The Tale of Monty Hall \& The Procrustes Problem

Sanjiban Choudhury

Cornell Bowers CIS Computer Science

Foundations

Probabilistic Inference
Linear Algebra

Tale 1

The Monty Hall Problem

The Monty Hall Problem

The Monty Hall Problem

田

The Monty Hall Problem

The Monty Hall Problem

Activity!

Think-Pair-Share

Think (30 sec): Will you stick with door 1? Or switch to door 2? Justify your decision!

Pair: Find a partner

Share (45 sec): Partners exchange ideas

How is any of this related to robotics?

Robots are

 fundamentallyuncertain

Uncertainty in perception

Localizing object states as an inference problem

The Blindfolded Robot:

 A Bayesian Approach to Planning with Contact Feedback An overview of experimentsBrad Saund, Sanjiban Choudhury, Siddhartha Srinivasa, Dmitry Berenson

Uncertainty in decision making

What did the robot do wrong?

What did the robot do wrong?

Back to the problem

What if there are a 100 doors?

What if Monty is blindfolded?

Tale 2

Procrustes Problem

Rotation? Translation?

Rotation? Translation?

$$
x_{1}, y_{1}
$$

x_{2}, y_{2}

$$
x_{1}^{\prime}, y_{1}^{\prime}
$$

${ }^{\cdot} x_{4}^{\prime}, y_{4}^{\prime}$

$$
x_{4}, y_{4}
$$

Activity!

Think-Pair-Share

Think (30 sec): How can we solve for the unknown rotation?

Pair: Find a partner
Rotation?

Share (45 sec): Partners exchange ideas

Gimbal Lock!

Gimbal locked airplane. When the pitch (green) and yaw (magenta) gimbals become aligned, changes to roll (blue) and yaw apply the same rotation to the airplane.

A real problem in Apollo 13!

How is any of this related to robotics?

Robots

fundamentally
 reason about 3D
 relationships

3D Surface Reconstruction

Planning + Controls

Optimization with over $\mathbf{5 0}$ objectives at $\mathbf{5 0 0}$ iterations/sec

3D Surface Reconstruction

3D Scan Workilow

Explore
Capture

3D Grasp Pose Estimation

Back to the problem

$$
M=\left[\begin{array}{l}
M_{1,1} M_{1,2} \\
M_{2,1} M_{2,2}
\end{array}\right]
$$

tl;dr

The Monty Hall Problem
The Procrustes Problem

