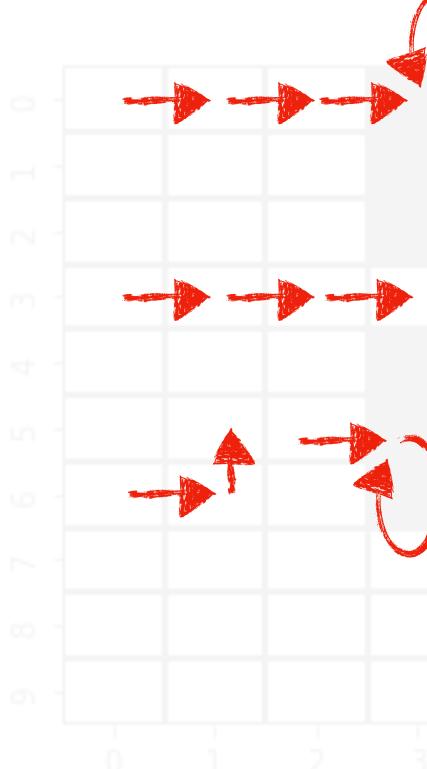


If I know the transition function, I could teleport to any state, try any action and know the next state



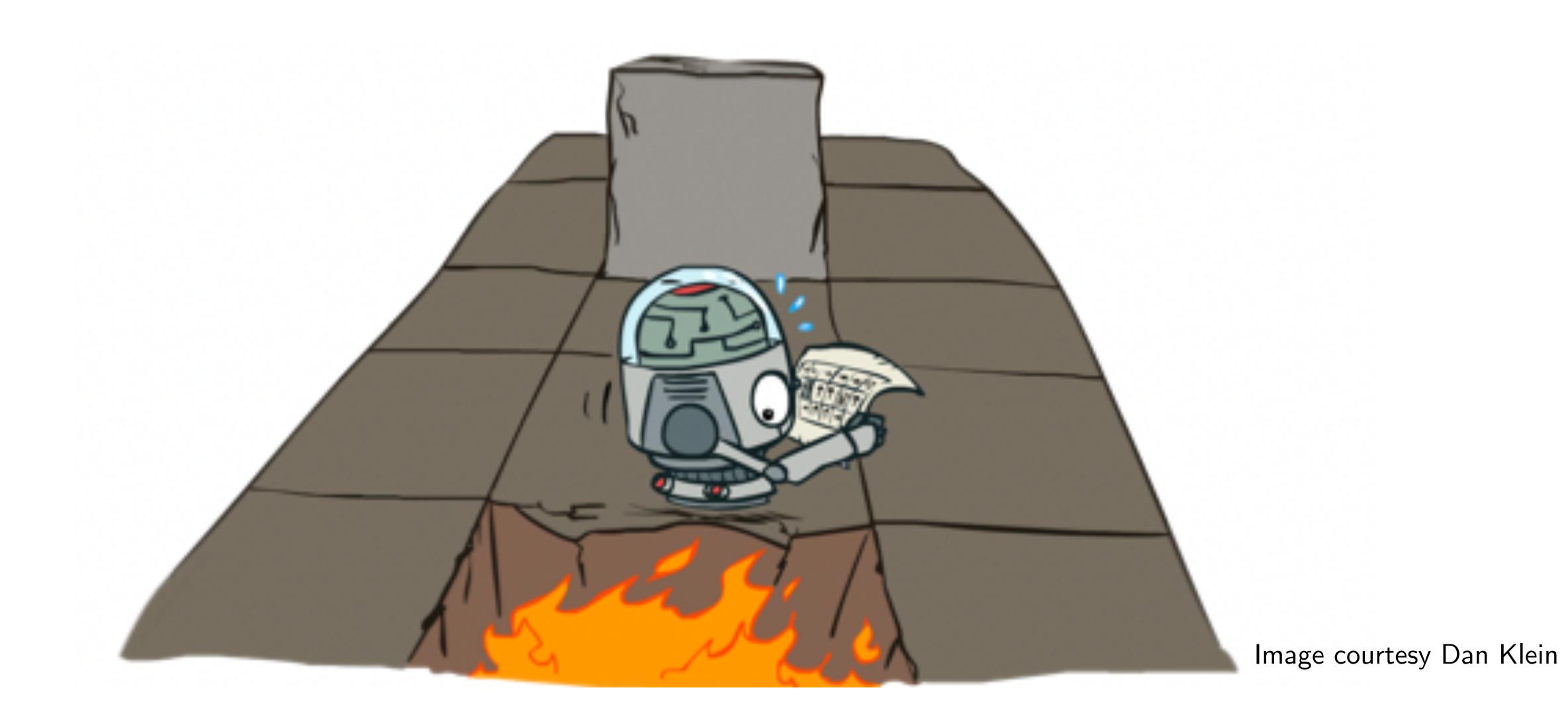
4

Unknown MDP



I don't know the transition, I can only roll-out from start state, and see where I end up

Recall: How do we solve a known MDP?



Initialize value function at last time-step

$$V^*(s, T-1) = \min_a c(s, a) \quad \forall s$$

for t = T - 2, ..., 0

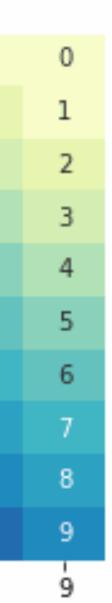
Compute value function at time-step t

$$V^*(s,t) = \min_{a}$$

Value Iteration

0 -	14	14	13	14	14	14	14	2	1
	14	13	12	14	14	14	14	3	2
Ν-	13	12	11	14	14	14	14	4	3
m -	12	11	10	9	8	7	6	5	4
4 -	13	12	11	14	14	14	14	6	5
<u>ں</u> -	14	13	12	14	14	14	14	7	6
φ-	14	14	13	14	14	14	14	8	7
~ -	14	14	14	13	12	11	10	9	8
ω -	14	14	14	14	13	12	11	10	9
ი -	14	14	14	14	14	13	12	11	10
	ò	i	ź	3	4	5	6	ż	8

 $\left[c(s,a) + \gamma \sum_{s'} \mathcal{T}(s'|s,a) V^*(s',t+1) \right] \forall s$



Time

Q-Value Iteration

Initialize value function at last time-step

$$Q^*(s, a, T-1) = c(s, a) \quad \forall (s, a)$$

for t = T - 2, ..., 0

Compute value function at time-step t

$$Q^*(s, a, t) = c(s, a) + \gamma \sum_{s} ds$$

- a)

- $\mathcal{T}(s'|s,a)\min Q^*(s',a',t+1) \quad \forall s,a$

Q-Value Iteration (Infinite horizon)

Initialize value function at last time-step

$$Q^*(s,a) = c(s,a) \quad \forall (s,a)$$

While not converged

Update value function

 $Q^*(s,a) = c(s,a) + \gamma \sum \mathcal{T}(s'|s,a) \min Q^*(s',a') \quad \forall (s,a)$

Initialize value function at last time-step

$$Q^*(s,a) = c(s,a) \quad \forall (s,a)$$

While not converged

Update value function

$$Q^*(s,a) = c(s,a) + \gamma \sum \mathcal{T}$$

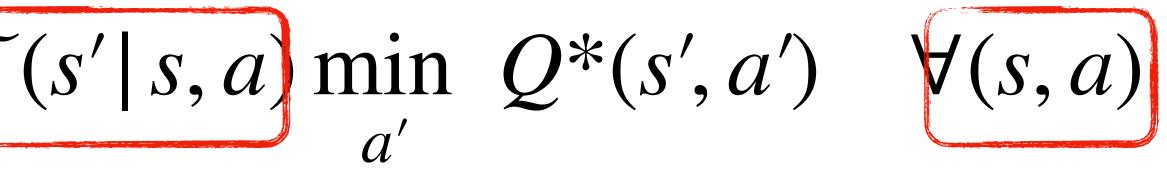
Are these known?

S'

Two Problems

1) What happens when states are continuous?

2) What happens when I don't know the MDP?



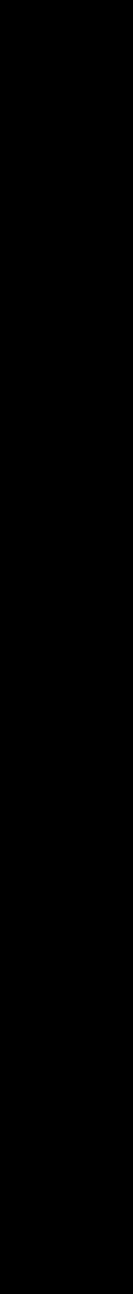
Can I do this?

Can I collect roll-out data from the real world and just fit a Q function?

