Generative World Models: The Dreamer Models

Sanjiban Choudhury

Cornell Bowers C^IS **Computer Science**

Prediction

Decision Making

Models.

What is a model?

What is a model?

What is a model?

$P_{\theta}(S_{t+1} \mid S_t, a_t)$

Why Model?

Models are *necessary*

Robots can't just try out random actions in the world!

Learning Models.

(Early work in Model Based RL by Pieter Abeel et al. 2010 <u>https://people.eecs.berkeley.edu/~pabbeel/autonomous_helicopter.html</u>)

Stanford University Autonomous Helicopter

Alar Annual Property and A

Physics Models

Simple

Open World Models

Simple

Physics Models

Simple

Know state

Strong prior on dynamics

Physics Models

Simple

Know state

Strong prior on dynamics

14

Know state

Unknown dynamics

Physics Models

Simple

Know state

Strong prior on dynamics

Open World Models

Unknown state

Unknown dynamics

Know state

nknown dynamics

Modelling Tamago Sushi

Think-Pair-Share!

Think (30 sec): How would you model making tamago sushi?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

Challenges with learning complex models

Challenge 2: Planning with Complex Dynamics

Challenge 1: High-dimensional observations

Image

From MIT 6.8300/6.8301: Advances in Computer Vision

Reconstructed image

Previous State S_{t-1}

Action "Flip"

Recall from previous lecture! (Ross & Bagnell, 2012)

What if we don't have expert data?

The DREAMER Algorithm

DREAM TO CONTROL: LEARNING BEHAVIORS BY LATENT IMAGINATION

Danijar Hafner * University of Toronto Google Brain Timothy LillicrapJimmy BaDeepMindUniversity of Toronto

Mohammad Norouzi Google Brain

DREAMER

DREAMER

Given: Observations, rewards, actions

Goal: Fit a Model

r, a., a,

Given: Observations, rewards, actions

Predict: States, Dynamics Function, **Reward Function**

S

Goal: Fit a Model

а

 S_2

а,

 S_3

Actions

Observations

compute states

 $p_{\theta}(s_t | o_t, s_{t-1}, a_{t-1})$

State Encoder

compute states

predict rewards

 $q_{\theta}(r_t \mid s_t)$

Reward Decoder

reconstruction

 $q_{\theta}(o_t | s_t)$ Observation Decoder

$q_{\theta}(s_t | s_{t-1}, a_{t-1})$ Dynamics Function

Results: Learning World Model

Input Images

Future Outcomes

DREAMER

Goal: Learn a Policy using Actor-Critic

 $\pi_{\phi}(a_t \mid s_t)$

Actor

From rollouts in the model

 $q_{\theta}(s_t)$

$V_{\psi}(s_t)$

Critic

$$S_{t-1}, a_{t-1})$$

0,

UU

0

ΨU

imagine ahead

Rollout policy $\pi_{\phi}(a_t | s_t)$

(+ 1

imagine ahead

predict rewards

Predict rewards (Freeze gradients) $q_{\theta}(r_t | s_t)$

imagine ahead

predict rewards

predict values

Update critic $V_{\psi}(s_t)$

predict values

Update actor $\pi_{\phi}(a_t | s_t)$

+++

DREAMER: Results

Sparse Cartpole Acrobot Swingup

Hopper Hop

Walker Run

Quadruped Run

Boxing

Freeway

Frostbite

Collect Objects

Are we done?

MASTERING ATARI WITH DISCRETE WORLD MODELS

Danijar Hafner* Google Research

Timothy Lillicrap DeepMind

Mohammad Norouzi Google Research Jimmy Ba University of Toronto

Atari was hard for Model Based RL

Atari Performance

DreamerV2 beats all model free!

Atari Performance

Problem: Dreamer V1 predicts a single mode of <u>dynamics</u>

Dreamer V1 predicts single mode dynamics

Images Posteriors

Idea: Predict multiple discrete modes!

Possible Next Images Posteriors

Sparse Representation

32 classes each

Model

Are we done?

Mastering Diverse Domains through World Models

Danijar Hafner¹², Jurgis Pasukonis¹, Jimmy Ba², Timothy Lillicrap¹

¹DeepMind ²University of Toronto

MineRL Diamond Challenge

MineRL Diamond Challenge

Gather Wood

Create Wood Pickaxe

Create Furnace

 \longrightarrow

Smelt Iron and Create Iron Pickaxe

Mine Stone and Create Stone Pickaxe

Mine Iron Ore

Search

Mine Diamond

DreamerV3 solved this task!

DreamerV3 First Diamond from Scratch

Problem: Scale of rewards, values vary wildly across domains

Solution: "Squash" predictions with symlog function

Solution: "Squash" predictions with symlog function

 $\mathcal{L}(\theta) \doteq \frac{1}{2} (f(x, \theta) - \text{symlog})$ $\operatorname{symlog}(x) \doteq \operatorname{sign}(x) \ln(|x|+1)$

$$(y))^2 \qquad \hat{y} \doteq \operatorname{symexp}(f(x,\theta))$$

 $\operatorname{symexp}(x) \doteq \operatorname{sign}(x)(\exp(|x|) - 1)$

DreamerV3 scales really well!

tl,dr

Challenges with learning complex models

Challenge 1: Partial Observability

Challenge 2: Planning with Complex Dynamics

Extensions (V2, V3)

