Model Predictive Control and the Unreasonable Effectiveness of Replanning

Sanjiban Choudhury

Landscape of Planning / Control Algorithms

Goal: Plan for a real-world helicopter

Recap: Solving a MDP

Brainstorm: Challenges in solving MDP for helicopter

The Big Challenges

Problem 1: Don't know the terrain ahead of time!

Problem 2: Don't have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

The Big Challenges

Problem 1: Don't know the terrain ahead of time!

Activity!

Brainstorm!

Find a sequence of actions to go from start to goal.

The helicopter can only sense upto 1 km .

How should it deal with unknown terrain? What assumptions can it make?

What is the problem mathematically?

Is the transition function fully known?
If not, then how can we solve the optimization problem?

Idea: Plan with an optimistic model

Assume that any unknown space is fully traversable.

Update model as you get information from real world. Replan!

Plan optimistically and replan as you learn more about the world

Be Optimistic and Replan!

Model Predictive Control (MPC)

Step 1: Solve current MDP (plan) to find a sequence of actions
Step 2: Execute the first action in the real world and update MDP
Step 3: Repeat!

Model Predictive Control (MPC)

Step 1: Solve current MDP (plan) to find a sequence of actions
Step 2: Execute the first action in the real world and update state
Step 3: Repeat!

Model Predictive Control (MPC)

Step 1: Solve current MDP (plan) to find a sequence of actions
Step 2: Execute the first action in the real world and update state
Step 3: Repeat!

The Big Challenges

Problem 2: Don't have a perfect dynamics model!

Problem 2: Don't have a perfect dynamics model!

Let's say there is an unknown gust of wind pushing you off the path

What is the problem mathematically?

Is the transition function fully known?

Problem 2: Don't have a perfect dynamics model!

Plan with incorrect

Theorem:
An optimal
policy in an incorrect model has bounded suboptimality in the real model

The Big Challenges

Problem 3: Not enough time to plan all the way to the goal!

Problem 3: Not enough time to plan all the way to goal!

Example mission:

Fly from Phoenix to Flagstaff as fast as possible (200 km)

Problem:
Take forever to plan at high resolution ALL the way to goal

What is the problem mathematically?

What if we planned till a shorter time horizon T'?

min
 $$
a_{0}, \ldots, a_{T^{\prime}-1}
$$

(Solve for a sequence of actions)

Is this even allowed???

Would we get the same solution for a_{0} ?

We have to add in a terminal value for the final state
(Solve for a sequence of actions)
${ }_{\Sigma}^{\pi}$
${ }_{\Sigma}^{\pi}$
$c\left(s_{t}, a_{t}\right)+V^{\star}\left(s_{T}^{\prime}\right)$
$c\left(s_{t}, a_{t}\right)+V^{\star}\left(s_{T}^{\prime}\right)$
(Optimal value of state $s_{T^{\prime}}$)

Idea: Use a global planner to approximate \hat{V}^{\star}
(Solve for a sequence of actions)

$$
\underline{T^{\prime}-1}
$$

$c\left(s_{t}, a_{t}\right)+\hat{V}^{\star}\left(s_{T}^{\prime}\right)$
(Approximate value of state $s_{T^{\prime}}$)

For example: Run a 2 D planner from s_{T} to the goal
Use the cost of that plan to compute approximate value

