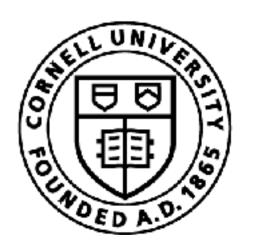
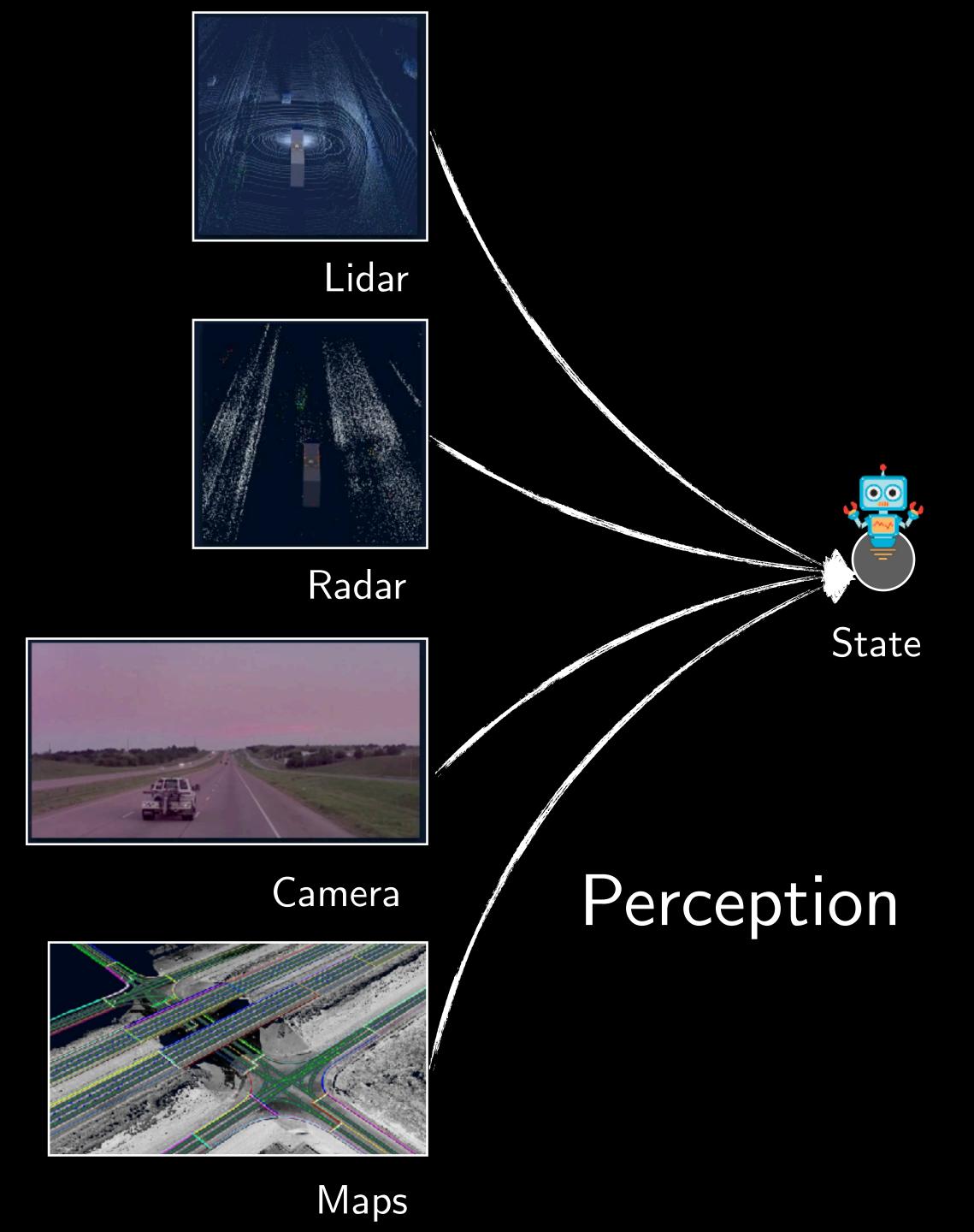
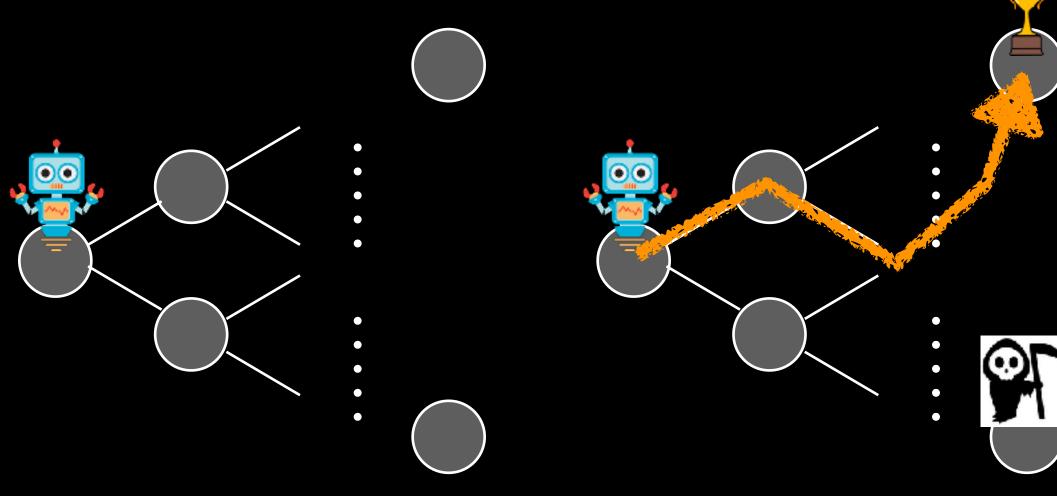
Forecasting in Self-Driving

Sanjiban Choudhury



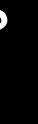
Cornell Bowers C^IS **Computer Science**