Simple Idea

Researchers

Neural Network



12

Step 1: First collect roll-out data

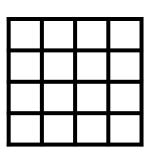
Data is a tuple of state, action, cost, next state



 $\mathcal{D} = \{(s_i, a_i, c_i, s_{i+1})\}_{i=1}^n$

Step 2: Fitted Q-Iteration

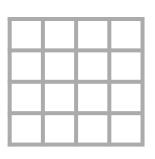
Regular Q-iteration



 $Q(s,a) \leftarrow c(s,a)$ while not converged do for $s \in S, a \in A$ $Q^{new}(s,a) = c(s,a) + \gamma \mathbb{E}_{s'} \min_{a'} Q(s',a')$ $Q \leftarrow Q^{new}$ return Q

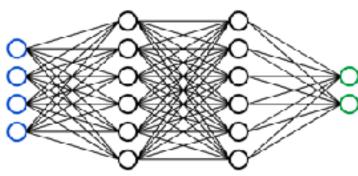
Step 2: Fitted Q-Iteration

Regular Q-iteration



 $Q(s,a) \leftarrow c(s,a)$ while not converged do for $s \in S$, $a \in A$ $Q^{new}(s,a) = c(s,a) + \gamma \mathbb{E}_{s'} \min Q(s',a')$ return Q

Fitted Q-iteration



Given $\{s_i, a_i, c_i, s'_i\}_{i=1}^N$

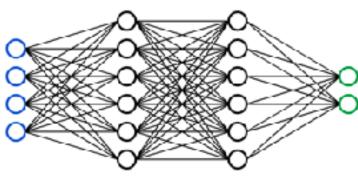
Init $Q_{\theta}(s, a) \leftarrow 0$ while not converged do $D \leftarrow \emptyset$ for $i \in 1, ..., n$ input $\leftarrow \{s_i, a_i\}$, target $\leftarrow c_i + \gamma \min Q_{\theta}(s'_i, a')$ $D \leftarrow D \cup \{\text{input}, \text{output}\}$ $Q_{\theta} \leftarrow \mathsf{Train}(D)$ return Q_{θ}



Step 2: Fitted Q-Iteration

Training is a regression problem $\ell(\theta) = \sum (Q_{\theta}(s_i, a_i) - target)^2$ i=1

Fitted Q-iteration



Given $\{s_i, a_i, c_i, s'_i\}_{i=1}^N$

Init $Q_{\theta}(s, a) \leftarrow 0$ while not converged do $D \leftarrow \emptyset$ Use old copy of Q for $i \in 1, ..., n$ to set target input $\leftarrow \{s_i, a_i\}$, $\mathsf{target} \leftarrow c_i + \gamma \min Q_{\theta}(s'_i, a')$ $D \leftarrow D \cup \{\text{input}, \text{output}\}$ $Q_{\theta} \leftarrow \mathsf{Train}(D)$ return Q_{θ}



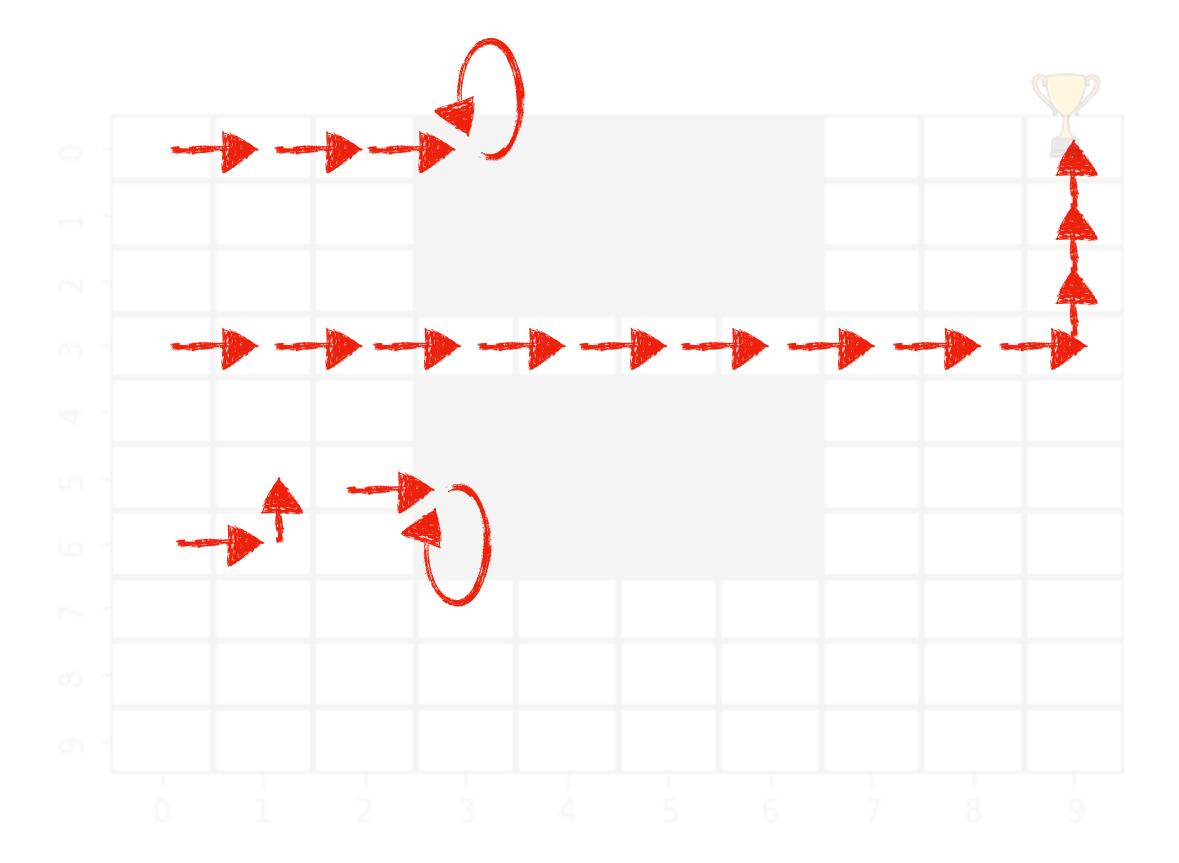
Temporal Difference Error (TD Error)

Penalize violation of Bellman Equation

 $\mathscr{E}(\theta) = \left(c(s,a) + \gamma \min_{a'} Q_{\theta_{old}}(s',a') - Q_{\theta}(s_t,a_t)\right)^2$

 $\theta = \theta_{old} - \alpha \nabla_{\theta} l(\theta)$

17



What policy do I use to collect data?

Do I explore randomly? Do I use my learnt Q function?

When poll is active respond at **PollEv.com/sc2582**

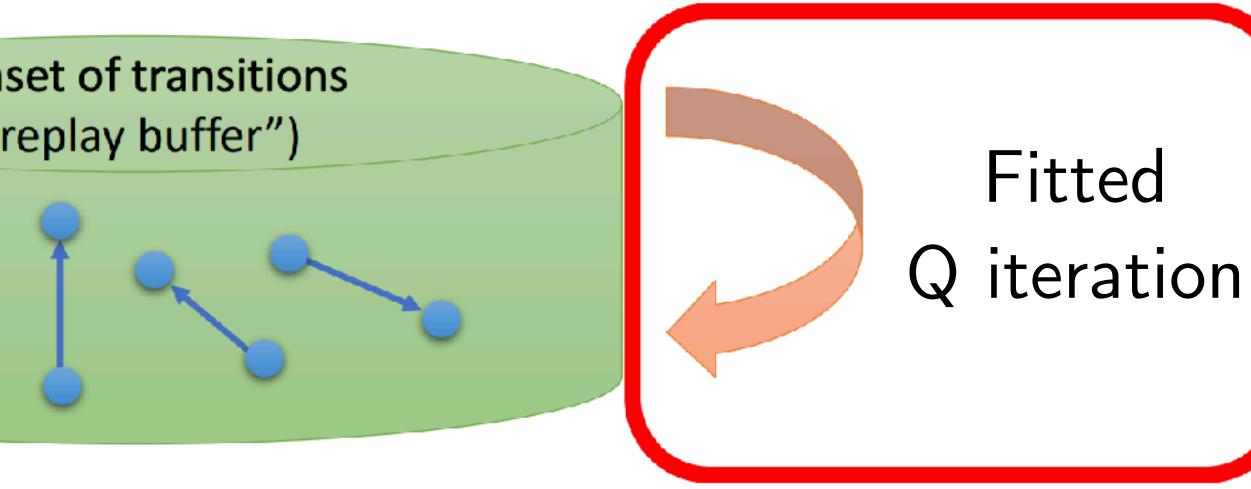
Send sc2582 to 22333

Do I explore randomly? Do I use my learnt Q function?

