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What is a model?

Pθ(st+1 |st, at)



Why Model?



Models are necessary
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Robots can’t just try out random actions in the world!



Learning Models.



10

(Early work in Model Based RL by Pieter Abeel et al. 2010  
https://people.eecs.berkeley.edu/~pabbeel/autonomous_helicopter.html)

https://people.eecs.berkeley.edu/~pabbeel/autonomous_helicopter.html


Models: From Simple to Complex
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Simple Complex

Physics Models Human Models Open World Models

https://www.youtube.com/watch?v=Ia4IYnD6I18


Models: From Simple to Complex
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Models: From Simple to Complex
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Models: From Simple to Complex
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Models: From Simple to Complex
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Activity!
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Modelling Tamago Sushi



Think-Pair-Share!
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Think (30 sec): How would you model making tamago sushi? 

Pair: Find a partner 

Share (45 sec): Partners exchange  
       ideas 



Challenges with learning complex models
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Challenge 1: High-dimensional observations

Challenge 2: Planning with Complex Dynamics



Reconstructed 
image

Image

X X̂ = F(X)F

“Coral”“Fish”

From MIT 6.8300/6.8301: Advances in Computer Vision
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Collect 
Expert Data

Rollout 
Policy

Planner
Fit 

Model

Recall from previous lecture!
(Ross & Bagnell, 2012)



What if we don’t have 
expert data?
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The 
DREAMER 
Algorithm



26



27

Execute policy 
in World

Update 
Policy

Fit 
Model

DREAMER



28

Update 
Policy

Fit 
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Goal: Fit a Model
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Given: 
Observations, rewards, 

actions



Goal: Fit a Model
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Given: 
Observations, rewards, 

actions

Predict: 
States,  

Dynamics Function, 
Reward Function

s1 s2 s3
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Actions

Observations
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pθ(st |ot, st−1, at−1)

s1 s2 s3

State Encoder
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s1 s2 s3

qθ(rt |st)
Reward Decoder
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qθ(ot |st)
Observation Decoder

s1 s2 s3
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qθ(st |st−1, at−1)
Dynamics 
Function

s1 s2 s3



Results: Learning World Model
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Goal: Learn a Policy using Actor-Critic
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πϕ(at |st) Vψ(st)

Actor Critic

From rollouts in the model 

qθ(st |st−1, at−1)
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s1
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Rollout policy 
πϕ(at |st)

s1 s2 s3
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s1 s2 s3

qθ(rt |st)

Predict rewards  
(Freeze gradients)
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s1 s2 s3

Vψ(st)
Update critic
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s1 s2 s3

Update actor
πϕ(at |st)



DREAMER: Results
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Are we done?
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Atari was hard for Model Based RL
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DreamerV2 beats all model free!
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Problem: Dreamer V1  
predicts a single mode of 

dynamics



Dreamer V1 predicts single mode dynamics
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Idea: Predict multiple discrete modes!
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Are we done?
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MineRL Diamond Challenge
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MineRL Diamond Challenge
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DreamerV3 solved this task!
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Problem: Scale of rewards, 
values vary wildly across 

domains



Solution: “Squash” predictions with symlog function 
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Solution: “Squash” predictions with symlog function 
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DreamerV3 scales really well!
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tl;dr

DreamerV1 Extensions (V2, V3)