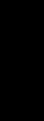


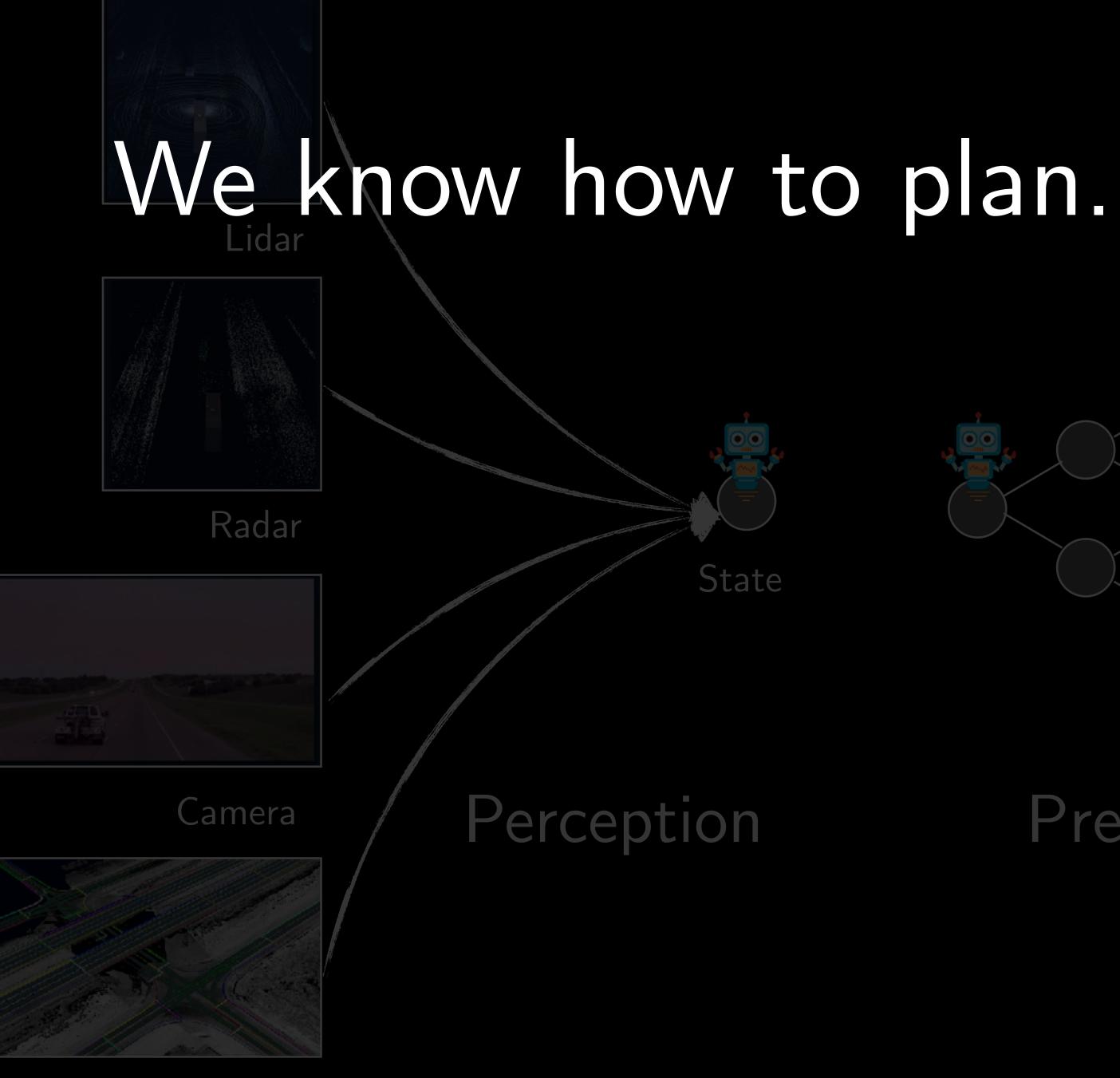


Prediction

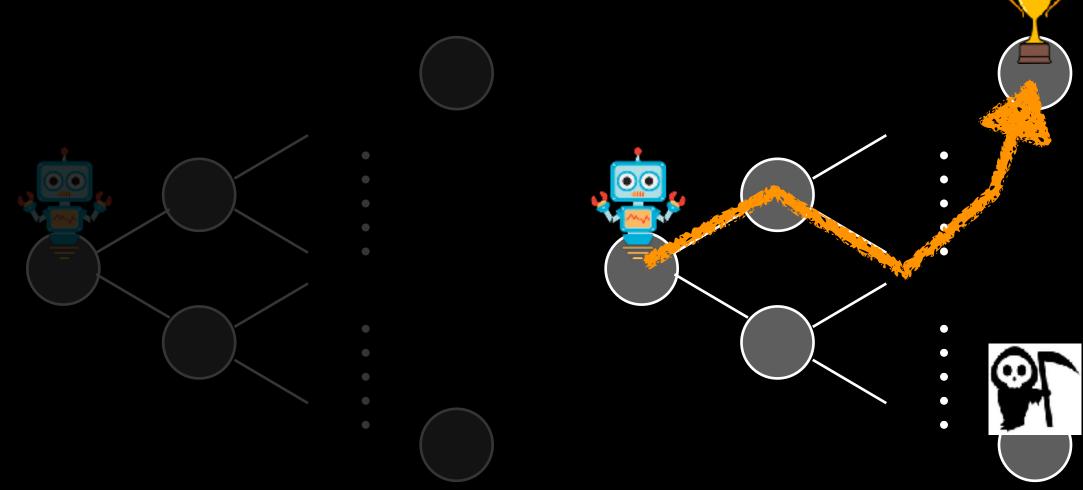
Decision Making





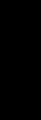


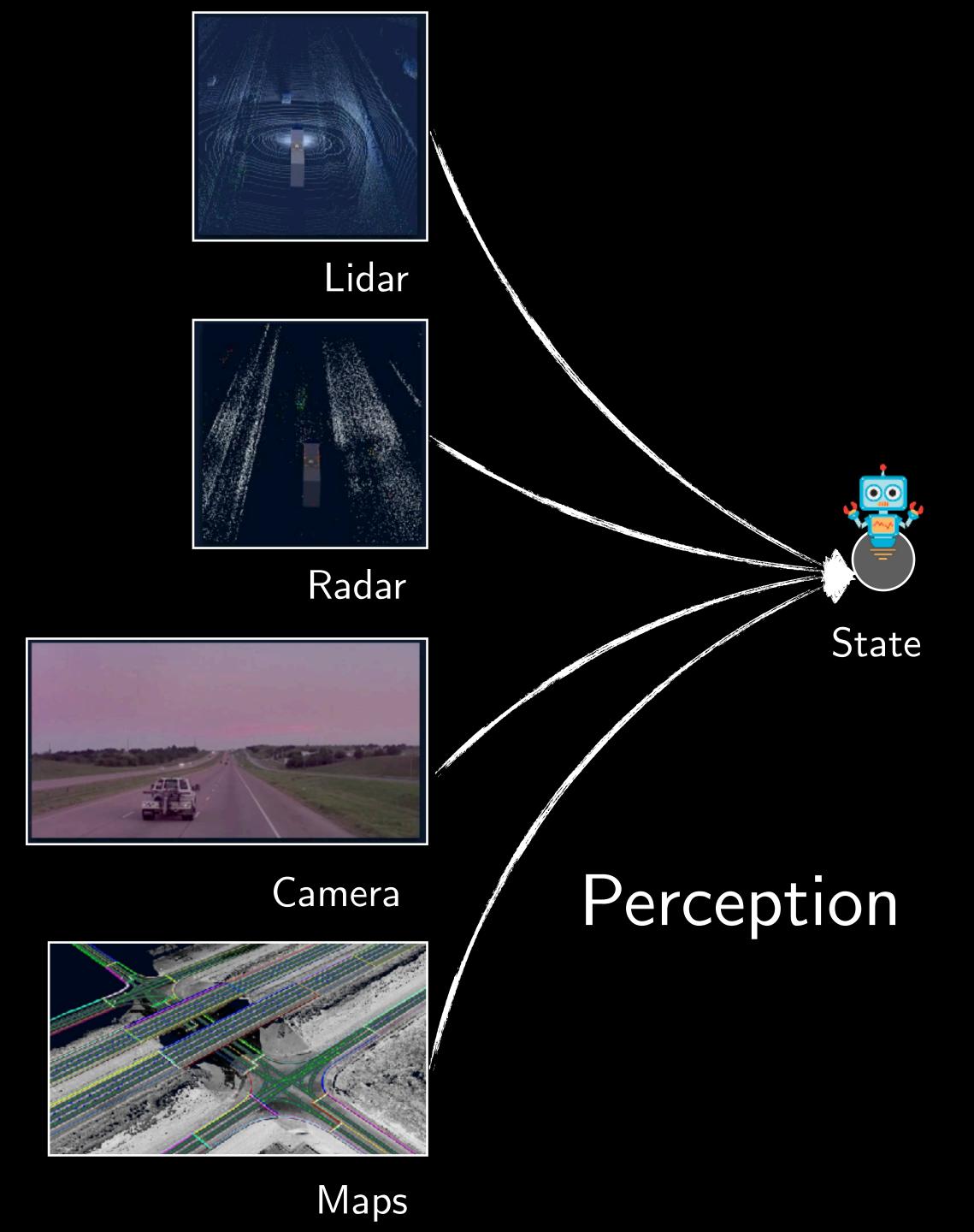
Maps



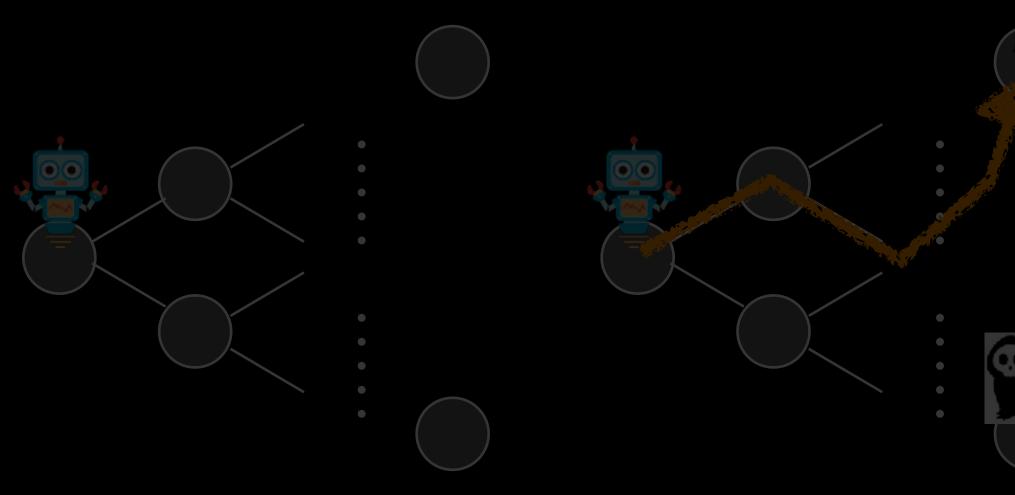
Prediction

Decision Making





We figured out perception.