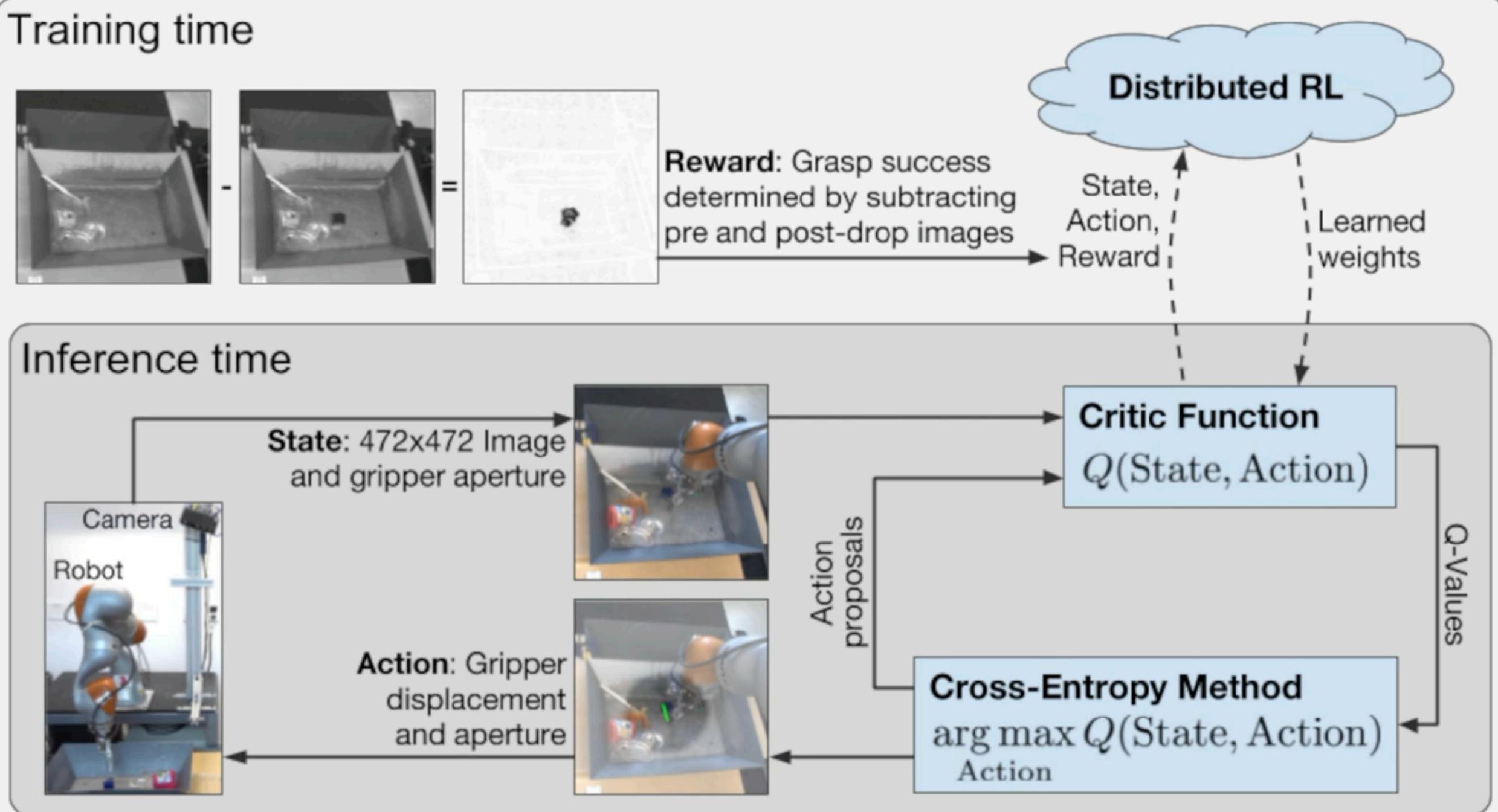
What policy do I use to collect data?

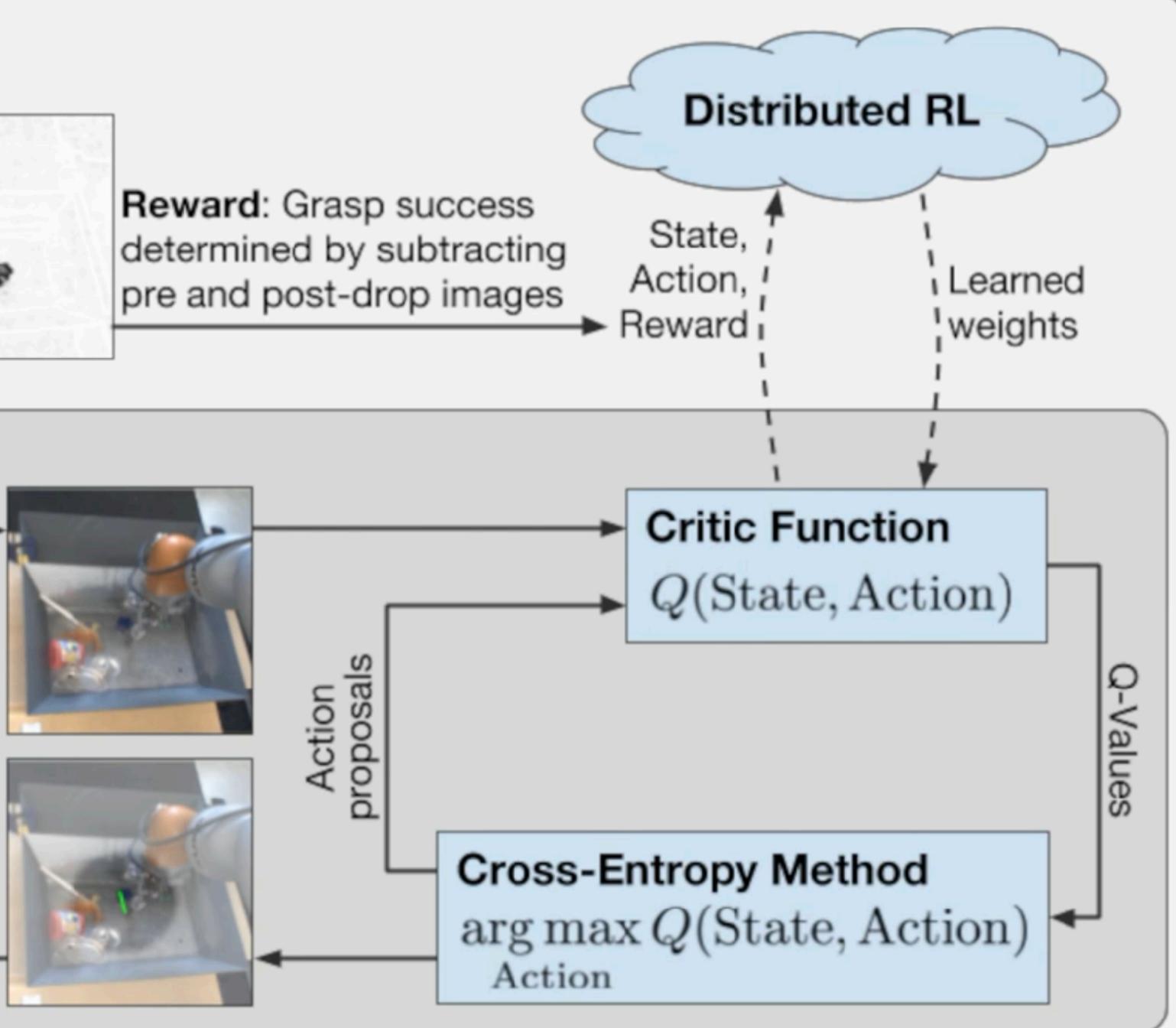
Q-learning: Learning off-policy

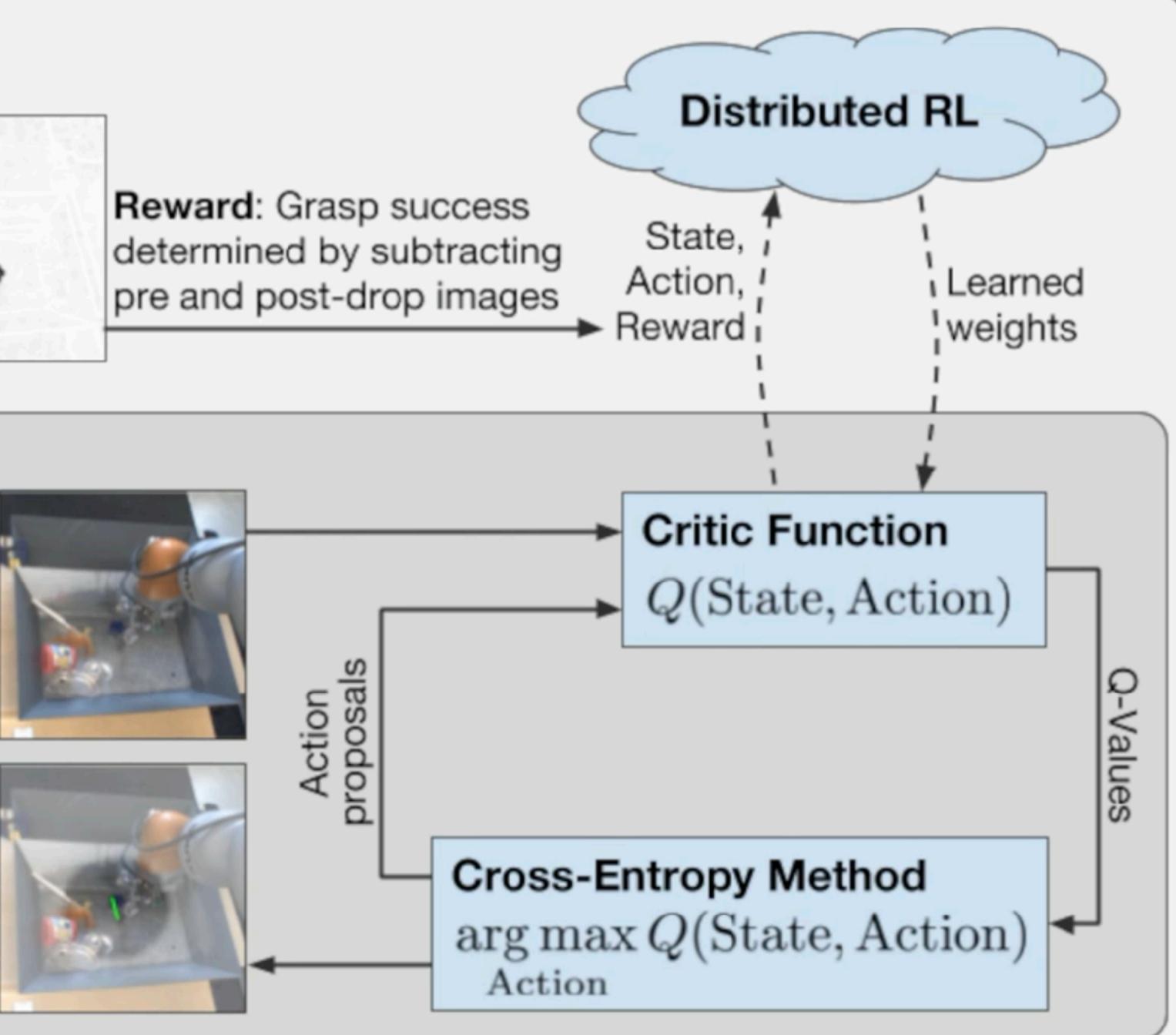
(s, a, s', c)	data ("
$\pi(\mathbf{a} \mathbf{s})$ (e.g., ϵ -greedy)	



QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation







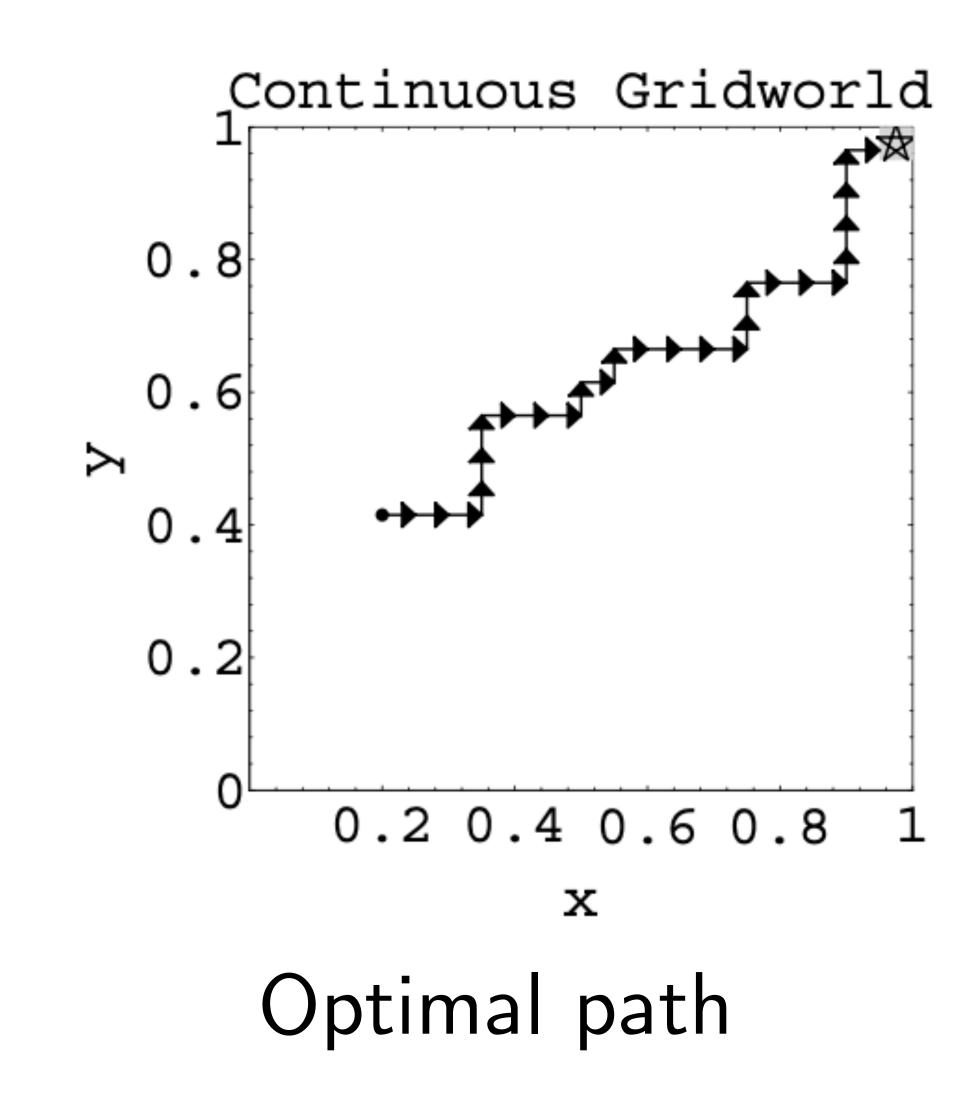
Large-scale Q-learning with continuous actions (QT-Opt)



Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-**Based Robotic Manipulation Skills**

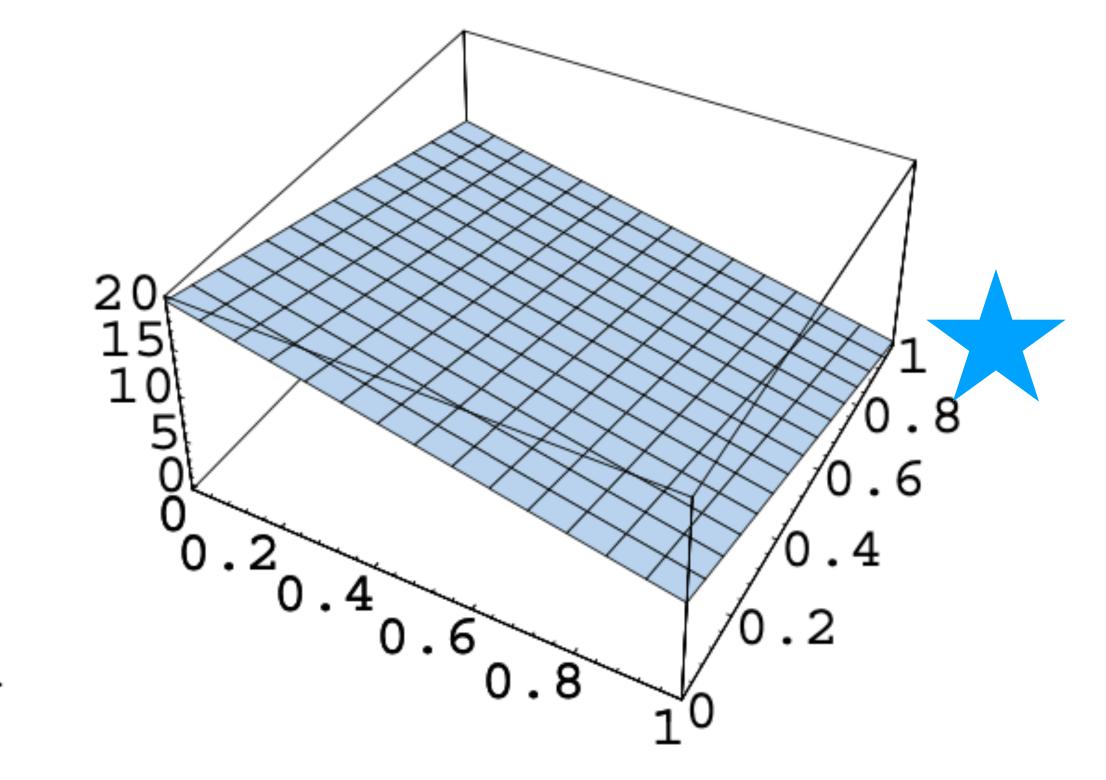
So does approximate value iteration work?

A simple example: Gridworld



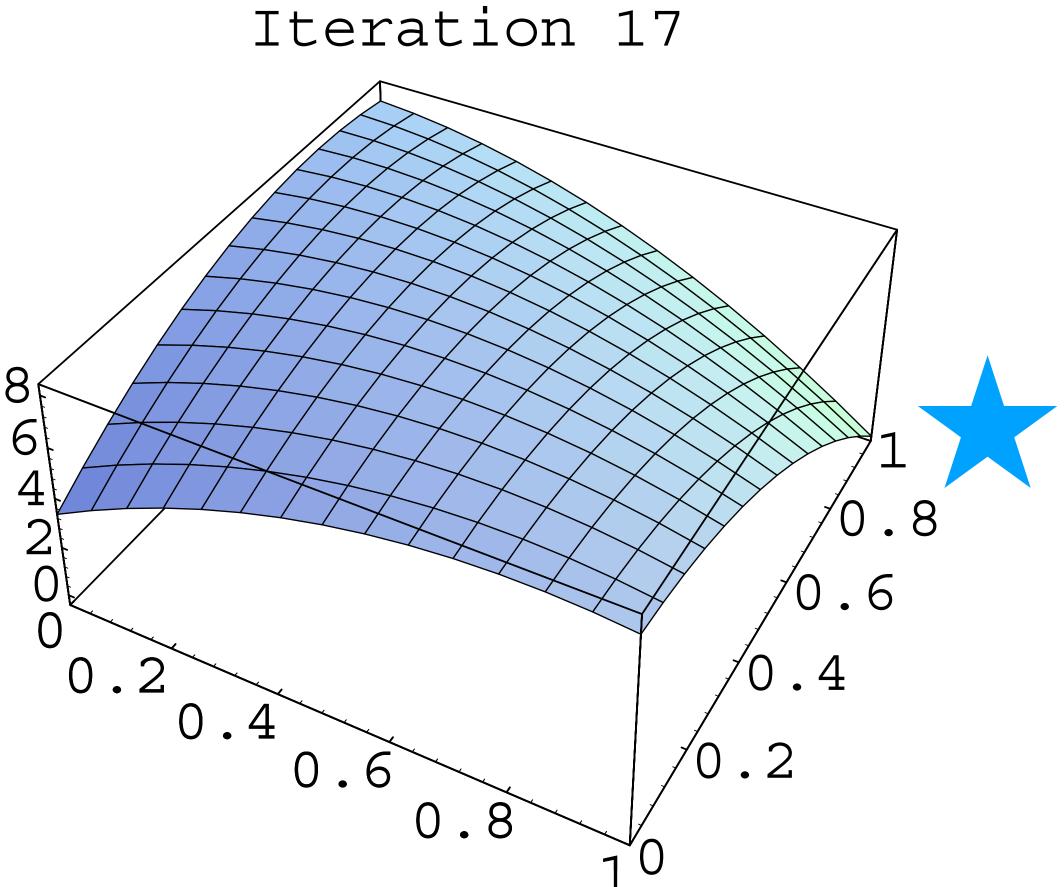
Boyan, Justin A and Moore, Andrew W, Generalization in Reinforcement Learning: Safely Approximating the Value Function. NeurIPS 199425

