
Model Predictive Control and the
Unreasonable Effectiveness of Replanning

Sanjiban Choudhury

1

Landscape of Planning / Control Algorithms

2

High-level path
planning

LazySP

Low-level control

LQR

lqr: the analytic mdp 29

Figure 2.3.1: Solving inverted
pendulum swing up using LQR
tracking.

LQR for Linear Time-Varying Dynamical Systems

Thus far, we have assumed that we were modeling a linear, time-
invariant system. As we will see, we might be interested in systems
that are linear, but time varying

xt+1 = Atxt + Btut (2.3.1)

c(xt, ut) = xt
>Qtxt + u>

t Rtut (2.3.2)

In this case, the LQR equations are simply updated to

Kt = �(B>
t Vt+1Bt + Rt)

�1B>
t Vt+1 At (2.3.3)

Vt = Qt + K>
t RtKt + (At + BtKt)

>Vt+1(At + BtKt) (2.3.4)

Affine Quadratic Regulation

Let’s now consider a generic affine system with time varying dynam-
ics At and Bt and a state offset xoff

t :

xt+1 = Atxt + Btut + xoff
t . (2.3.5)

Affine problems can be converted to linear problems by using homo-
geneous coordinates8: 8 https://en.wikipedia.org/wiki/

Homogeneous_coordinates

x̃ =

"
x
1

#
(2.3.6)

x̃t+1 =

"
At xoff

t
0 1

#
x̃t +

"
Bt

0

#
ut

.
= Ãt x̃t + B̃tut (2.3.7)

This is just a new LQR problem with modified state and dynamics
and a new cost defined as c(x̃t, ut) = x̃>

t Q̃t x̃t + u>
t Rtut, where the

choice of Q̃ is problem dependent. We will later see how we can
design Q̃ for the tracking problem. The Affine Quadratic Regulation
problem can then be solved in exactly the same way as the LQR
problem.9 9 Essentially the same trick can be

applied to enable us to have linear
cost functions terms in the controls as
well, but we defer this to the general
formulation derived at the end.

Goal: Plan for a real-world helicopter

3

4

5

Takeoff Enroute Touchdown
(Plan to multiple sites)(Avoid sensed obstacles)(Respect power constraints)

Obstacles
in LZ

Mountain

Map created
by sensor

Tower

Recap: Solving a MDP

min
a0,…,aT−1

T−1

∑
t=0

c(st, at)
(Solve for a sequence

of actions)
(Sum over all costs)

st+1 = 𝒯(st, at)
(Transition function)

s0 sT

a0 a1 a2s1
s2

Brainstorm: Challenges in solving MDP for helicopter

min
a0,…,aT−1

T−1

∑
t=0

c(st, at)
(Solve for a sequence

of actions)
(Sum over all costs)

st+1 = 𝒯(st, at)
(Transition function)

Takeoff Enroute Touchdown
(Plan to multiple sites)(Avoid sensed obstacles)(Respect power constraints)

Obstacles
in LZ

Mountain

Map created
by sensor

Tower

The Big Challenges

8

Problem 1: Don’t know the terrain ahead of time!

Problem 2: Don’t have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

The Big Challenges

9

Problem 1: Don’t know the terrain ahead of time!

Problem 2: Don’t have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

Activity!

Brainstorm!

11

Find a sequence of actions to go from
start to goal.

The helicopter can only sense upto 1km.

How should it deal with unknown
terrain? What assumptions can it make?

Goal

Start

What is the problem mathematically?

min
a0,…,aT−1

T−1

∑
t=0

c(st, at)
(Solve for a sequence

of actions)
(Sum over all costs)

st+1 = 𝒯(st, at)
(Transition function)

Is the transition function fully known?

If not, then how can we solve the optimization problem?

Idea: Plan with an optimistic model

min
a0,…,aT−1

T−1

∑
t=0

c(st, at)
(Solve for a sequence

of actions)
(Sum over all costs)

st+1 = �̂�(st, at)
(Optimistic Model)

Assume that any unknown space is fully traversable.

Update model as you get information from real world. Replan!