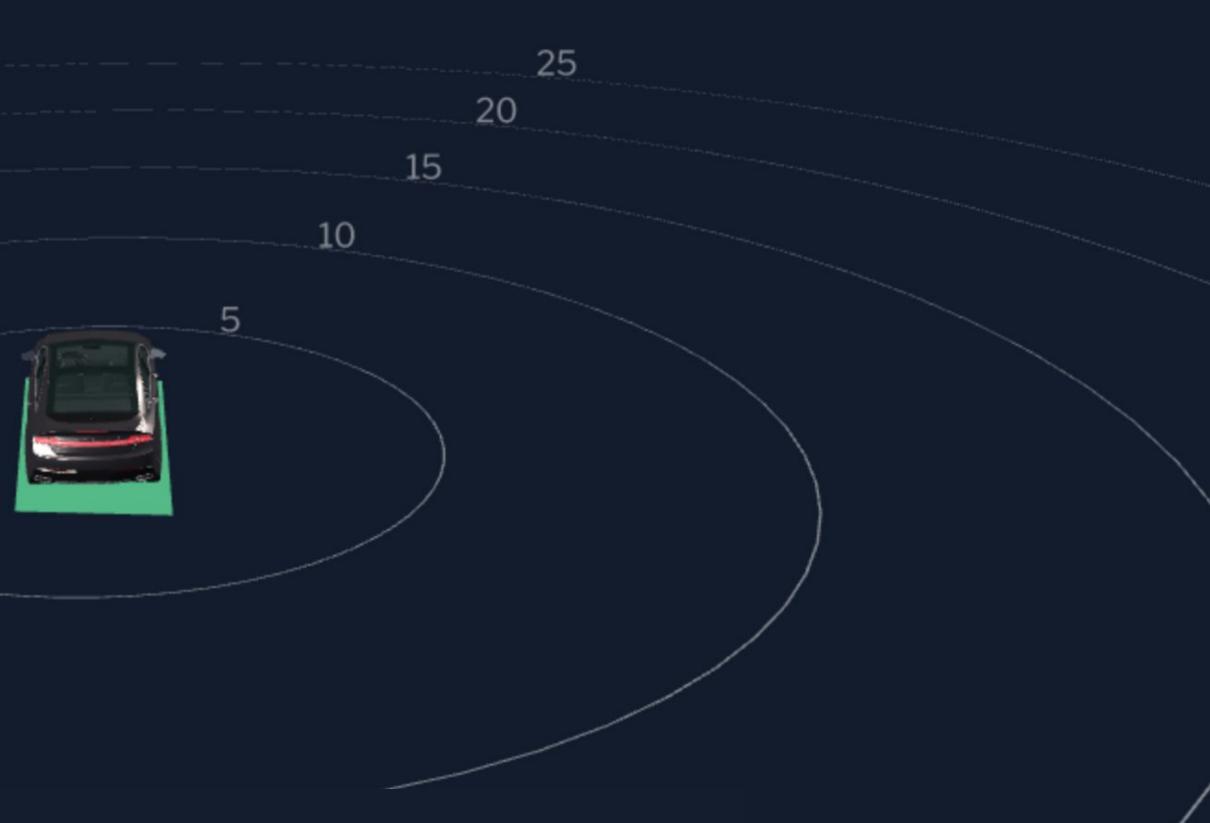


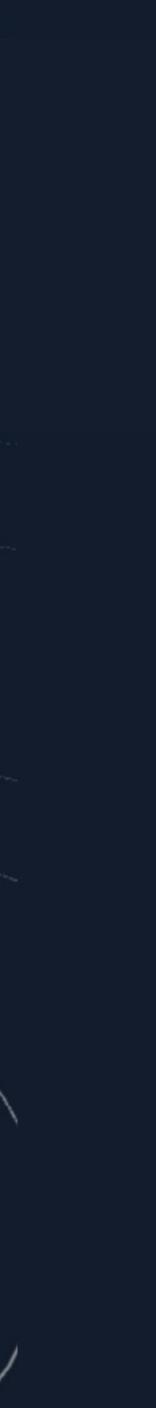
Prediction

Decision aking

How does a robot build up state?

©2021 | Aurora Proprietary





-

2

243357 - 3²

and a stranger

¥ *** **

eria Fran

in G

.

J

.

1

ľ.

1

÷

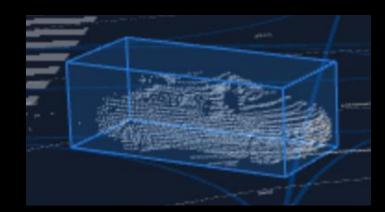
14

.

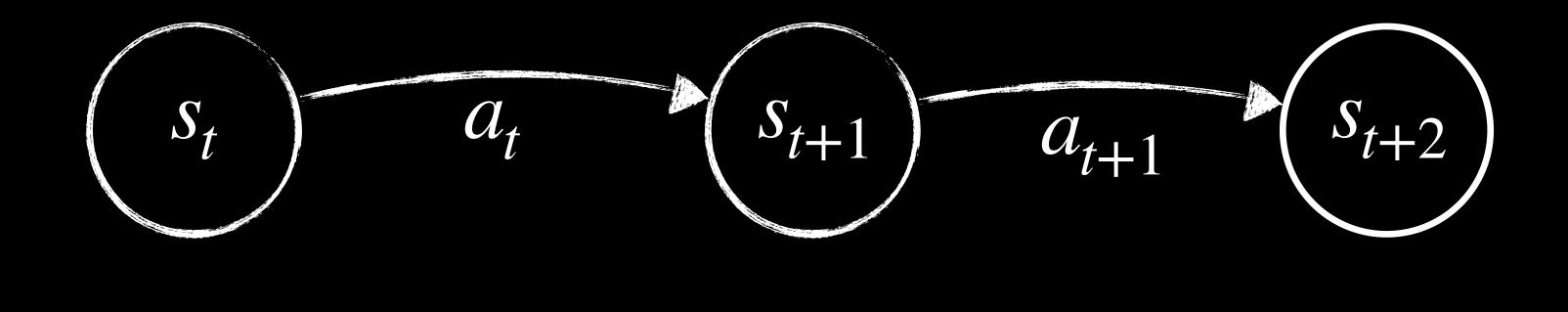
/

-

pose (x, y, ψ) vel $(\dot{x}, \dot{y}, \dot{\psi})$



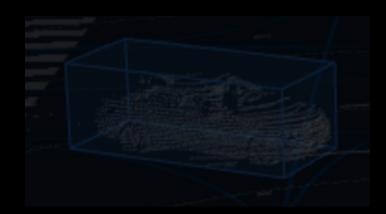
type (pedestrian, car, cyclist)

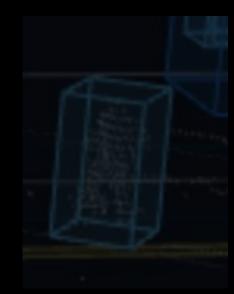


$a^* = \operatorname{argmax} Q(s, a)$

But we do not observe these directly!

pose (x, y, ψ) vel ($\dot{x}, \dot{y}, \dot{\psi}$)

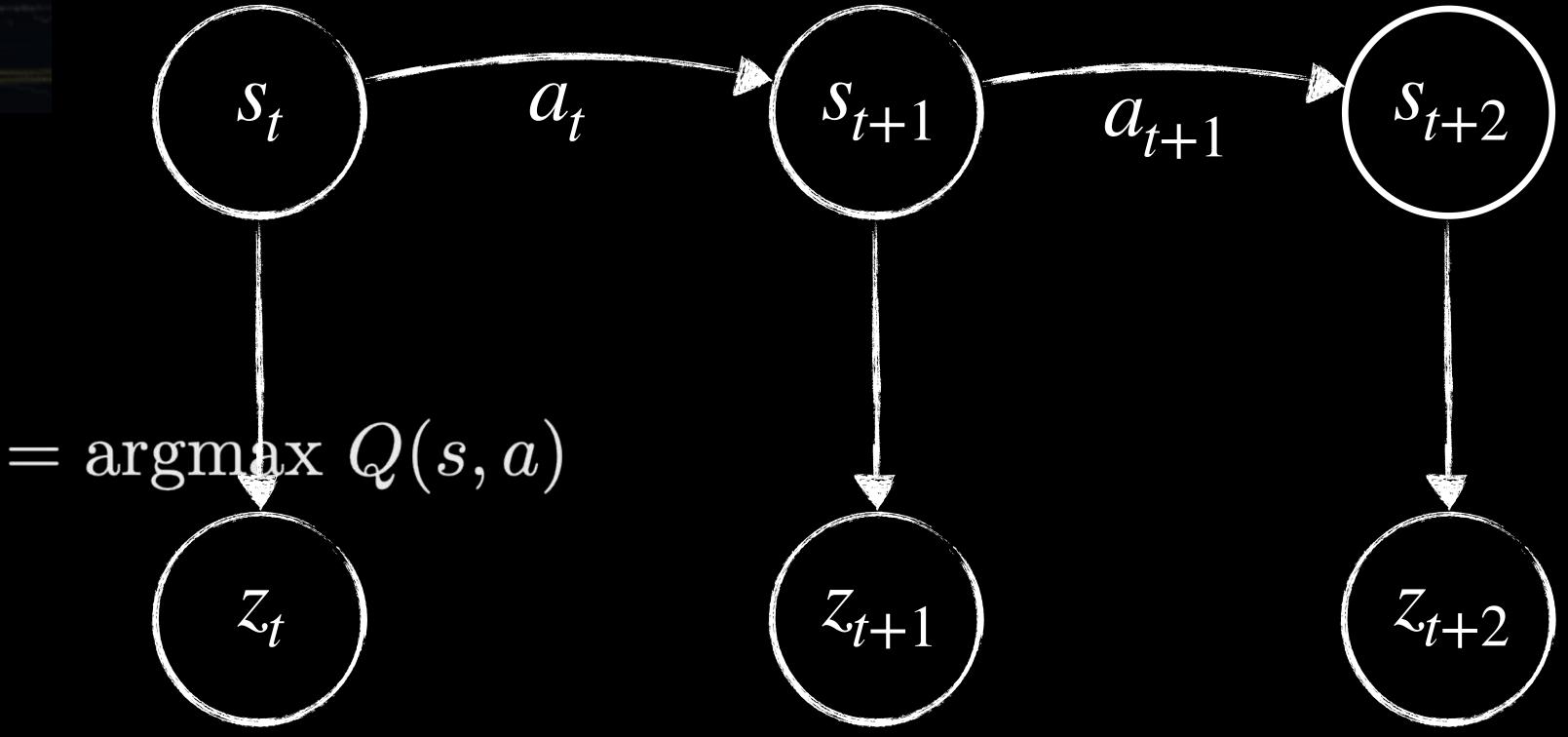




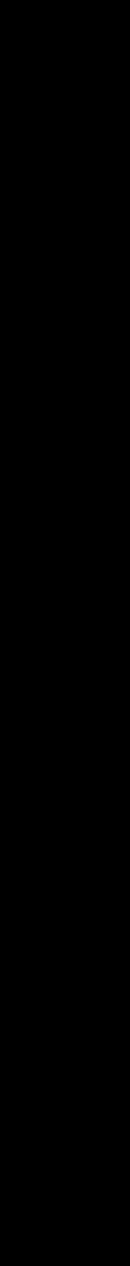
type (pedestrian, car, cyclist)

