Model Predictive Control and the Unreasonable Effectiveness of Replanning

Sanjiban Choudhury

Goal: Design a complete planning/control architecture for real robot systems?

Landscape of Planning / Control Algorithms

Low-level control

High-level path planning

LazySP / Halton Sampling

Landscape of Planning / Control Algorithms

Low-level control

Handle dynamics + uncertainty

Short Horizons

Linear, quadratic

High-level path planning

Plan over long horizons

Ignore dynamics /

uncertainty

Halton Sampling

a7

LQR is cute... But what if my robot is not linear?

Goal: Solve a general continuous time MDP

$\min_{\substack{x_{0:T-1}, u_{0:T-1} \\ t=0}} \sum_{t=0}^{T-1} c(x_t, u_t)$

$$x_{t+1} = f(x_t, u_t)$$

Nonlinear!

Iterative LQR (ILQR) to the rescue! Three simple steps!

Step 1: Forward pass - roll out current guess u(t)eat Step 2: Linearize dynamics, quadricize cost around roll out Å. Step 3: Backwards pass - compute LQR gains K_t at each time

Landscape of Planning / Control Algorithms

Low-level control

iLQR

High-level path planning

LazySP / Halton Sampling

iLQR seems hard to implement

is there a simple brute force approach?

Cross Entropy Search

Credit: https://blog.otoro.net/2017/10/29/visual-evolution-strategies/

Let's formalize!

 \mathcal{D}^{θ}

TNIT

The Cross Entropy Algorithm $\int_{I_{NT}} D_{\theta}$

SAMPLE & TIMES toget & EB: Zk i Jie,

14

SAMPLE & TIMES toget & EB: Zk i Jini

- FVALUATE EACH O:
- · EXECUTE POLICY MULTIPLE TIMES

EVALUATE EACH O:

· EXECUTE POLICY MULTIPLE TIMES

100

100

FVALUATE EACH O:

· EXECUTE POLICY MULTIPLE TIMES

100

100

FIND TOP'E' ELITES (e.g. 25%)

17

FVALUATE EACH O:

· EXECUTE POLICY MULTIPLE TIMES

100

100

100

FIND TOP'E' ELITES (e.g. 25%)

8

FIT A NEW DISTRIBUTION

Cross Entropy for Gaussian

Gaussian Distribution $D_{\theta} := \mathcal{N}(\mu, \Sigma)$

Variance

 $\Sigma^{t} = \frac{1}{2} \sum_{i=1}^{e} (\theta_{i} - \mu^{t})^{2}$ i=1

C

2560, 2.5 second trajectories sampled with cost-weighted average @ 60 Hz

GeorgiaTech AutoRally

Cross Entropy in Action!

Practical Issues and Fixes

Issue 1: What happens to the variance? $\Sigma^{t} = \frac{1}{e} \sum_{i=1}^{e} (\theta_{i} - \mu^{t})^{2}$

Simple fix: Add a bit of noise to the variance

$$\Sigma^{t} = \frac{1}{e} \sum_{i=1}^{e} (\theta_{i} - \mu^{t})^{2} + \Sigma_{noise}$$

Collapses too quickly!

Issue 2: What if we have a bad batch of samples?

The elites can be bad, and the mean can slingshot into a bad value

Simple fix: Slowly update mean

 $\mu^{t} = \frac{1}{e} \sum_{i=1}^{e} \theta_{i}$

 $\mu^{t} = \mu^{t-1} + \eta \frac{1}{e} \sum_{i=1}^{e} \theta_{i}$

Landscape of Planning / Control Algorithms

Low-level control

iLQR

High-level path planning

LazySP / Halton Sampling

Let's apply what we know!

Takeoff(Respect power constraints)

Tower I Map created by sensor

Enroute (Avoid sensed obstacles)

Touchdown (Plan to multiple sites)

Problem 1: Don't know the terrain ahead of time!

Problem 2: Don't have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

The Big Challenges

The Unreasonable Effectiveness of Replanning

Problem 1: Don't know the terrain ahead of time!

Problem 2: Don't have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

The Big Challenges

Think-Pair-Share!

Pair: Find a partner

Share (45 sec): Partners exchange ideas

Think (30 sec): The helicopter can only sense 1km. How should it plan through unknown terrain? What assumptions can it make?

Be Optimistic and Replan!

Be Optimistic and Replan!

Stanford DARPA Challenge, 2007

Step 2: Execute the first control and gain new information

Step 3: Repeat!

- Step 1: Using your current information, solve an optimization problem

Why does this work?

Problem 1: Don't know the terrain ahead of time!

Problem 2: Don't have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

The Big Challenges

Problem 2: Don't have a perfect dynamics model!

Let's say there is an unknown gust of wind pushing you off the path

MPC works in many cases! (For bounded error in dynamics, the policy has bounded sub optimality)

Problem 1: Don't know the terrain ahead of time!

Problem 2: Don't have a perfect dynamics model!

Problem 3: Not enough time to plan all the way to the goal!

The Big Challenges

Problem 3: Not enough time to plan all the way to goal!

Example mission:

Fly from Phoenix to Flagstaff as fast as possible (200 km)

Problem: Take forever to plan at high lution ALL the way to goal

When does hierarchical planning work? When can it fail?