Plan optimistically and replan
as you learn more about

the world

15https://www.youtube.com/watch?v=qXZt-B7iUyw&feature=youtu.be

Stanford DARPA Challenge, 2007

Be Optimistic and Replan!

https://www.youtube.com/watch?v=qXZt-B7iUyw&feature=youtu.be

Model Predictive Control (MPC)

16

1 1. Concepts 1.1 Main Idea

Model Predictive Control

P(s)%

Objectives Model Constraints

Plant
Optimizer

Measurements

Output Input Reference

Objectives Model Constraints

PlanDo

PlanDo

PlanDo
Time

Receding horizon strategy introduces feedback.

MPC Part I – Introduction F. Borrelli, C. Jones, M. Morari - Fall Semester 2014 (revised August 2014) 1-4

1 1. Concepts 1.2 Classical Control vs MPC

Table of Contents

1. Concepts
1.1 Main Idea
1.2 Classical Control vs MPC
1.3 Mathematical Formulation

MPC Part I – Introduction F. Borrelli, C. Jones, M. Morari - Fall Semester 2014 (revised August 2014)

Step 3: Repeat!

Step 2: Execute the first action in the real world and update MDP

Step 1: Solve current MDP (plan) to find a sequence of actions

min
a0,…,aT−1

T−1

∑
t=0

c(st, at)a0
s0

Model Predictive Control (MPC)

17

1 1. Concepts 1.1 Main Idea

Model Predictive Control

P(s)%

Objectives Model Constraints

Plant
Optimizer

Measurements

Output Input Reference

Objectives Model Constraints

PlanDo

PlanDo

PlanDo
Time

Receding horizon strategy introduces feedback.

MPC Part I – Introduction F. Borrelli, C. Jones, M. Morari - Fall Semester 2014 (revised August 2014) 1-4

1 1. Concepts 1.2 Classical Control vs MPC

Table of Contents

1. Concepts
1.1 Main Idea
1.2 Classical Control vs MPC
1.3 Mathematical Formulation

MPC Part I – Introduction F. Borrelli, C. Jones, M. Morari - Fall Semester 2014 (revised August 2014)

Step 3: Repeat!

Step 2: Execute the first action in the real world and update state

Step 1: Solve current MDP (plan) to find a sequence of actions

min
a1,…,aT

T

∑
t=1

c(st, at)s1
a1

Model Predictive Control (MPC)

18

1 1. Concepts 1.1 Main Idea

Model Predictive Control

P(s)%

Objectives Model Constraints

Plant
Optimizer

Measurements

Output Input Reference

Objectives Model Constraints

PlanDo

PlanDo

PlanDo
Time

Receding horizon strategy introduces feedback.

MPC Part I – Introduction F. Borrelli, C. Jones, M. Morari - Fall Semester 2014 (revised August 2014) 1-4

1 1. Concepts 1.2 Classical Control vs MPC

Table of Contents

1. Concepts
1.1 Main Idea
1.2 Classical Control vs MPC
1.3 Mathematical Formulation

MPC Part I – Introduction F. Borrelli, C. Jones, M. Morari - Fall Semester 2014 (revised August 2014)

Step 3: Repeat!

Step 2: Execute the first action in the real world and update state

Step 1: Solve current MDP (plan) to find a sequence of actions

min
a2,…,aT+1

T+1

∑
t=2

c(st, at)s2
a2

The Big Challenges

19

Problem 1: Don’t know the terrain ahead of time!

Problem 2: Don’t have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

Problem 2: Don’t have a perfect dynamics model!

20

Let’s say there is an
unknown gust of wind

pushing you off the path

What is the problem mathematically?

min
a0,…,aT−1

T−1

∑
t=0

c(st, at)
(Solve for a sequence

of actions)
(Sum over all costs)

st+1 = 𝒯(st, at)
(Transition function)

Is the transition function fully known?

Problem 2: Don’t have a perfect dynamics model!

22

Plan with incorrect
transition model and replan!

Theorem:
An optimal

policy in an incorrect model
has bounded suboptimality

in the real model

The Big Challenges

23

Problem 1: Don’t know the terrain ahead of time!