camera

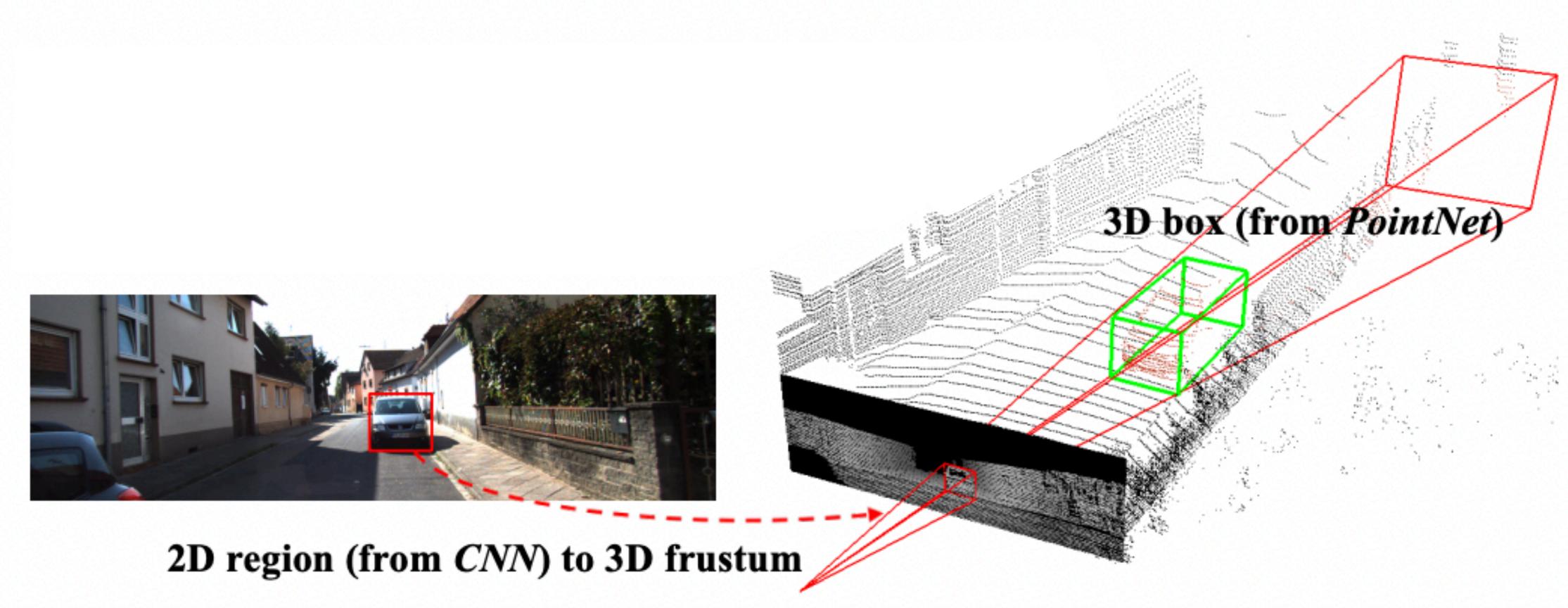
lidar



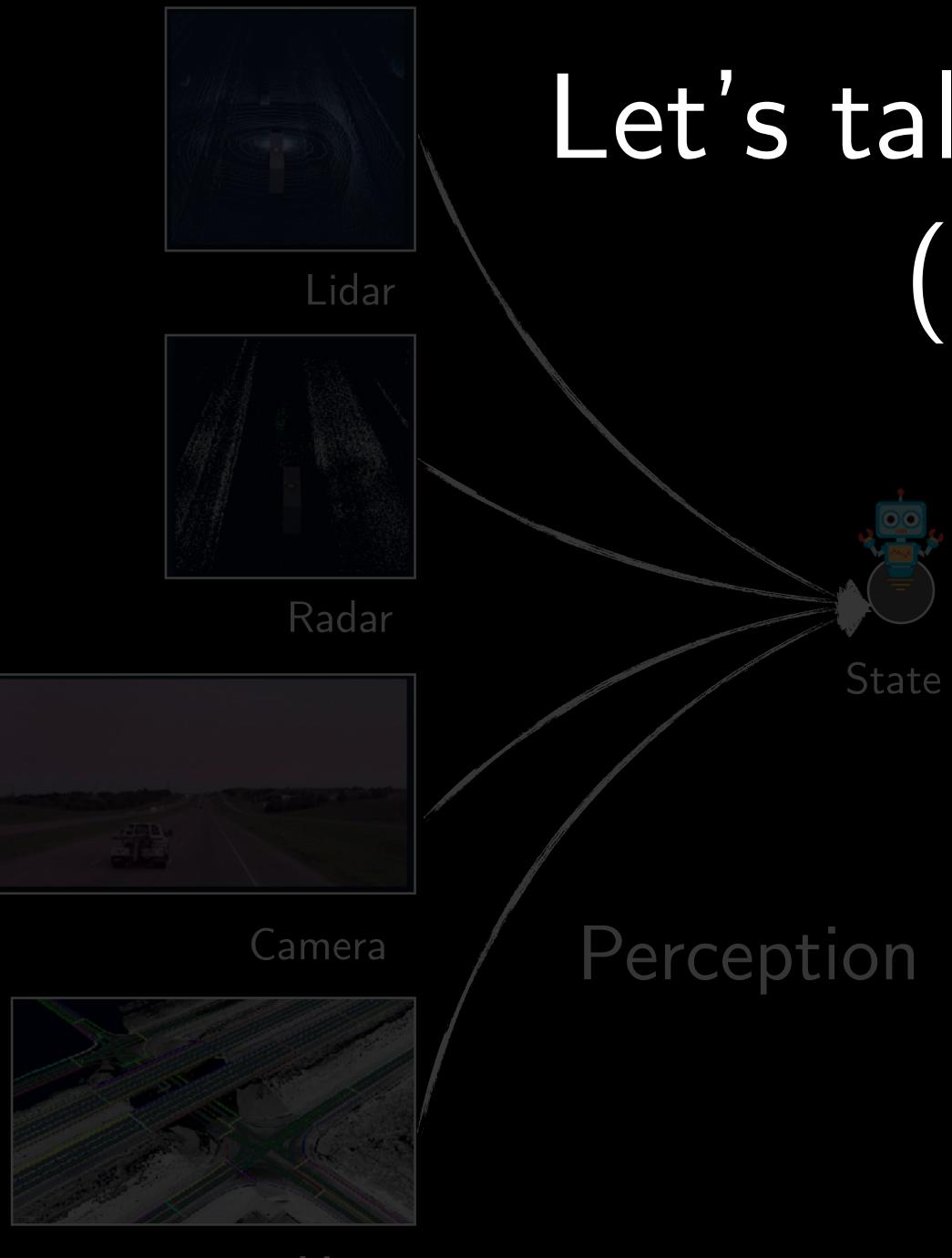
Estimate state from observations



Frustum PointNets: 3D Instance Segmentation

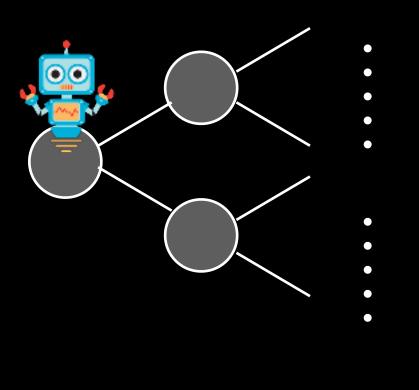


Qi et al. 2018



Maps

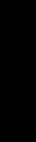
Let's talk about prediction! (Forecasting)