J*(x,y)

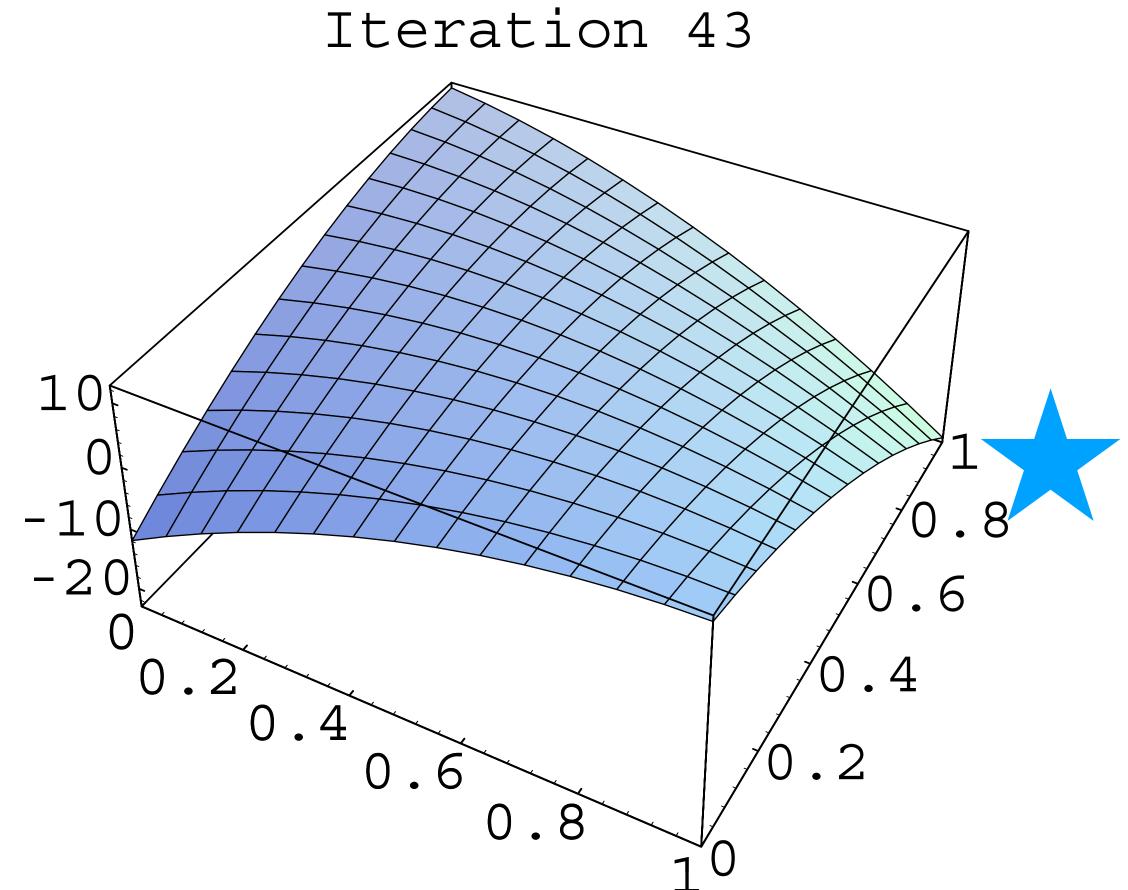


True value function

What happens when we run value iteration with a quadratic?

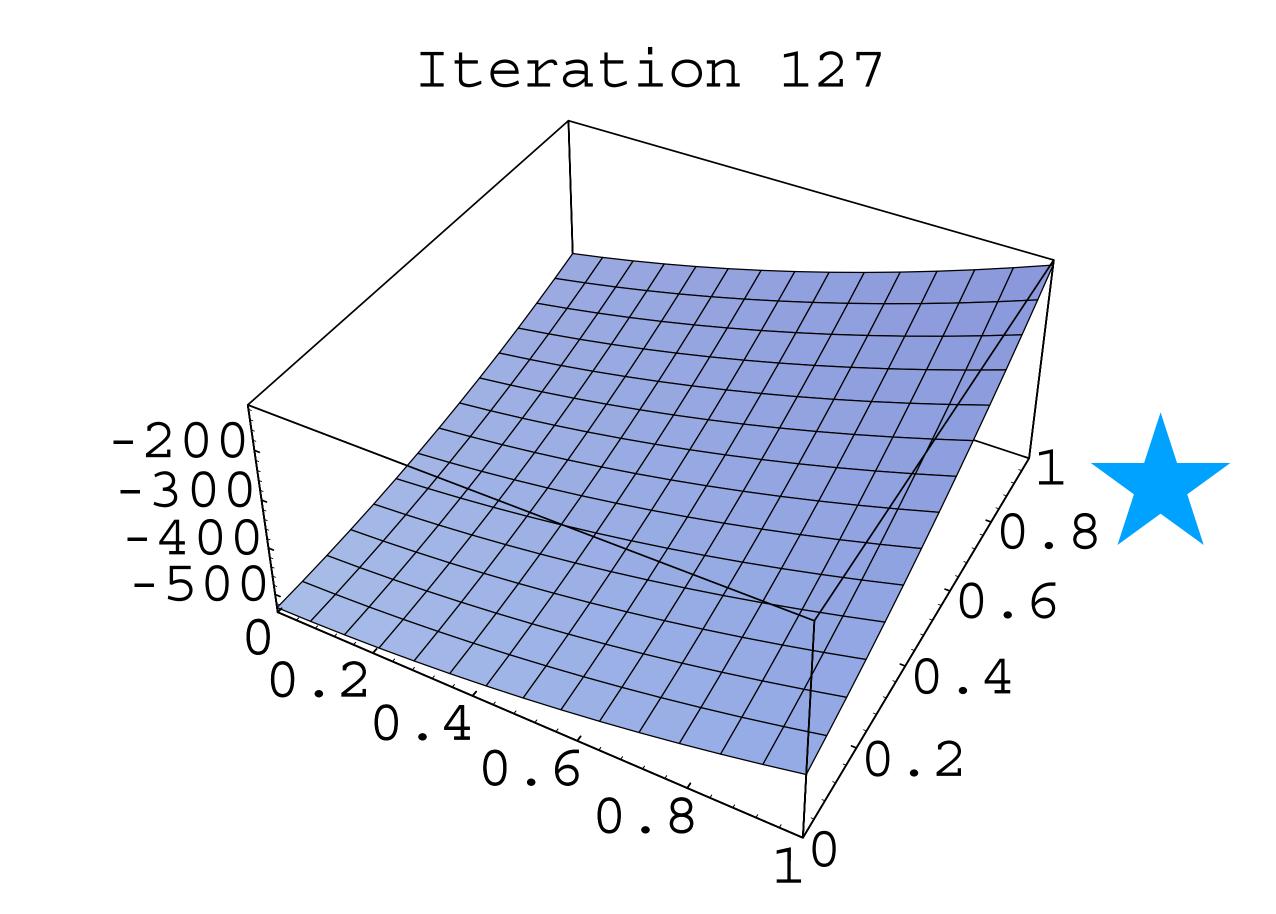


What happens when we run value iteration with a quadratic?



