Learning to Search Sanjiban Choudhury

Learn the underlying cost of a path

CRUSHER robot from CMU

NUBUII

Think-Pair-Share!

Think (30 sec): We want CRUSHER to go from A to B. What are some of the components for the cost function? How can we weigh these various components?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

Wait ... why can't we use DAGGER?

Why learn cost functions vs learn the policy?

Can we learn a cost function for CRUSHER navigation?

Let's formalize!

Learning to Search (LEARCH)

Min distance

Stay on roads

Learning to Search: **Functional Gradient Techniques** for Imitation Learning

Nathan D. Ratliff **Robotics Institute** Carnegie Mellon University Pittsburgh, PA 15213 ndr@ri.cmu.edu

J. Andrew Bagnell **Robotics Institute and Machine Learning** Carnegie Mellon University Pittsburgh, PA 15213 dbagnell@ri.cmu.edu

Stay near trees

Learning to Search (LEARCH) Human demonstration Human demonstration

Given dataset: $\{\xi_i^h, \phi_i\}_{i=1}^N$

(Human demo) (Map)

Learning to Search (LEARCH) Human demonstration

for i = 1, ..., N

 $\xi_i^* = \min_{\xi} [C_{\theta}(\xi, \phi_i) - \gamma(\xi, \xi^h)]$

(Push down human cost)

Loop over datapoints

Call planner!

$\theta^{+} = \theta - \eta \left[\nabla_{\theta} C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \nabla_{\theta} C_{\theta}(\xi_{i}^{*}, \phi_{i}) + \nabla_{\theta} R(\theta) \right]$ # Update cost (Push up planner cost)

Learning to Search

Human demonstration

for i = 1, ..., N

$\xi_i^* = \min_{\xi} [C_{\theta}(\xi, \phi_i) - \gamma(\xi, \xi^h)]$ # Call planner! $\theta^{+} = \theta - \eta \left[\nabla_{\theta} C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \nabla_{\theta} C_{\theta}(\xi_{i}^{*}, \phi_{i}) + \nabla_{\theta} R(\theta) \right]$ # Update cost (Push up planner cost) (Push down human cost)

Loop over datapoints

Learning to Search (LEARCH) Human demonstration

for i = 1, ..., N

$\xi_i^* = \min_{\xi} [C_{\theta}(\xi, \phi_i) - \gamma(\xi, \xi^h)]$

(Push down human cost)

Loop over datapoints

Call planner!

 $\theta^{+} = \theta - \eta \left[\nabla_{\theta} C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \nabla_{\theta} C_{\theta}(\xi_{i}^{*}, \phi_{i}) + \nabla_{\theta} R(\theta) \right]$ # Update cost (Push up planner cost)