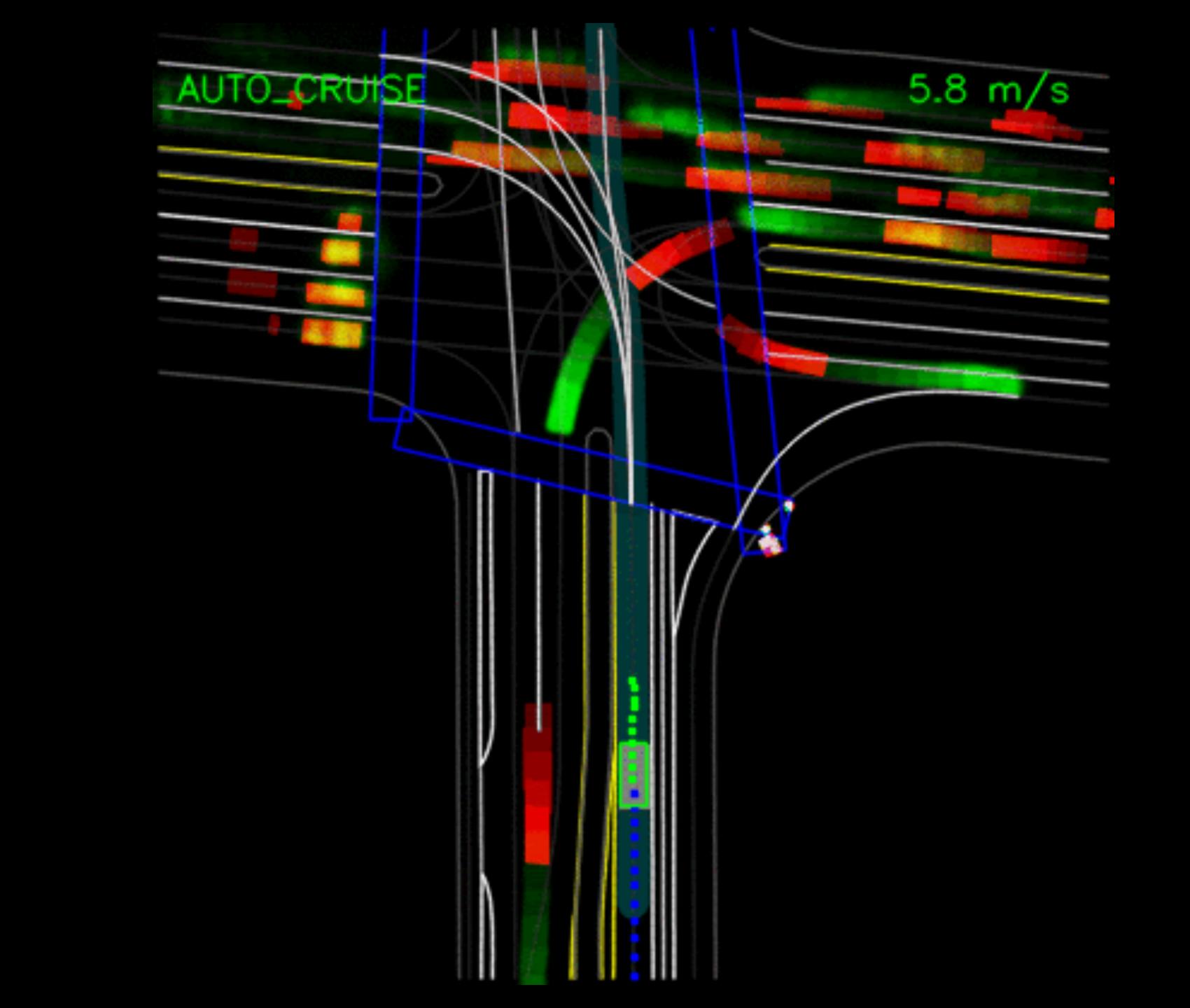


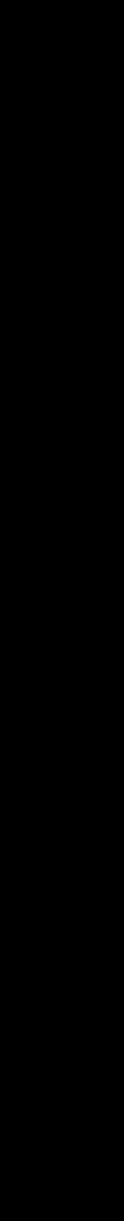
Prediction

Decision aking

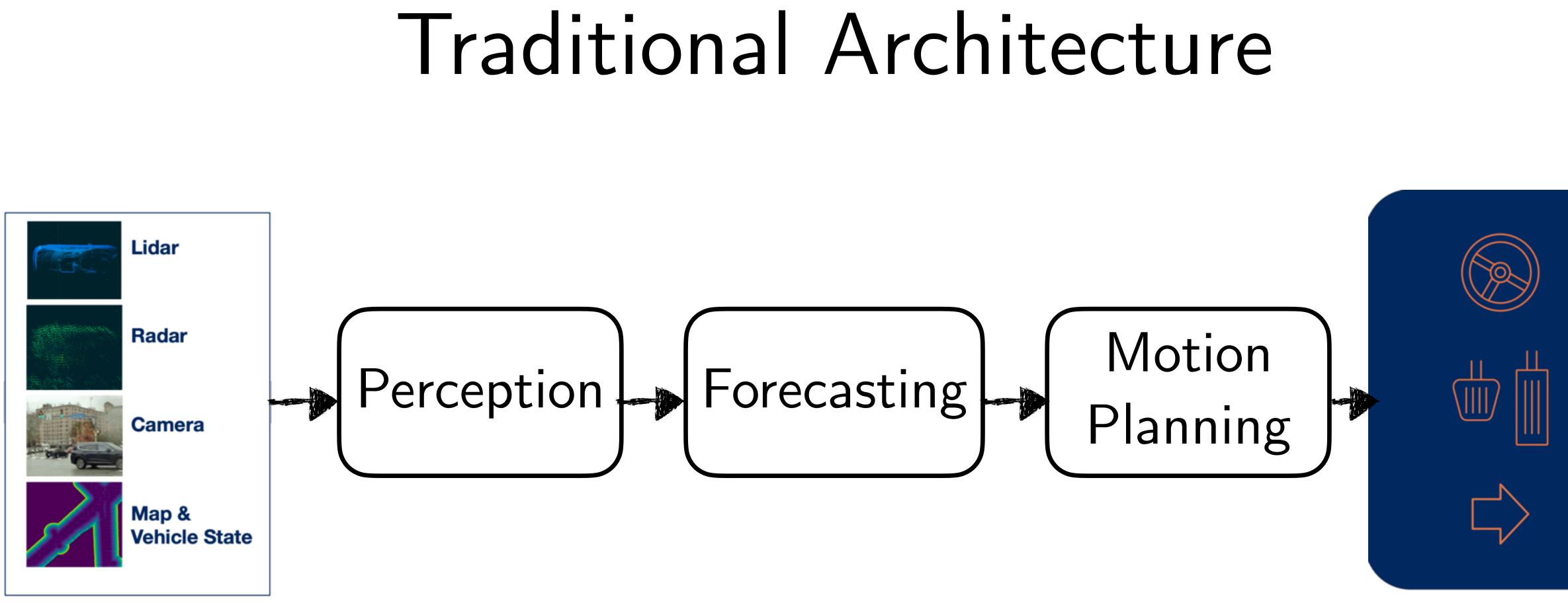






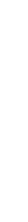


Much of forecasting for self-driving is built on shaky foundations

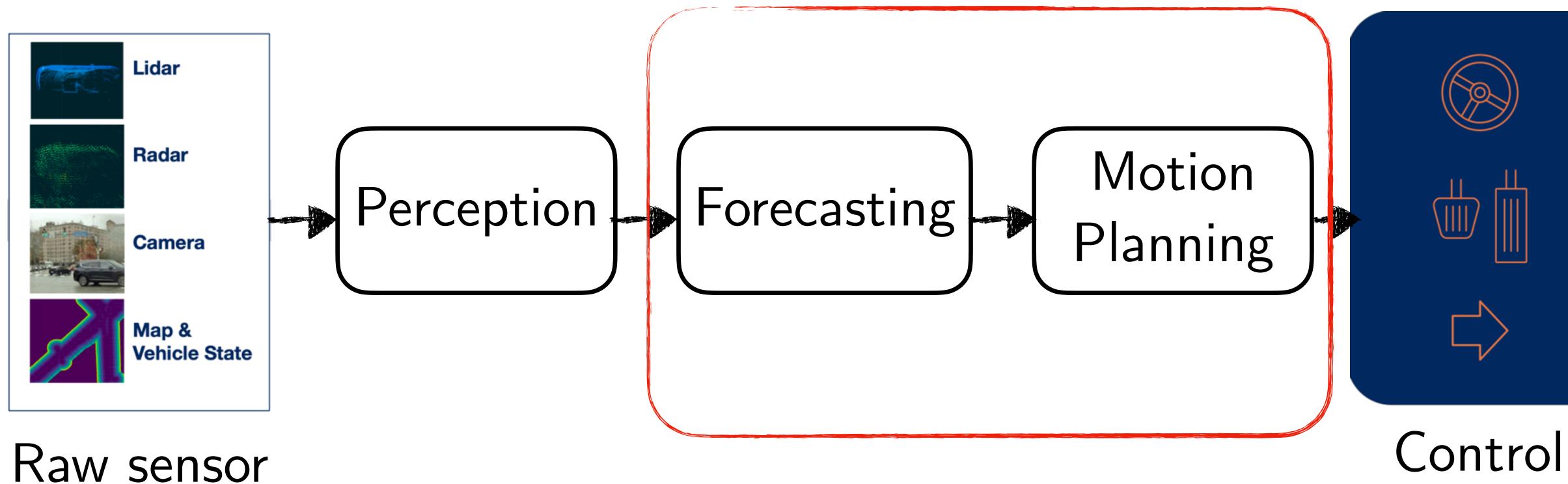


Raw sensor data

Control actions



Should these be decoupled?



