
Model Predictive Control and the
Unreasonable Effectiveness of Replanning

Sanjiban Choudhury

1

Goal: Design a complete planning/control architecture for
real robot systems?

2

Landscape of Planning / Control Algorithms

3

High-level path
planning

LazySP /
Halton Sampling

Low-level control

LQR

lqr: the analytic mdp 29

Figure 2.3.1: Solving inverted
pendulum swing up using LQR
tracking.

LQR for Linear Time-Varying Dynamical Systems

Thus far, we have assumed that we were modeling a linear, time-
invariant system. As we will see, we might be interested in systems
that are linear, but time varying

xt+1 = Atxt + Btut (2.3.1)

c(xt, ut) = xt
>Qtxt + u>

t Rtut (2.3.2)

In this case, the LQR equations are simply updated to

Kt = �(B>
t Vt+1Bt + Rt)

�1B>
t Vt+1 At (2.3.3)

Vt = Qt + K>
t RtKt + (At + BtKt)

>Vt+1(At + BtKt) (2.3.4)

Affine Quadratic Regulation

Let’s now consider a generic affine system with time varying dynam-
ics At and Bt and a state offset xoff

t :

xt+1 = Atxt + Btut + xoff
t . (2.3.5)

Affine problems can be converted to linear problems by using homo-
geneous coordinates8: 8 https://en.wikipedia.org/wiki/

Homogeneous_coordinates

x̃ =

"
x
1

#
(2.3.6)

x̃t+1 =

"
At xoff

t
0 1

#
x̃t +

"
Bt

0

#
ut

.
= Ãt x̃t + B̃tut (2.3.7)

This is just a new LQR problem with modified state and dynamics
and a new cost defined as c(x̃t, ut) = x̃>

t Q̃t x̃t + u>
t Rtut, where the

choice of Q̃ is problem dependent. We will later see how we can
design Q̃ for the tracking problem. The Affine Quadratic Regulation
problem can then be solved in exactly the same way as the LQR
problem.9 9 Essentially the same trick can be

applied to enable us to have linear
cost functions terms in the controls as
well, but we defer this to the general
formulation derived at the end.

Landscape of Planning / Control Algorithms

4

Low-level control High-level path
planning

LQR
LazySP /

Halton Sampling

lqr: the analytic mdp 29

Figure 2.3.1: Solving inverted
pendulum swing up using LQR
tracking.

LQR for Linear Time-Varying Dynamical Systems

Thus far, we have assumed that we were modeling a linear, time-
invariant system. As we will see, we might be interested in systems
that are linear, but time varying

xt+1 = Atxt + Btut (2.3.1)

c(xt, ut) = xt
>Qtxt + u>

t Rtut (2.3.2)

In this case, the LQR equations are simply updated to

Kt = �(B>
t Vt+1Bt + Rt)

�1B>
t Vt+1 At (2.3.3)

Vt = Qt + K>
t RtKt + (At + BtKt)

>Vt+1(At + BtKt) (2.3.4)

Affine Quadratic Regulation

Let’s now consider a generic affine system with time varying dynam-
ics At and Bt and a state offset xoff

t :

xt+1 = Atxt + Btut + xoff
t . (2.3.5)

Affine problems can be converted to linear problems by using homo-
geneous coordinates8: 8 https://en.wikipedia.org/wiki/

Homogeneous_coordinates

x̃ =

"
x
1

#
(2.3.6)

x̃t+1 =

"
At xoff

t
0 1

#
x̃t +

"
Bt

0

#
ut

.
= Ãt x̃t + B̃tut (2.3.7)

This is just a new LQR problem with modified state and dynamics
and a new cost defined as c(x̃t, ut) = x̃>

t Q̃t x̃t + u>
t Rtut, where the

choice of Q̃ is problem dependent. We will later see how we can
design Q̃ for the tracking problem. The Affine Quadratic Regulation
problem can then be solved in exactly the same way as the LQR
problem.9 9 Essentially the same trick can be

applied to enable us to have linear
cost functions terms in the controls as
well, but we defer this to the general
formulation derived at the end.

Plan over long horizons

Ignore dynamics /
uncertainty

Handle dynamics +
uncertainty

Short Horizons

Linear, quadratic

5

LQR is cute…
But what if my

robot is not linear?

Goal: Solve a general continuous time MDP

6

min
x0:T−1,u0:T−1

T−1

∑
t=0

c(xt, ut)

xt+1 = f(xt, ut)

Nonlinear!