Problem 2: Don’t have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

Problem 3: Not enough time to plan all the way to goal!

24

No-fly-zones

Mountains

20
0

ki
lo

m
et

er
s

NFZ Mountain
NFZ

Mountain

Path

(a) (b)

NFZ

Mountain

0s

Time to
Collision

10s
Gradient
direction

NFZ

Mountain

Optimizer path

Time to
collision < 3s

(c) (d)

NFZ

Mountain

RRT* Path

RRT* Tree

NFZ

Mountain

RRT* Path Optimizer path

(e) (f)

0 100 200 300 400 500 600
1

1.5

2

2.5

3

3.5

4

Number of Vertices in Tree

N
o

rm
a

li
z
e

d
 C

o
s
t

o
f

P
a

th
 t

o
 G

o
a

l

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

10

Iteration Steps

N
o

rm
a

liz
e

d
 C

o
st

 o
f

P
a

th
 t

o
 G

o
a

l

(g) (h)

Fig. 20: Flying between a NFZ and an unmapped mountain in Mesa, AZ (a) The skid camera view of the scenario (b) The
sensor’s view of the situation (c) The gradient due to the time to collision pushes the trajectory into the forbidden NFZ. (d)
The optimizer gets stuck in a local minima and has a critically low time to collision (e) The RRT*-AR tree is very diverse and
contorts to find a near optimal trajectory (f) Comparison of the RRT*-AR trajectory to optimizer shows that RRT*-AR is safer
(g) The best path in the RRT*-AR tree converges near optimal after sampling around 320 vertices. (h) The local optimizer
cannot lower cost below a certain limit because perturbations at this point enter the NFZ.

16

CHOMP1 path

RRT*Tunnel1 path

Search tree
RRT*Tunnel1 path

CHOMP1 path

RRT*Tunnel1
convergence

CHOMP1
convergence

Figure 39: Ensemble { RRT*Tunnel1, CHOMP1 } performance in mountainous terrain - datapoint where
RRT*Tunnel1 finds a good solution. (a) Flying between a NFZ and an unmapped mountain in Mesa, AZ (The
skid camera view) (b) The mapped environment and traced path (c) The gradient due to the time to collision points
into the no-fly-zone (d) CHOMP1 gets stuck in a bad local minimum and has a critically low time to collision (e) The
RRT*Tunnel1 is very diverse and contorts to find a near optimal trajectory (f) Comparison of the RRT*Tunnel1

trajectory to CHOMP1 shows that RRT*Tunnel1 is safer (g) The best path in the RRT*Tunnel1 tree converges near
optimal after sampling around 320 vertices. (h) CHOMP1 cannot lower cost below a certain limit because perturbations
violate no-fly-zone constraint.

Problem:
Take forever to plan at high

resolution ALL the way to goal

Example mission:

Fly from Phoenix to Flagstaff
as fast as possible (200 km)

What is the problem mathematically?

min
a0,…,aT−1

T−1

∑
t=0

c(st, at)
(Solve for a sequence

of actions)
(Sum over all costs)

How large can T be?

s0 sT

a0 a1 a2s1
s2

What if we planned till a shorter time horizon T’?

min
a0,…,aT′ −1

T′ −1

∑
t=0

c(st, at)
(Solve for a sequence

of actions)
(Sum over all costs)

s0

a0 a1 a2s1
s2

s3

Is this even allowed???

Would we get the same
solution for ?a0

We have to add in a terminal value for the final state

min
a0,…,aT′ −1

T′ −1

∑
t=0

c(st, at)
(Solve for a sequence

of actions)
(Sum over all costs)

Can we compute the optimal value V*?

+V⋆(s′ T)
(Optimal value of

state)sT′

If not, how can we approximate it

Idea: Use a global planner to approximate ̂V⋆

min
a0,…,aT′ −1

T′ −1

∑
t=0

c(st, at)
(Solve for a sequence

of actions)
(Sum over all costs)

For example: Run a 2D planner from to the goalsT

+ ̂V⋆(s′ T)
(Approximate value of

state)sT′

Use the cost of that plan to compute approximate value