1

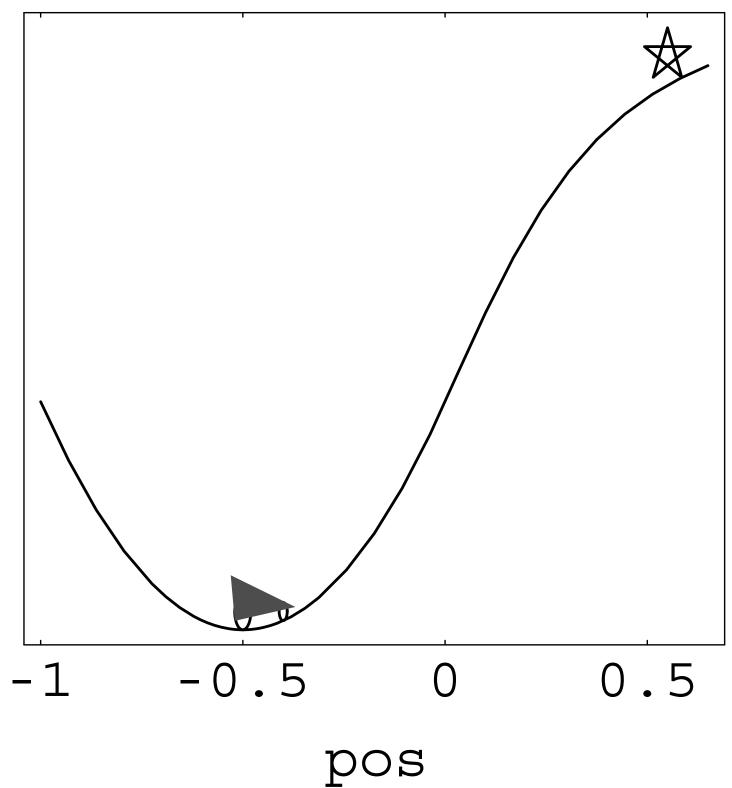
What happens when we run value iteration with a *quadratic?*

