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Estimate state from observations



Perception so far …
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State of the robot 
is known 

State of objects is unknown



Perception so far …
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Observe through camera 
segment objects,  
predict 3D pose

State of objects is unknown



What if we don’t know where the robot is?
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Position of 
robot is 
unknown



Real World Applications
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Skydio



9



A Toy Example



11We have a drone that we are flying around in a circuit



12The 2D position is unknown

T=0



13It observes a landmark whose position is known

T=0



14Using this observation, the robot updates it’s position 

T=0



15

T=1

Predict the next pose based on dynamics
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T=1

Observe a landmark
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T=1

Update pose
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T=2



19

T=3



20How do we mathematically solve for the poses at t=0,1,2,3,4 ?

T=4



Let’s do math!



Now … what if we  
don’t know all the landmarks?



23We have a drone that we are flying around in a circuit



24Let’s say we know the pose at t=0, landmark at t=0

T=0
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T=1

The pose at t=1 is unknown.
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T=1

We observe a landmark. but don’t know it’s pose either.



27

T=1

We latch on to the wrong pose
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T=2

Continue deviating further ..
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T=3

Continue deviating further ..
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T=4

Now at t=4, we see the same landmark as t=0
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T=4

This should “snap” us to the correct position!
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T=4

Now the estimate at T=3 is inconsistent
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T=4

We correct that one as well
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T=4

Correct t=2, t=1!



What is the key insight?
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At every timestep, we have to solve for the 
entire sequence of poses and landmarks

How do we do this mathematically?



SLAM 
(Simultaneous Localization 

and Mapping)
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16-833, Spring 20172

The SLAM Problem (t=0)

Robot

Landmark

Landmark
measurement

Onboard sensors:
ʹ Wheel odometry
ʹ Inertial measurement unit 

(gyro, accelerometer)
ʹ Sonar
ʹ Laser range finder
ʹ Camera
ʹ RGB-D sensors

Credit CMU: Robot Localization and Mapping (16-833).

http://www.cs.cmu.edu/~kaess/teaching/16833/Spring2023/


16-833, Spring 20183

The SLAM Problem (t=1)

Robot

Landmark 1 Landmark 2

Odometry measurement

Landmark
measurement

Credit CMU: Robot Localization and Mapping (16-833).

http://www.cs.cmu.edu/~kaess/teaching/16833/Spring2023/


16-833, Spring 20184

The SLAM Problem (t=n-1)

Robot

Landmark 1 Landmark 2

Odometry measurement

Landmark
measurement

Credit CMU: Robot Localization and Mapping (16-833).

http://www.cs.cmu.edu/~kaess/teaching/16833/Spring2023/


16-833, Spring 20185

The SLAM Problem (t=n)

Odometry measurement

Landmark
measurement

Credit CMU: Robot Localization and Mapping (16-833).

http://www.cs.cmu.edu/~kaess/teaching/16833/Spring2023/


16-833, Spring 20186

Factor Graph Representation of SLAM

Bipartite graph with variable nodes and factor nodes

Robot pose

Landmark position
Landmark
measurement

Odometry measurement

Credit CMU: Robot Localization and Mapping (16-833).

http://www.cs.cmu.edu/~kaess/teaching/16833/Spring2023/


16-833, Spring 20177

Factor Graph Representation of SLAM

Bipartite graph with variable nodes and factor nodes

Loop closing constraint

Robot pose

Landmark position
Landmark
measurement

Odometry measurement

Credit CMU: Robot Localization and Mapping (16-833).

http://www.cs.cmu.edu/~kaess/teaching/16833/Spring2023/


16-833, Spring 201711

Variables and Measurements

ͻVariables:

Might include other quantities such as lines, planes and 
calibration parameters

ͻMeasurements:

 is a prior to fix the gauge freedom (all other measurements are relative!)

ȣ ൌ ሼݔǡ ଵݔ ǡݔڮ ݈ଵǡ ݈ଶሽ

� ൌ ሼǡ ଵݑ ǡ݉ଵݑڮ ସሽ݉ڮ

Credit CMU: Robot Localization and Mapping (16-833).

http://www.cs.cmu.edu/~kaess/teaching/16833/Spring2023/


16-833, Spring 201712

Finding the Best Solution

Our goal is to find the ȣ that maximizes  ȣ ܼ

Credit CMU: Robot Localization and Mapping (16-833).

http://www.cs.cmu.edu/~kaess/teaching/16833/Spring2023/
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16-833, Spring 201715

Bayes Rule

Our goal is to find the ȣ that maximizes  ȣ ܼ

 ȣ ܼ ൌ
 ܼ ȣ ሺȣሻ

ሺܼሻ

Note:
ͻ While the measurements Z are given, the generative sensor 

models provide us with likelihood functions �ሺȣǢ ሻݖ ן  ݖ ȣ
ͻ Evidence is independent of ȣ

Posterior

Likelihood Prior

Evidence

Credit CMU: Robot Localization and Mapping (16-833).

http://www.cs.cmu.edu/~kaess/teaching/16833/Spring2023/
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16-833, Spring 201716

Maximum Likelihood and Maximum A Posteriori

ͻMaximum A Posteriori (MAP)

ͻMaximum Likelihood Estimator (MLE)

ȣெ ൌ ������  ܼ ȣ ሺȣሻ

ȣொ ൌ ������ ሺȣǢܮ ܼሻ

Credit CMU: Robot Localization and Mapping (16-833).

http://www.cs.cmu.edu/~kaess/teaching/16833/Spring2023/


16-833, Spring 201717

Factorization of Probability Density

ͻConditional independence:

������ෑ
௭א

 ሺݖȁȣሻ

������  ȁȣ  ሺݑଵȁȣሻڮሺݑȁȣሻ  ሺ݉ଵȁȣሻ ሺ݉ସȁȣሻڮ

 ଶȁȣݖଵݖ ൌ  ଵݖ ȣ  ሺݖଶȁȣሻ

Credit CMU: Robot Localization and Mapping (16-833).

http://www.cs.cmu.edu/~kaess/teaching/16833/Spring2023/


16-833, Spring 201719

SLAM as a Least-Squares Problem

������


݄ ȣ െ ݖ ଶ

Gaussian noise

������ఏ ߠܣ െ ܾ ଶ

������ෑ
௭א

 ሺݖȁȣሻ

ߠܣ்ܣ ൌ ்ܾܣ

Normal equations:

Credit CMU: Robot Localization and Mapping (16-833).

http://www.cs.cmu.edu/~kaess/teaching/16833/Spring2023/