Nonlinear!

Iterative LQR (ILQR) to the rescue!

7

Three simple steps!

Step 1: Forward pass - roll out current guess u(t)

Step 2: Linearize dynamics, quadricize cost around roll out

Step 3: Backwards pass - compute LQR gains at each timeKt

R
ep

ea
t!

Landscape of Planning / Control Algorithms

8

Low-level control High-level path
planning

LQR

LazySP /
Halton Sampling

lqr: the analytic mdp 29

Figure 2.3.1: Solving inverted
pendulum swing up using LQR
tracking.

LQR for Linear Time-Varying Dynamical Systems

Thus far, we have assumed that we were modeling a linear, time-
invariant system. As we will see, we might be interested in systems
that are linear, but time varying

xt+1 = Atxt + Btut (2.3.1)

c(xt, ut) = xt
>Qtxt + u>

t Rtut (2.3.2)

In this case, the LQR equations are simply updated to

Kt = �(B>
t Vt+1Bt + Rt)

�1B>
t Vt+1 At (2.3.3)

Vt = Qt + K>
t RtKt + (At + BtKt)

>Vt+1(At + BtKt) (2.3.4)

Affine Quadratic Regulation

Let’s now consider a generic affine system with time varying dynam-
ics At and Bt and a state offset xoff

t :

xt+1 = Atxt + Btut + xoff
t . (2.3.5)

Affine problems can be converted to linear problems by using homo-
geneous coordinates8: 8 https://en.wikipedia.org/wiki/

Homogeneous_coordinates

x̃ =

"
x
1

#
(2.3.6)

x̃t+1 =

"
At xoff

t
0 1

#
x̃t +

"
Bt

0

#
ut

.
= Ãt x̃t + B̃tut (2.3.7)

This is just a new LQR problem with modified state and dynamics
and a new cost defined as c(x̃t, ut) = x̃>

t Q̃t x̃t + u>
t Rtut, where the

choice of Q̃ is problem dependent. We will later see how we can
design Q̃ for the tracking problem. The Affine Quadratic Regulation
problem can then be solved in exactly the same way as the LQR
problem.9 9 Essentially the same trick can be

applied to enable us to have linear
cost functions terms in the controls as
well, but we defer this to the general
formulation derived at the end.

iLQR

9

iLQR seems
hard to implement

…
is there a simple

brute force
approach?

10

Cross Entropy
Search

Credit: https://blog.otoro.net/2017/10/29/visual-evolution-strategies/

Let’s formalize!

The Cross Entropy Algorithm

13

The Cross Entropy Algorithm

14

The Cross Entropy Algorithm

15

The Cross Entropy Algorithm

16

The Cross Entropy Algorithm

17

The Cross Entropy Algorithm

18

Cross Entropy for Gaussian

19

Dθ := 𝒩(μ, Σ)

μt =
1
e

e

∑
i=1

θi

Σt =
1
e

e

∑
i=1

(θi − μt)2

Gaussian Distribution

Mean

Variance

20

Cross Entropy in Action!

GeorgiaTech AutoRally

21

Practical
Issues and

Fixes

Issue 1: What happens to the variance?

22

Σt =
1
e

e

∑
i=1

(θi − μt)2

Simple fix: Add a bit of noise to the variance

Σt =
1
e

e

∑
i=1

(θi − μt)2 + Σnoise

Collapses too quickly!

Issue 2: What if we have a bad batch of samples?

23

μt =
1
e

e

∑
i=1

θi

Simple fix: Slowly update mean

The elites can be bad, and the mean can slingshot into a bad value

μt = μt−1 + η
1
e

e

∑
i=1

θi

Landscape of Planning / Control Algorithms

24

Low-level control High-level path
planning

LQR

LazySP /
Halton Sampling

lqr: the analytic mdp 29

Figure 2.3.1: Solving inverted
pendulum swing up using LQR
tracking.