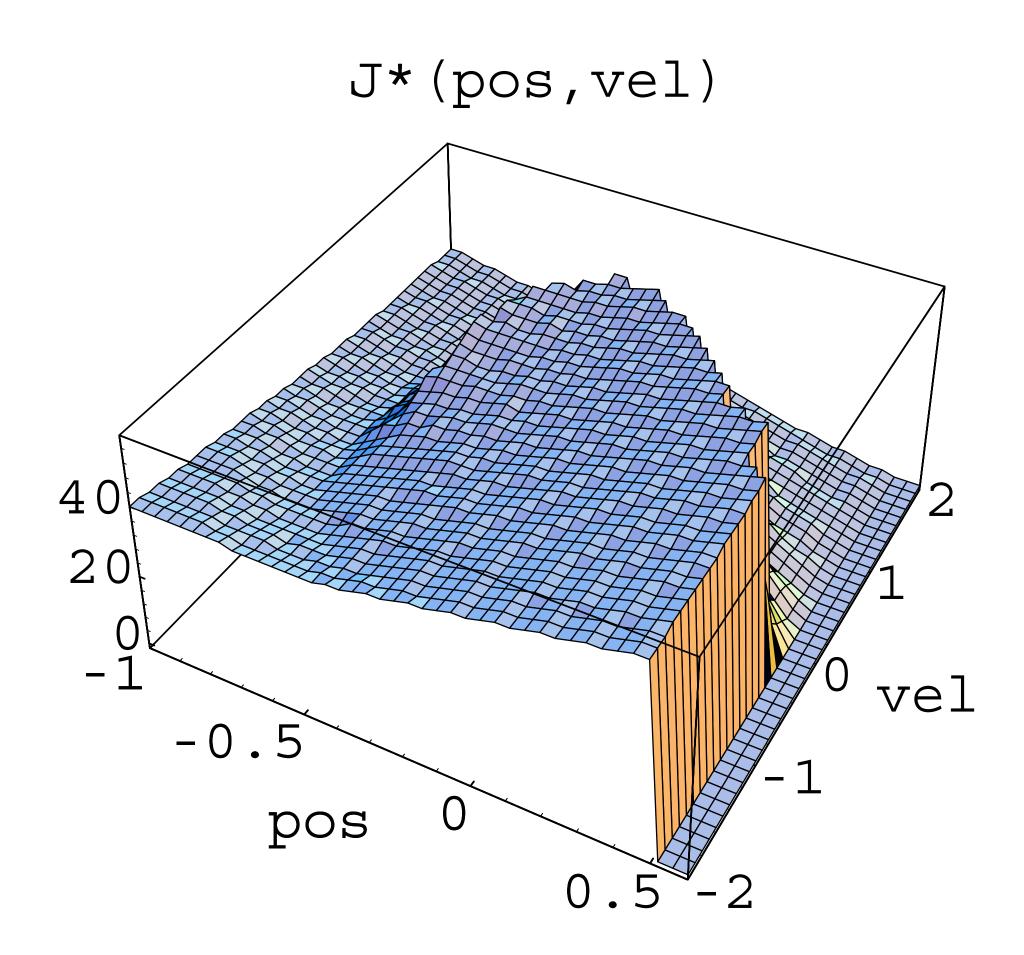


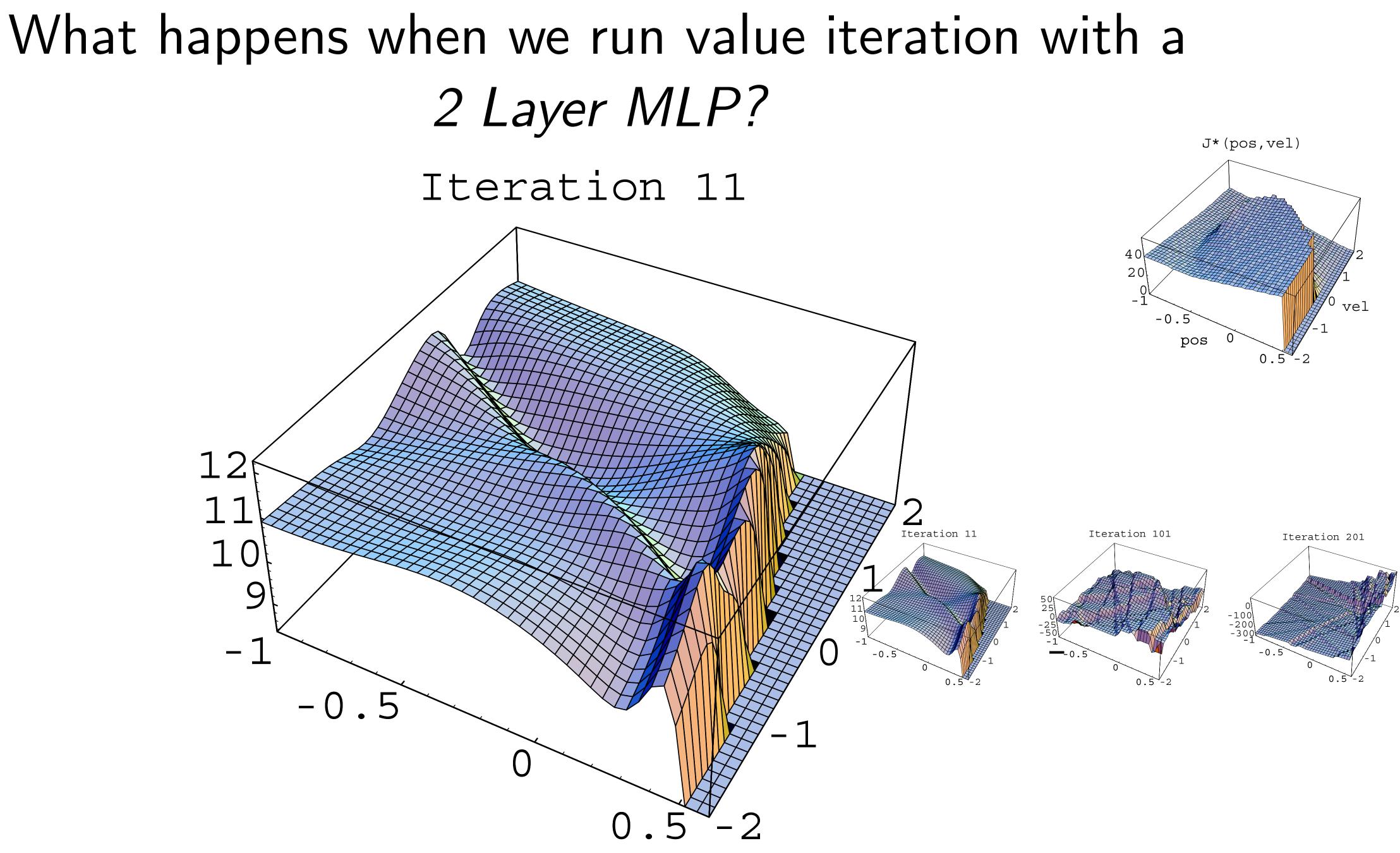
1

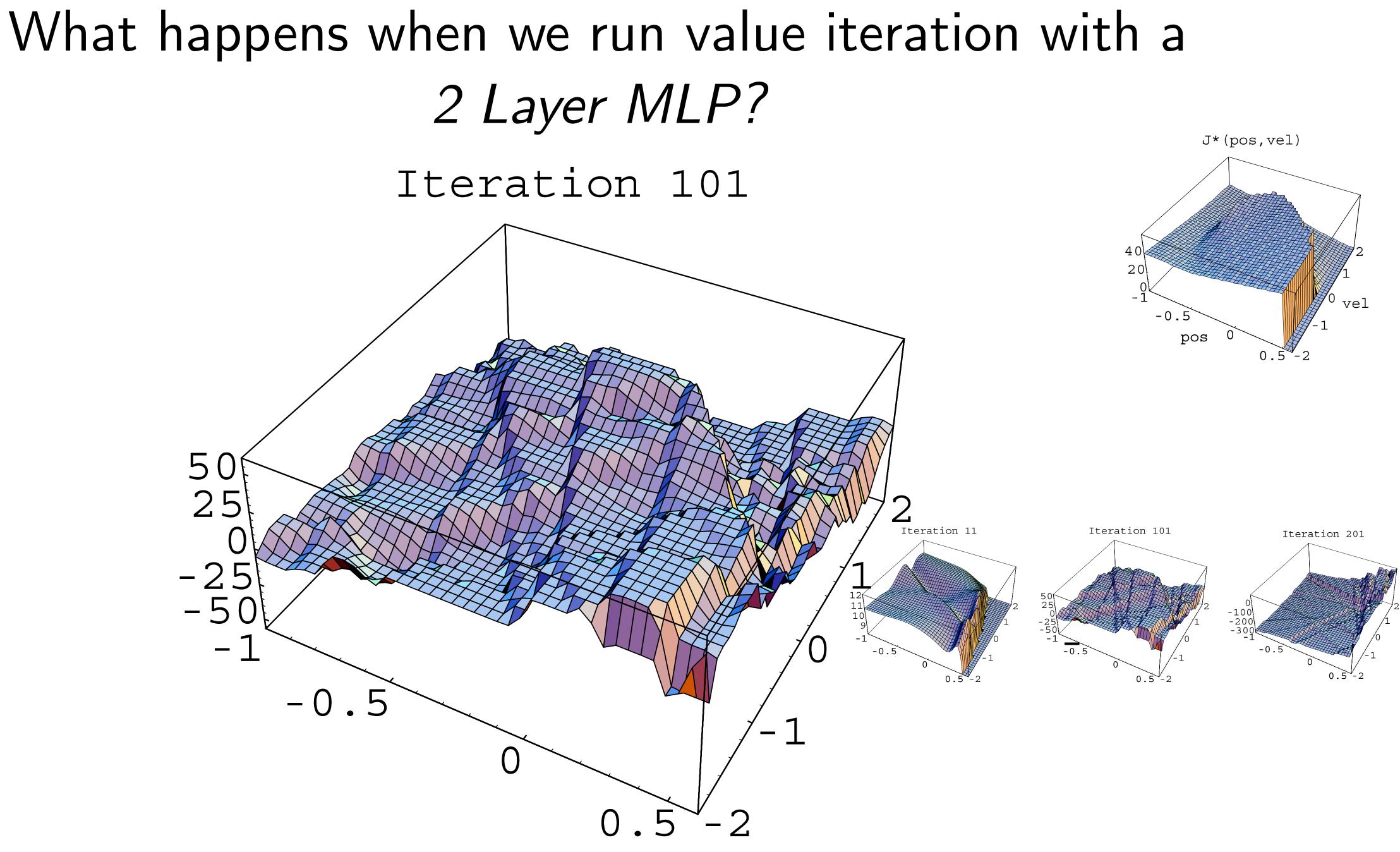
Another Example: Mountain Car!