data

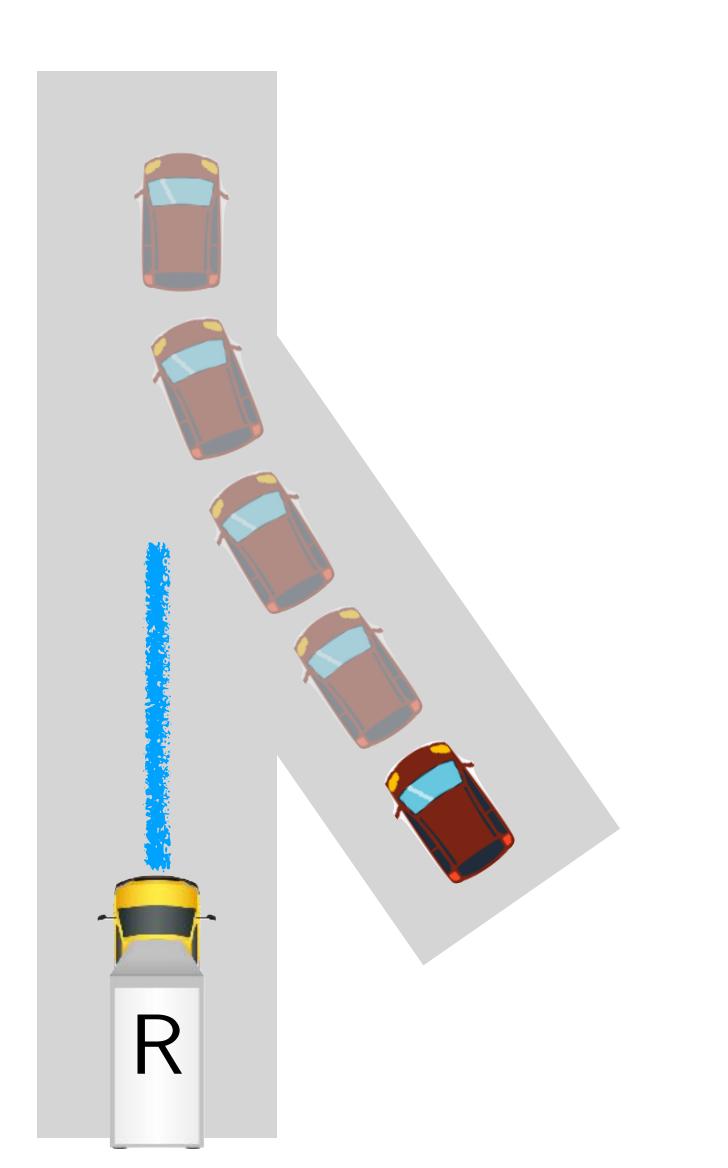
Are we using the right model?

Are we collecting data correctly?

Are we using the right loss?

Shaky foundations of forecasting

Example: Learning forecasts for merging actors

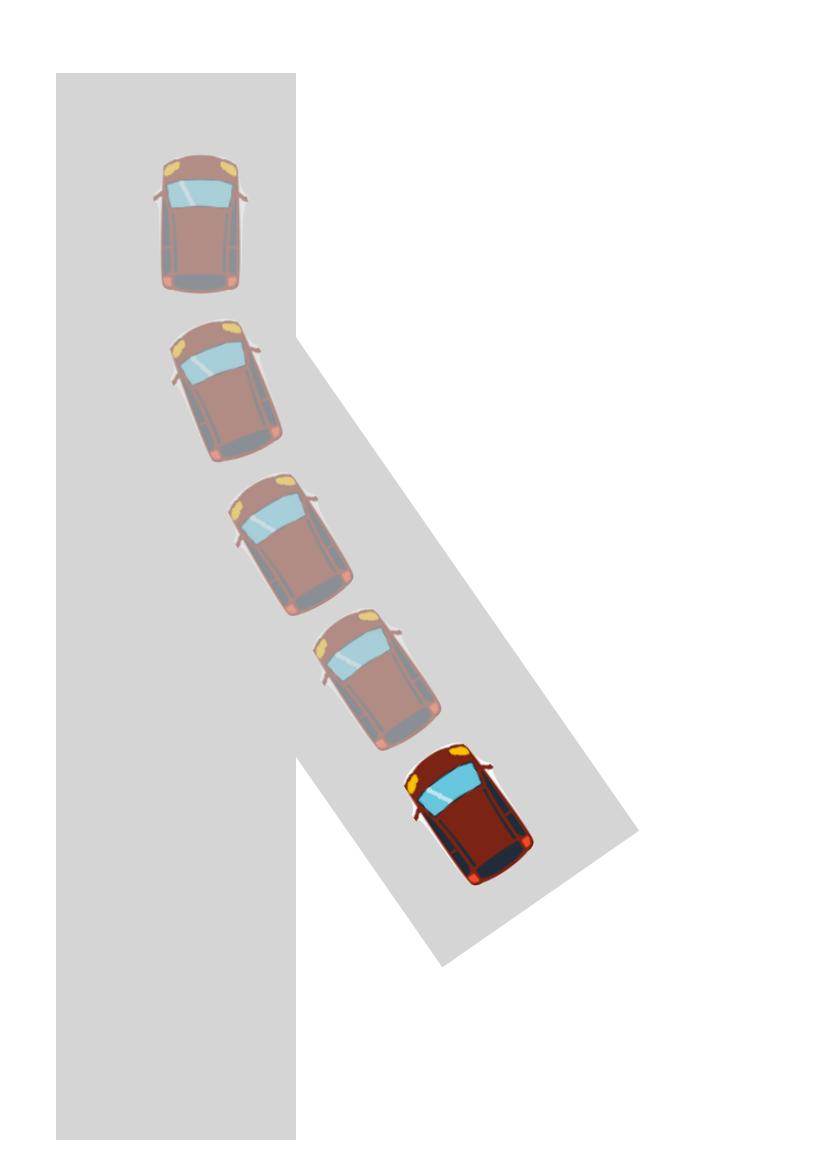


Goal

1. Predict 5s future trajectory

2. Plan with 5s future trajectory

Train a learner to predict 5s future.



Model: Input / Output?

Data?

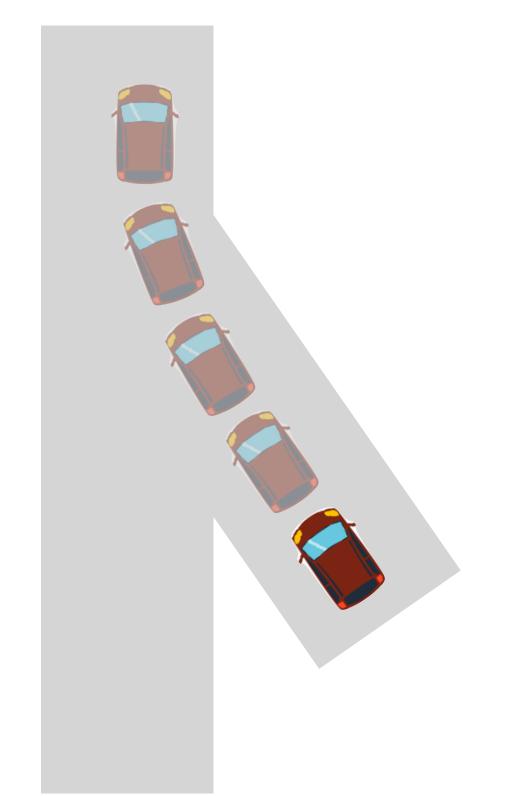
Loss?

Think-Pair-Share!

Think (30 sec): Train a learner to predict 5s future.

Pair: Find a partner

Share (45 sec): Partners exchange ideas



Model: Input / Output?

Data?

Loss?

Why is my current position not sufficient to predict future?

