SLAM as Graph Optimization II

Sanjiban Choudhury

Cornell Bowers CIS **Computer Science**

Today's goal

Today's goal

Toy Example with Linear Observations, Linear Dynamics

- Localization: When Pose is **unknown**, but Landmarks are **known**
- SLAM: When Pose is **unknown**, Landmarks are **unknown**
- Both result in Linear Least Squares

Today's goal

Toy Example with Linear Observations, Linear Dynamics

- Localization: When Pose is **unknown**, but Landmarks are **known**
- SLAM: When Pose is **unknown**, Landmarks are **unknown**
- Both result in Linear Least Squares

General Example with Nonlinear Observations, Nonlinear Dynamics

- Define a Factor Graph
- Non-linear Least Squares
- Practical Application

4

Recap

A Toy Example

We have a drone that we are flying around in a circuit

The 2D position is unknown

It observes a landmark whose position is known

Using this observation, the robot updates it's position

Predict the next pose based on dynamics

T=1

11

Observe a landmark

T=1

12

Update pose

T=1

How do we mathematically solve for the poses at t=0,1,2,3,4?

16

Now ... what if we don't know all the landmarks?

We have a drone that we are flying around in a circuit

Let's say we know the pose at t=0, landmark at t=0

The pose at t=1 is unknown.

T = 1

We observe a landmark. but **don't know it's pose either**.

T = 1

We latch on to the wrong pose

Continue deviating further ...

T=2

Continue deviating further ...

Now at t=4, we see the same landmark as t=0

This should "snap" us to the correct position!

Now the estimate at T=3 is inconsistent

We correct that one as well

Correct t=2, t=1!

Let's do math!

Application: SLAM for self-driving

Application: SLAM for UAV Mapping

Rotation? Translation?

(treaser) Withmenter [6]

Let's formulate

Takeaways

- **Toy Example** with Linear Observations, Linear Dynamics \checkmark Localization: When Pose is **unknown**, but Landmarks are **known** ✓ SLAM: When Pose is **unknown**, Landmarks are **unknown** ✓ Both result in Linear Least Squares **General Example** with Nonlinear Observations, Nonlinear Dynamics ✓ Define a Factor Graph ✓ Non-linear Least Squares
 - \checkmark Practical Application