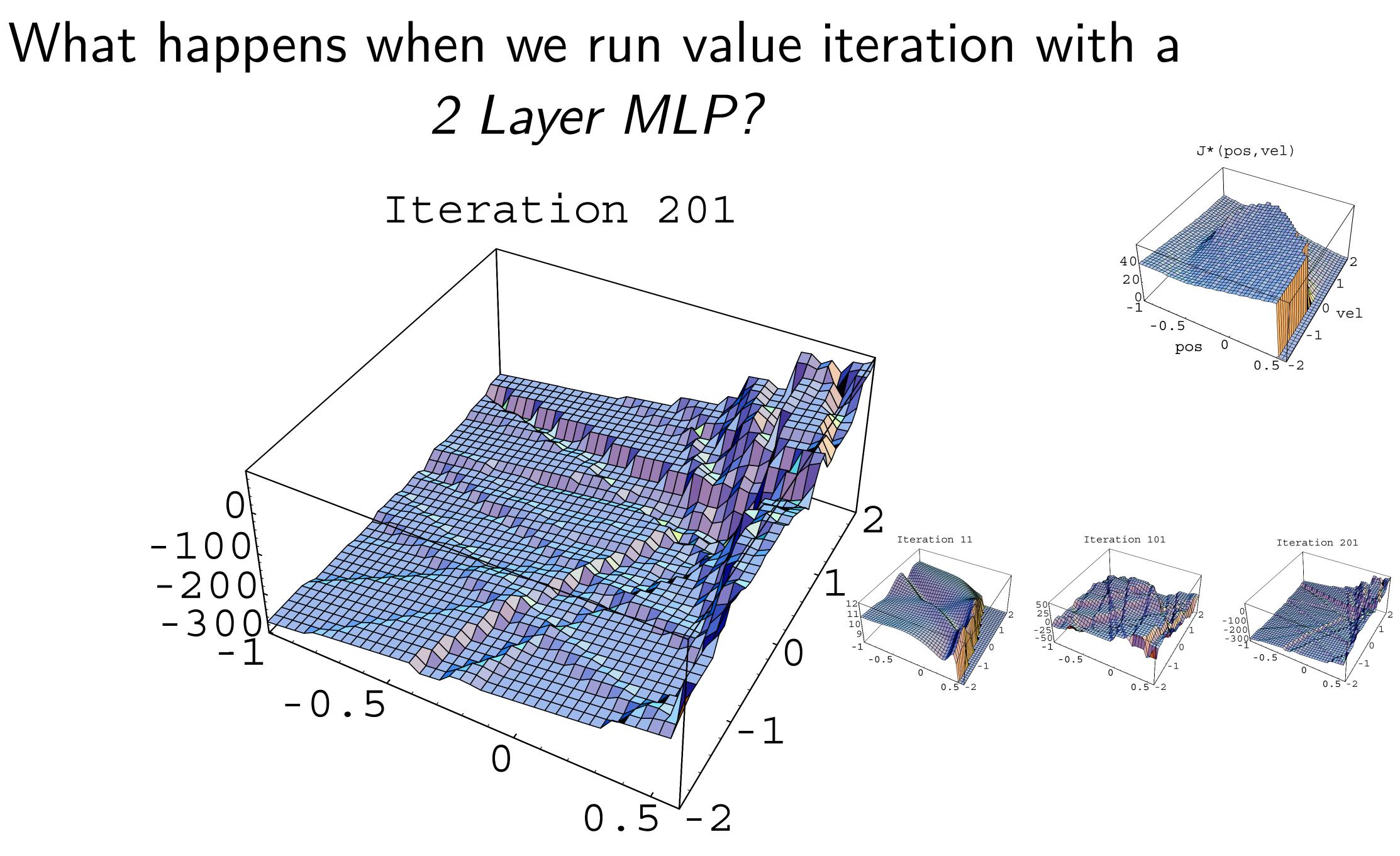
Car-on-the-Hill

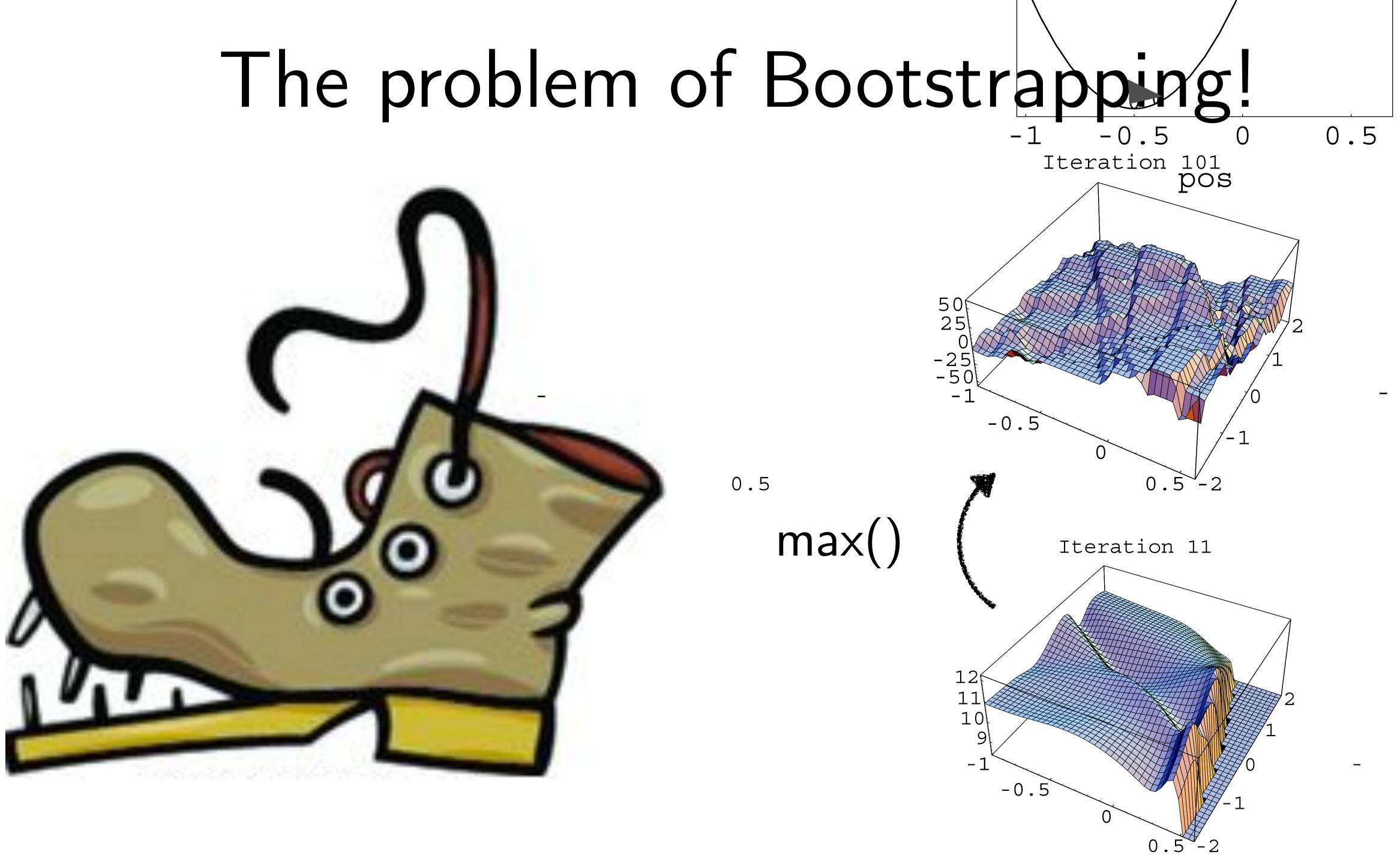










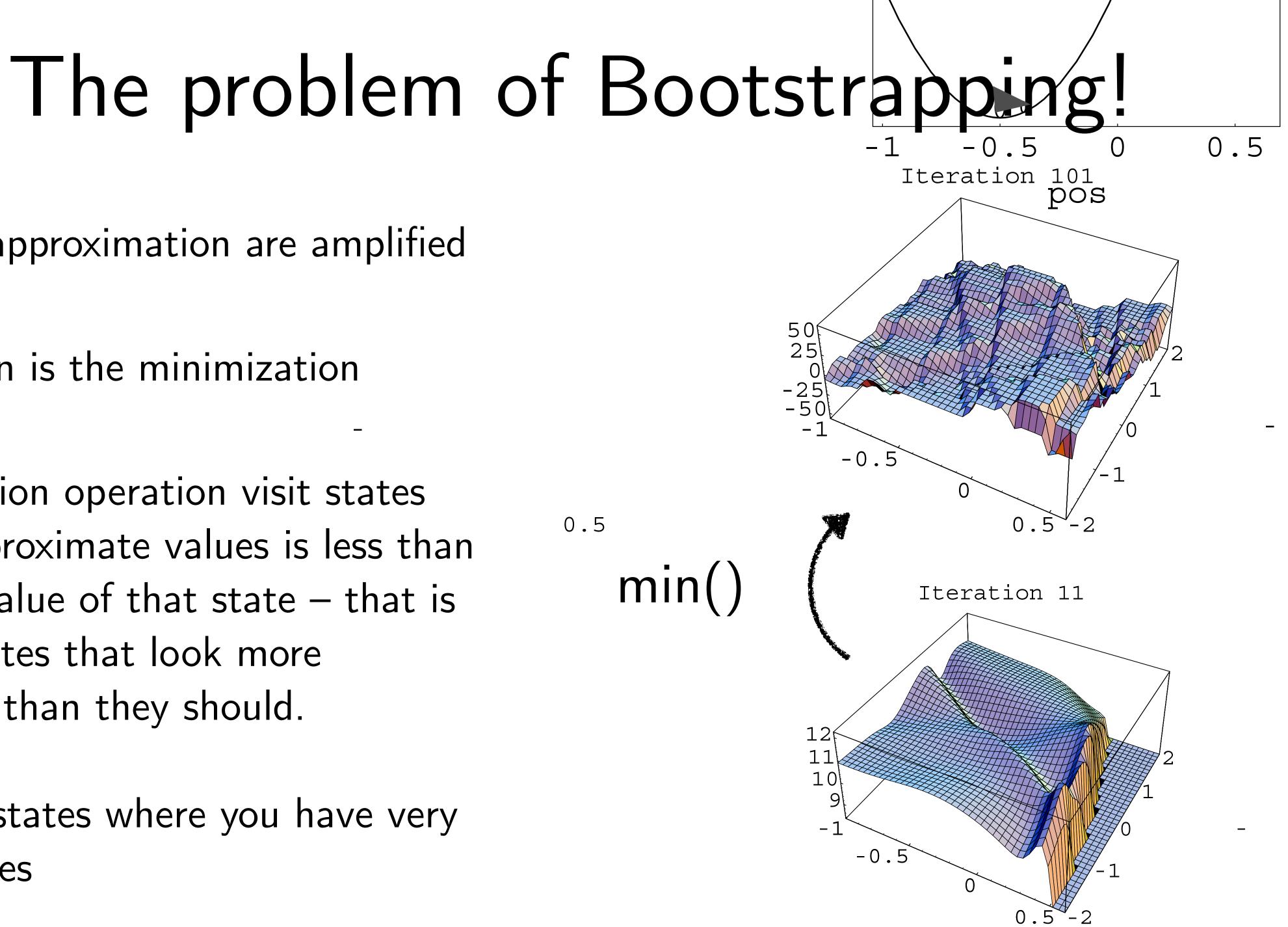


Errors in approximation are amplified

Key reason is the minimization

Minimization operation visit states where approximate values is less than the true value of that state – that is to say, states that look more attractive than they should.

Typically states where you have very few samples



What about policy iteration?

Policy Evaluation

0 -	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
~ ~	0	0	0	0	0	0	0	0	0	0
m -	0	0	0	0	0	0	0	0	0	0
4 -	0	0	0	0	0	0	0	0	0	0
<u>ں</u> -	0	0	0	0	0	0	0	0	0	0
· 9	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
ω -	0	0	0	0	0	0	0	0	0	0
თ	0	0	0							0
	ò	i	ź	3	4	5	6	7	8	9

Policy Iteration Policy Improvement

lter: 0

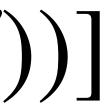
o -	→	→	→	→	→	→	→		→
	→	→	→	→	→	→	→		→
~ -	→	→	\rightarrow	→	→	\rightarrow	\rightarrow		→
m -	→	→	→	→	→	→	→	→	→
4 -	→	→	→	→	→	→	→	→	→
<u>ہ</u> -	→	→	→	→	→	→	→		→
<u>-</u> ب	→	\rightarrow	\rightarrow	→	\rightarrow	\rightarrow	\rightarrow		→
r -	→	→	→	→	→	→	→		→
∞ -	→	→	\rightarrow	→	→	\rightarrow	→	→	→
თ -	→	→	→	→	→	→	→	→	→
	ò	i	ź	3	4	5	6	7	8

Init with some policy π Repeat forever Evaluate policy Improve policy

Policy Iteration

 $Q^{\pi}(s,a) = c(s,a)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s,a)} Q^{\pi}(s',\pi(s'))]$

 $\pi^+(s) = \arg\min Q^{\pi}(s, a)$



Fitted Policy Iteration cy evaluation Policy Improvement Collect data using current policy π

Fitted policy evaluation
Given
$$\{s_i, a_i, c_i, s'_i\}_{i=1}^N$$
 using current p
Init $Q_{\theta}(s, a) \leftarrow 0$ while not converged do
 $D \leftarrow \emptyset$
for $i \in 1, ..., n$
input $\leftarrow \{s_i, a_i\}$
target $\leftarrow c_i + \gamma Q_{\theta}(s'_i, \pi(s'_i))$
 $D \leftarrow D \cup \{\text{input, output}\}$
 $Q_{\theta} \leftarrow \text{Train}(D)$
return Q_{θ}

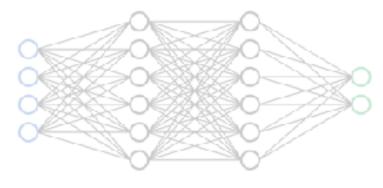
This remains the same!

 $\pi^+(s) = \arg\min_a Q^{\pi}(s, a)$

Fitted Policy Iteration

Fitted policy evaluation

Given $\{s_i, a_i, c_i, s'_i\}_{i=1}^N$



lnit $Q_{\theta}(s, a) \leftarrow 0$ while not converged do This is fine.. for $i \in 1, ..., n$

No min() input $\leftarrow \{s_i, a_i\}$ target $\leftarrow c_i + \gamma Q_{\theta}(s'_i, \pi(s'_i))$ step $D \leftarrow D \cup \{\text{input, output}\}$ $Q_{\theta} \leftarrow \operatorname{Train}(D)$

return Q_{θ}

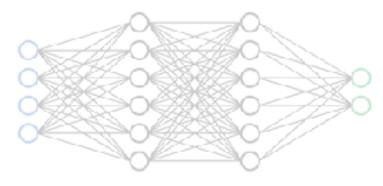
Policy Improvement

$\pi^+(s) = \arg\min Q^{\pi}(s, a)$ \mathcal{A}

Fitted Policy Iteration

Fitted policy evaluation

Given $\{s_i, a_i, c_i, s'_i\}_{i=1}^N$



Init $Q_{\theta}(s, a) \leftarrow 0$ while not converged do TAIS IS fine... for $i \in 1,...,n$ input $\leftarrow \{s_i, a_i\}$ target $\leftarrow c_i + \gamma Q_{\theta}(s'_i, \pi(s'_i))$

 $D \leftarrow D \cup \{\text{input, output}\}$ $Q_{\theta} \leftarrow \mathbf{Train}(D)$

return Q_{θ}

Policy Improvement

But this has the min() step!

 $\pi^+(s) = \arg\min_a Q^{\pi}(s,a)$