LQR for Linear Time-Varying Dynamical Systems

Thus far, we have assumed that we were modeling a linear, time-
invariant system. As we will see, we might be interested in systems
that are linear, but time varying

xt+1 = Atxt + Btut (2.3.1)

c(xt, ut) = xt
>Qtxt + u>

t Rtut (2.3.2)

In this case, the LQR equations are simply updated to

Kt = �(B>
t Vt+1Bt + Rt)

�1B>
t Vt+1 At (2.3.3)

Vt = Qt + K>
t RtKt + (At + BtKt)

>Vt+1(At + BtKt) (2.3.4)

Affine Quadratic Regulation

Let’s now consider a generic affine system with time varying dynam-
ics At and Bt and a state offset xoff

t :

xt+1 = Atxt + Btut + xoff
t . (2.3.5)

Affine problems can be converted to linear problems by using homo-
geneous coordinates8: 8 https://en.wikipedia.org/wiki/

Homogeneous_coordinates

x̃ =

"
x
1

#
(2.3.6)

x̃t+1 =

"
At xoff

t
0 1

#
x̃t +

"
Bt

0

#
ut

.
= Ãt x̃t + B̃tut (2.3.7)

This is just a new LQR problem with modified state and dynamics
and a new cost defined as c(x̃t, ut) = x̃>

t Q̃t x̃t + u>
t Rtut, where the

choice of Q̃ is problem dependent. We will later see how we can
design Q̃ for the tracking problem. The Affine Quadratic Regulation
problem can then be solved in exactly the same way as the LQR
problem.9 9 Essentially the same trick can be

applied to enable us to have linear
cost functions terms in the controls as
well, but we defer this to the general
formulation derived at the end.

iLQR

Cross Entropy

Let’s apply what we know!

25

26

27

Takeoff Enroute Touchdown
(Plan to multiple sites)(Avoid sensed obstacles)(Respect power constraints)

Obstacles
in LZ

Mountain

Map created
by sensor

Tower

The Big Challenges

28

Problem 1: Don’t know the terrain ahead of time!

Problem 2: Don’t have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

The Unreasonable Effectiveness of Replanning

The Big Challenges

30

Problem 1: Don’t know the terrain ahead of time!

Problem 2: Don’t have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

Activity!

Think-Pair-Share!

32

Think (30 sec): The helicopter can only sense 1km. How should it
plan through unknown terrain? What assumptions can it make?

Pair: Find a partner

Share (45 sec): Partners exchange
 ideas

3.4. Example algorithm 1: Hybrid local global search (RABIT*) 39

3.4 Example algorithm 1: Hybrid local global search (RABIT*)

Consider the application where a helicopter is required to fly through a mountainous terrain as
shown in Fig. 3.4(a). In addition to this, there are no fly zones that may dynamically appear to
designate the presence of radio towers or power-lines that the system must also stay clear of. On
examining the corresponding path planning problem, shown in Fig. 3.4(b), we see the presence
of “di�cult-to-sample” homotopy classes. On the other hand, the solution to such a problem
may not be uncovered by a pure local search approach.

Start

No Fly
Zone

Goal
Goal

Start
Difficult to

sample
homotopy

classes

(a) (b)

Figure 3.4: An instance of planning problems containing di�cult to sample homotopy classes (a) A helicopter
flying in the mountains with no fly zones appearing dynamically (b) The corresponding planning problem shows
that an e�ective implicit graph for this problem requires edges to “bend” around obstacles. This is because these
regions are di�cult to sample to discover a collision free edge.

(a) (b) (c)

xgoalxstart

xk

xgoalxstartxgoalxstart

xi xi

xj

xi

xj xj

xkxk

Figure 3.5: An illustration of how the RABIT* algorithm uses a local optimizer to exploit obstacle information
and improve a global search. (a) The informed search evaluates the potential edge from xi to xk first as it could
provide a better solution than an edge from xi to xj . (b) The search optionally invokes the local optimizer in
the Steer (xi, xk). (c) This process repeats to create a hybrid search tree where some of the edges are locally
optimized.

We present a hybrid planning algorithm, Regionally Accelerated BIT* (RABIT*) [Choud-
hury et al., 2016a], that integrates the benefits of both methods into a single search. A key
insight is that applying local optimization to a subset of edges likely to improve the solution
avoids the prohibitive cost of optimizing every edge in a global search. This is made possible by
Batch Informed Trees (BIT*) [Gammell et al., 2015], an informed global technique that orders
its search by potential solution quality. In our algorithm, we extend BIT* by using optimization
to exploit local domain information and find alternative connections for edges in collision and
accelerate the search. This improves search performance in problems with di�cult-to-sample

Be Optimistic and Replan!