Simple latent variables:

Complex latent variables:

Intent (turning left, making a lane change) are not observable and must be inferred from past actions

Velocity, Acceleration may not be observable

Sequence Model

(We are just going to use this as a black-box)

A very brief history of sequence prediction in robotics

Kalman Filter + Prediction Handcraft observation models, apply Bayes rule to figure out latent state, predict. Problem: Tuning it is hard! RNN, LSTMs Learn the filter! **Problem:** Forget long sequences since only one hidden state vector, vanishing/ exploding gradients

Transformers

Retain all hidden state. **Problem:** Pay $O(H^2)$ computation

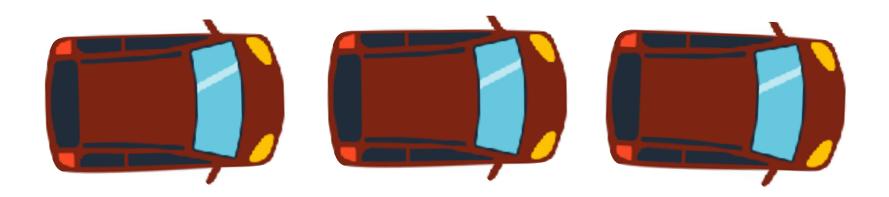
Many good introductory resources on transformers

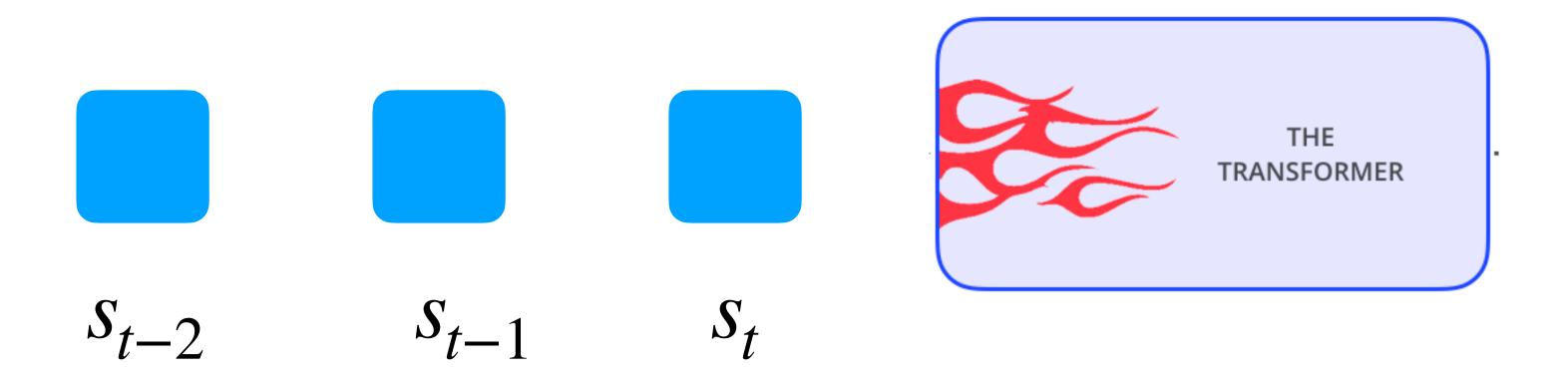
https://jalammar.github.io/illustrated-transformer/

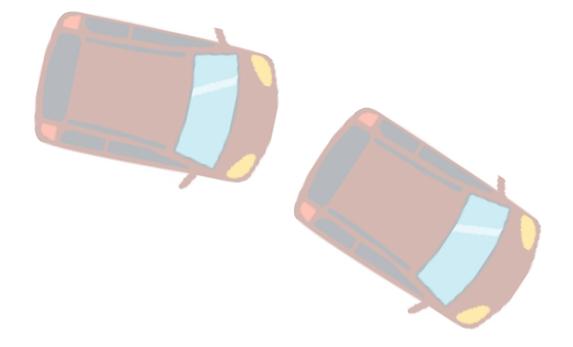
https://jalammar.github.io/illustrated-gpt2/

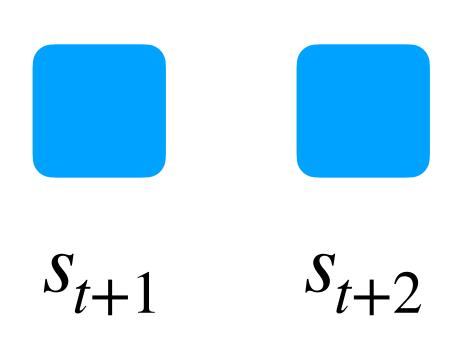
Back to forecasting

Model: Use a transformer to map history to future



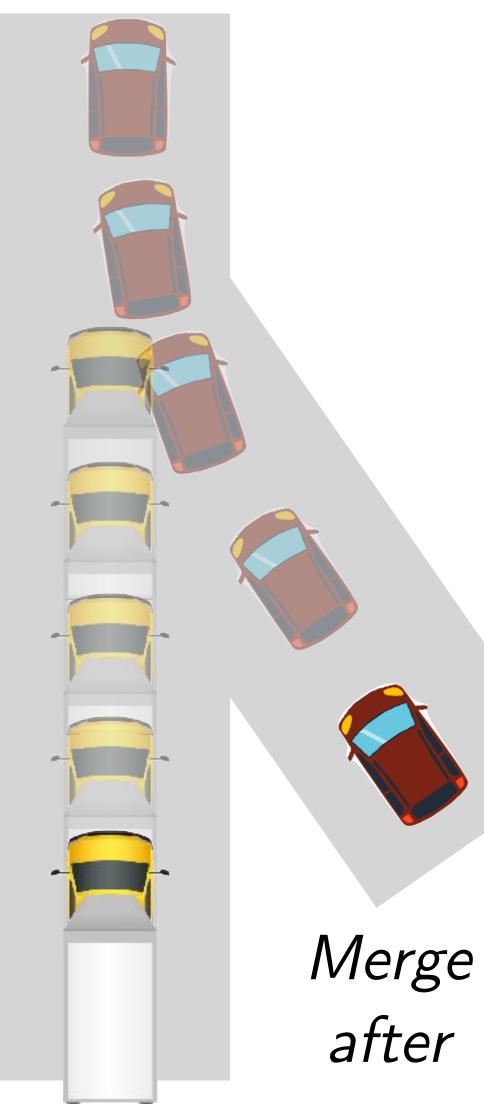


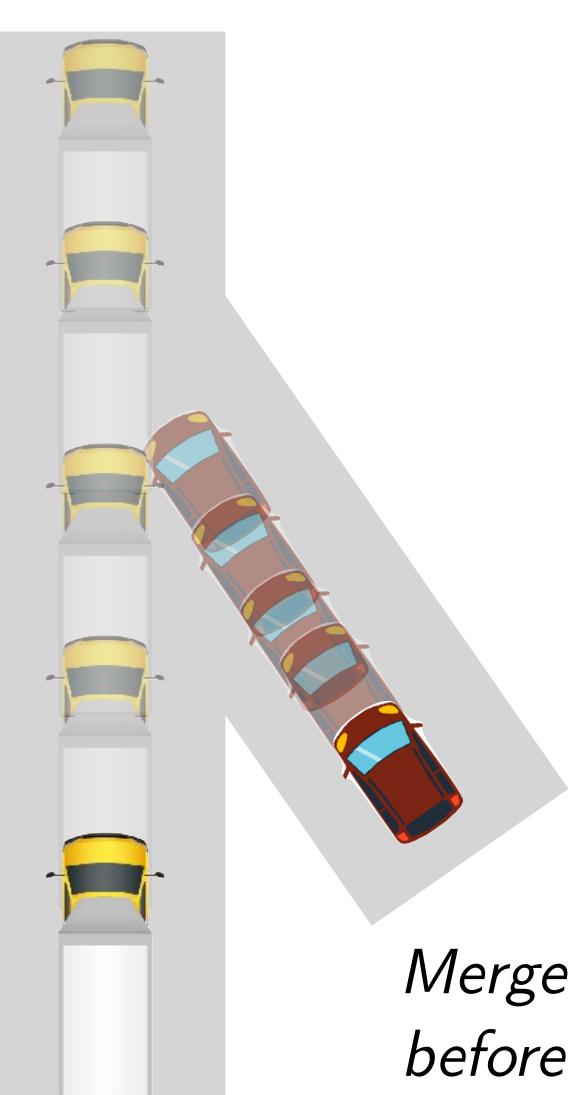




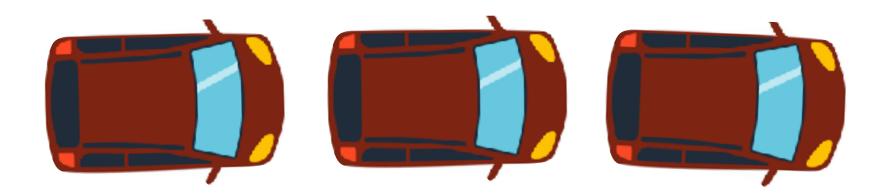
Data: Drive around the car and collect data

