
Conquering Motion Planning
via Sampling and Search

Sanjiban Choudhury

1

The Real World is not Tabular!

2

Dynamic Programming all the way!

 X

π*(st) = arg min
a

[c(st), a) + V*(st+1)]V*(st) = min
a

[c(st, a) + V*(st+1)]

Why is robot
motion planning

hard?

3

Challenge 1: Continuous

4

5

Challenge 1: Continuous

Challenge 2: Configuration Space Geometry

6

Challenge 3: Real-time Constraints

7https://www.youtube.com/watch?v=qXZt-B7iUyw&feature=youtu.be

Stanford DARPA Challenge, 2007

https://www.youtube.com/watch?v=qXZt-B7iUyw&feature=youtu.be

8

Challenge 3: Real-time Constraints

Activity!

Think-Pair-Share!

10

Think (30 sec): Let’s say you have a robot arm cooking with
grandma in the kitchen. How should it quickly plan safe paths?

Pair: Find a partner

Share (45 sec): Partners exchange
 ideas

11

Unified Framework

Create a graph

General framework for motion planning

Search the graph

Interleave

Create a graph

General framework for motion planning

Search the graph

Interleave

How can we make this search faster?

14

Dijkstra

How can we make this search faster?

15

Dijkstra A* with heuristic!

What makes a heuristic good?

16

A* with heuristic!

17

But is the number of expansions really what we
want to minimize in motion planning?

What is the most expensive step?

Edge evaluation is the most expensive step

18

Why?

19

(Schluman et al. ’14)

Check if helicopter
intersects with tower

Check if manipulator
intersects with table

Edge evaluation requires expensive collision checking

Edge evaluation dominates planning time

20

Edge Evaluations

Other

Hauser, Kris., Lazy collision checking in asymptotically-optimal motion planning. ICRA 2015

How do we modify A*
search to minimize edge

evaluation?

21

Let’s revisit Best First Search

22

S

A

B
G

C

Element
(Node)

Priority Value
 (f-value)

Node S f(S)

23

S

A

B
G

C

Element
(Node)

Priority Value
 (f-value)

Node S f(S)

Node A f(A)

Node C f(C)

Let’s revisit Best First Search

What if we never use C? Wasted collision check!

24

S

A

B
G

C

Element
(Node)

Priority Value
 (f-value)

Node S f(S)

Node A f(A)

Node C f(C)

25

Take the thing that’s expensive
(collision checking)

and
procrastinate as long as possible

 till you have to evaluate it!

The Virtue of Laziness

What is the laziest that we can
be?

LazySP
(Lazy Shortest Path)

Dellin and Srinivasa, 2016

First Provably Edge-Optimal A*-like Search Algorithm

26

LazySP

Greedy Best-first Search over Paths

To find the shortest path,
eliminate all shorter paths!

LazySP
Optimism Under Uncertainty

Lazy Search for
Shortest Path

Evaluate Path

Update the Graph

LazySP
Optimism Under Uncertainty

Lazy Search for
Shortest Path

Evaluate Path

Update the Graph

LazySP
Optimism Under Uncertainty

Lazy Search for
Shortest Path

Evaluate Path

Update the Graph

LazySP
Optimism Under Uncertainty

Lazy Search for
Shortest Path

Evaluate Path

Update the Graph

LazySP
Optimism Under Uncertainty

Lazy Search for
Shortest Path

Evaluate Path

Update the Graph

LazySP
Optimism Under Uncertainty

Lazy Search for
Shortest Path

Evaluate Path

Update the Graph

LazySP
Optimism Under Uncertainty

Lazy Search for
Shortest Path

Evaluate Path

Update the Graph

LazySP
Optimism Under Uncertainty

Lazy Search for
Shortest Path

Evaluate Path

Update the Graph

LazySP
Optimism Under Uncertainty

Return shortest feasible path!

A* vs LazySP

A* vs LazySP

A* vs LazySP

A* vs LazySP

A* (191 edges) LAZYSP (38 edges)

A* vs LazySP

How can learning help
make LazySP even lazier?

(i.e. faster)

42

Learn which edges to evaluate (STROLL)

43
LazySP STROLL

Learn which edges to evaluate (STROLL)

LazySP STROLL

45

tl;dr

Create a graph

General framework for motion planning

Search the graph

Interleave

Creating a graph: Abstract algorithm

47

G = (V,E)

Vertices: set of configurations Edges: paths connecting
configurations

48

G = (V,E)

Vertices: set of configurations Edges: paths connecting
configurations

Creating a graph: Abstract algorithm

1. Sample a set of collision free
vertices V (add start and goal)

49

G = (V,E)

Vertices: set of configurations Edges: paths connecting
configurations

Creating a graph: Abstract algorithm

1. Sample a set of collision free
vertices V (add start and goal)

2. Connect “neighboring” vertices to get edges E

Strategy 1: Discretize configuration space

What are the pros? What are the cons?

Create a lattice. Connect neighboring points (4-conn, 8-conn, …)

Theoretical guarantees: Resolution complete

What are the pros? What are the cons?

Randomly sample points. Connect all neighbors in a ball!

Theoretical guarantees: Probabilistically complete

Strategy 2: Uniformly randomly sample

Can we do better than random?

Uniform random sampling tends to
clump

Ideally we would want points to be
spread out evenly

Question: How do we do this without discretization?

Halton Sequence
Intuition: Create a sequence using prime numbers that uniformly densify space

Link for exact algorithm:
https://observablehq.com/@jrus/halton

How can learning help
make better graphs?

54

Learning a Sampler (LEGO)

56

tl;dr