34https://www.youtube.com/watch?v=qXZt-B7iUyw&feature=youtu.be

Stanford DARPA Challenge, 2007

Be Optimistic and Replan!

https://www.youtube.com/watch?v=qXZt-B7iUyw&feature=youtu.be

Model Predictive Control (MPC)

35

1 1. Concepts 1.1 Main Idea

Model Predictive Control

P(s)%

Objectives Model Constraints

Plant
Optimizer

Measurements

Output Input Reference

Objectives Model Constraints

PlanDo

PlanDo

PlanDo
Time

Receding horizon strategy introduces feedback.

MPC Part I – Introduction F. Borrelli, C. Jones, M. Morari - Fall Semester 2014 (revised August 2014) 1-4

1 1. Concepts 1.2 Classical Control vs MPC

Table of Contents

1. Concepts
1.1 Main Idea
1.2 Classical Control vs MPC
1.3 Mathematical Formulation

MPC Part I – Introduction F. Borrelli, C. Jones, M. Morari - Fall Semester 2014 (revised August 2014)

Step 3: Repeat!

Step 2: Execute the first control and gain new information

Step 1: Using your current information, solve an optimization problem

36

Why does this work?

The Big Challenges

37

Problem 1: Don’t know the terrain ahead of time!

Problem 2: Don’t have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

Problem 2: Don’t have a perfect dynamics model!

38

Let’s say there is an
unknown gust of wind

pushing you off the path

MPC works in many cases!
(For bounded error in dynamics,

the policy has bounded
sub optimality)

The Big Challenges

39

Problem 1: Don’t know the terrain ahead of time!

Problem 2: Don’t have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

Problem 3: Not enough time to plan all the way to goal!

40

No-fly-zones

Mountains

20
0

ki
lo

m
et

er
s

NFZ Mountain
NFZ

Mountain

Path

(a) (b)

NFZ

Mountain

0s

Time to
Collision

10s
Gradient
direction

NFZ

Mountain

Optimizer path

Time to
collision < 3s

(c) (d)

NFZ

Mountain

RRT* Path

RRT* Tree

NFZ

Mountain

RRT* Path Optimizer path

(e) (f)

0 100 200 300 400 500 600
1

1.5

2

2.5

3

3.5

4

Number of Vertices in Tree

N
o

rm
a

li
z
e

d
 C

o
s
t

o
f

P
a

th
 t

o
 G

o
a

l

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

10

Iteration Steps

N
o

rm
a

liz
e

d
 C

o
st

 o
f

P
a

th
 t

o
 G

o
a

l

(g) (h)

Fig. 20: Flying between a NFZ and an unmapped mountain in Mesa, AZ (a) The skid camera view of the scenario (b) The
sensor’s view of the situation (c) The gradient due to the time to collision pushes the trajectory into the forbidden NFZ. (d)
The optimizer gets stuck in a local minima and has a critically low time to collision (e) The RRT*-AR tree is very diverse and
contorts to find a near optimal trajectory (f) Comparison of the RRT*-AR trajectory to optimizer shows that RRT*-AR is safer
(g) The best path in the RRT*-AR tree converges near optimal after sampling around 320 vertices. (h) The local optimizer
cannot lower cost below a certain limit because perturbations at this point enter the NFZ.

16

CHOMP1 path

RRT*Tunnel1 path

Search tree
RRT*Tunnel1 path

CHOMP1 path

RRT*Tunnel1
convergence

CHOMP1
convergence

Figure 39: Ensemble { RRT*Tunnel1, CHOMP1 } performance in mountainous terrain - datapoint where
RRT*Tunnel1 finds a good solution. (a) Flying between a NFZ and an unmapped mountain in Mesa, AZ (The
skid camera view) (b) The mapped environment and traced path (c) The gradient due to the time to collision points
into the no-fly-zone (d) CHOMP1 gets stuck in a bad local minimum and has a critically low time to collision (e) The
RRT*Tunnel1 is very diverse and contorts to find a near optimal trajectory (f) Comparison of the RRT*Tunnel1

trajectory to CHOMP1 shows that RRT*Tunnel1 is safer (g) The best path in the RRT*Tunnel1 tree converges near
optimal after sampling around 320 vertices. (h) CHOMP1 cannot lower cost below a certain limit because perturbations
violate no-fly-zone constraint.

Problem:
Take forever to plan at high

resolution ALL the way to goal

Example mission:

Fly from Phoenix to Flagstaff
as fast as possible (200 km)

41

When does
hierarchical planning

work?
When can it fail?