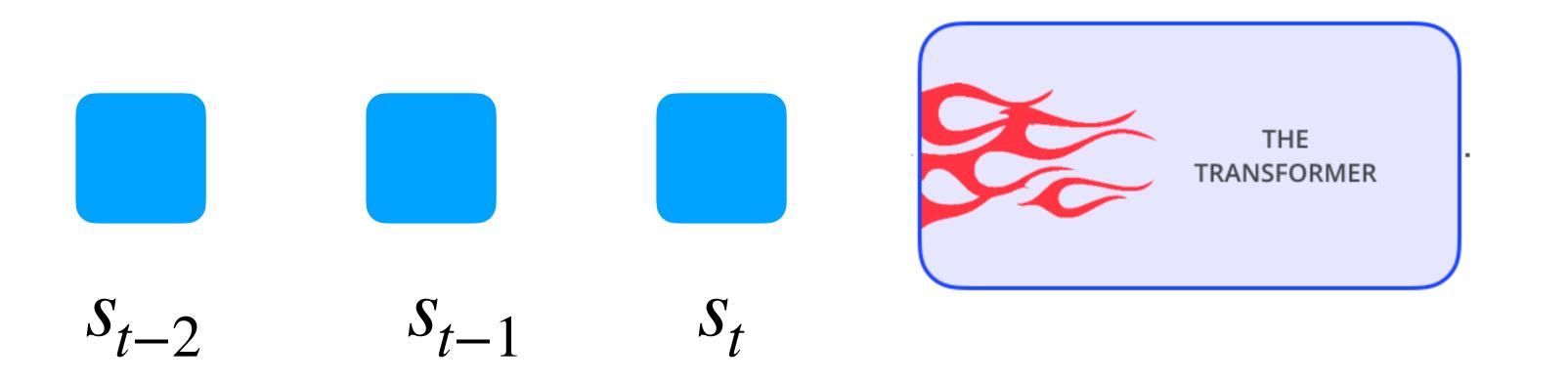
Train Data

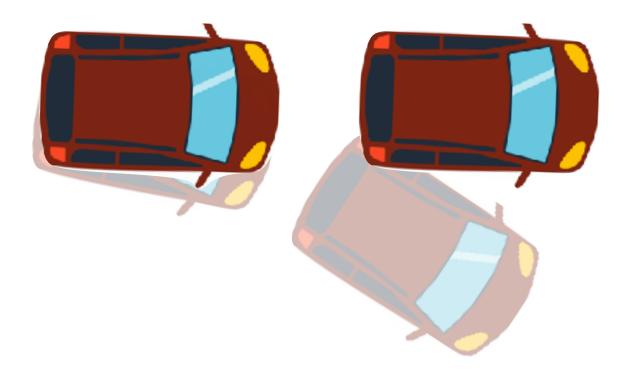


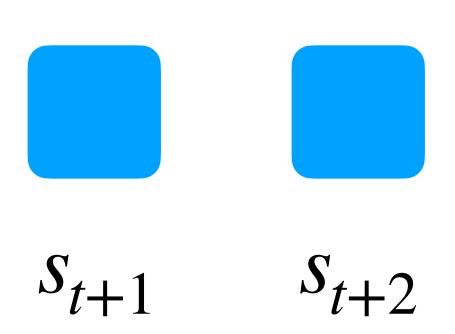


Loss: L2 Loss from Ground Truth

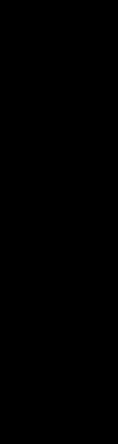


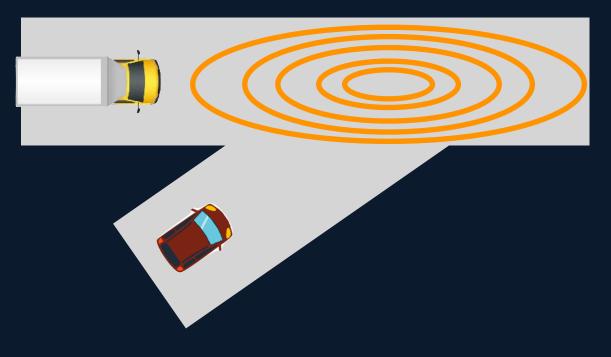






We have model, data, loss. Let's deploy!



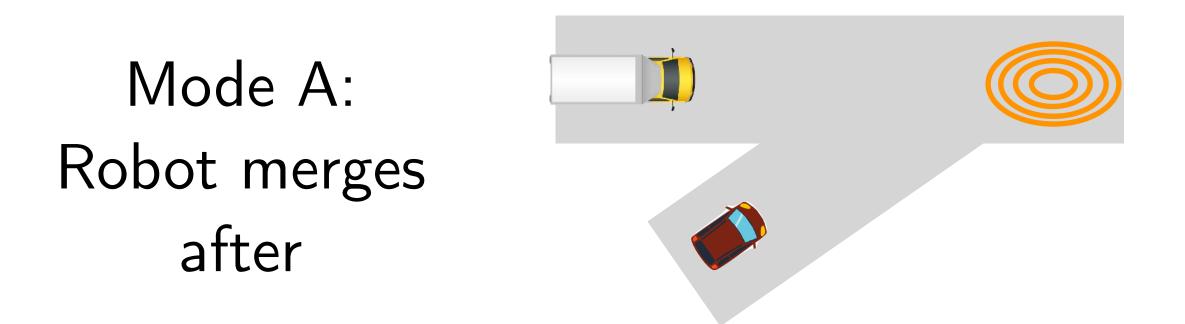


Forecasts have huge variance! Planner brakes aggressively!

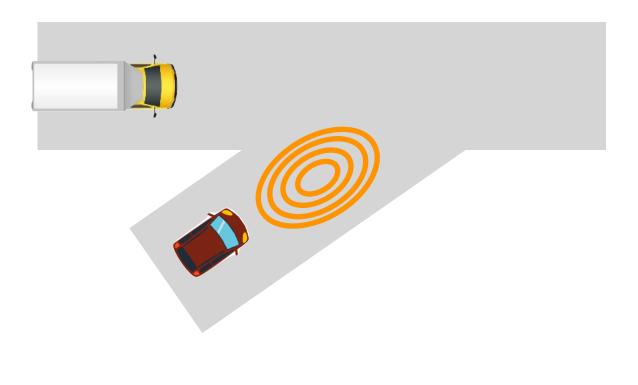
Why is the forecast so whacky?

Why is the forecast so whacky?

Marginalizing/Averaging over multiple modes!



Mode B: Robot merges before

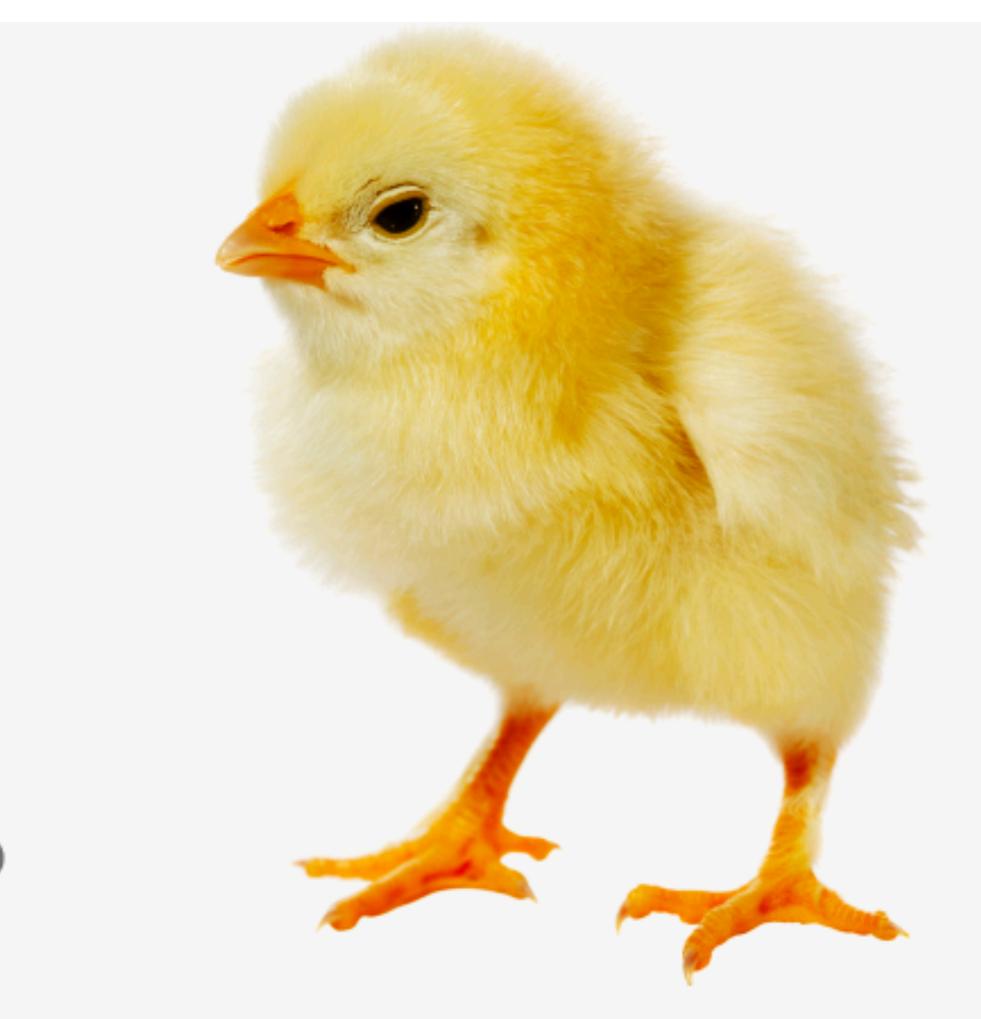


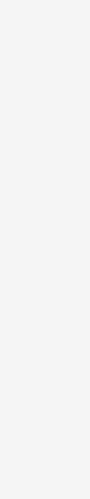
What other humans do depends on the robot

What robot does depends on other humans

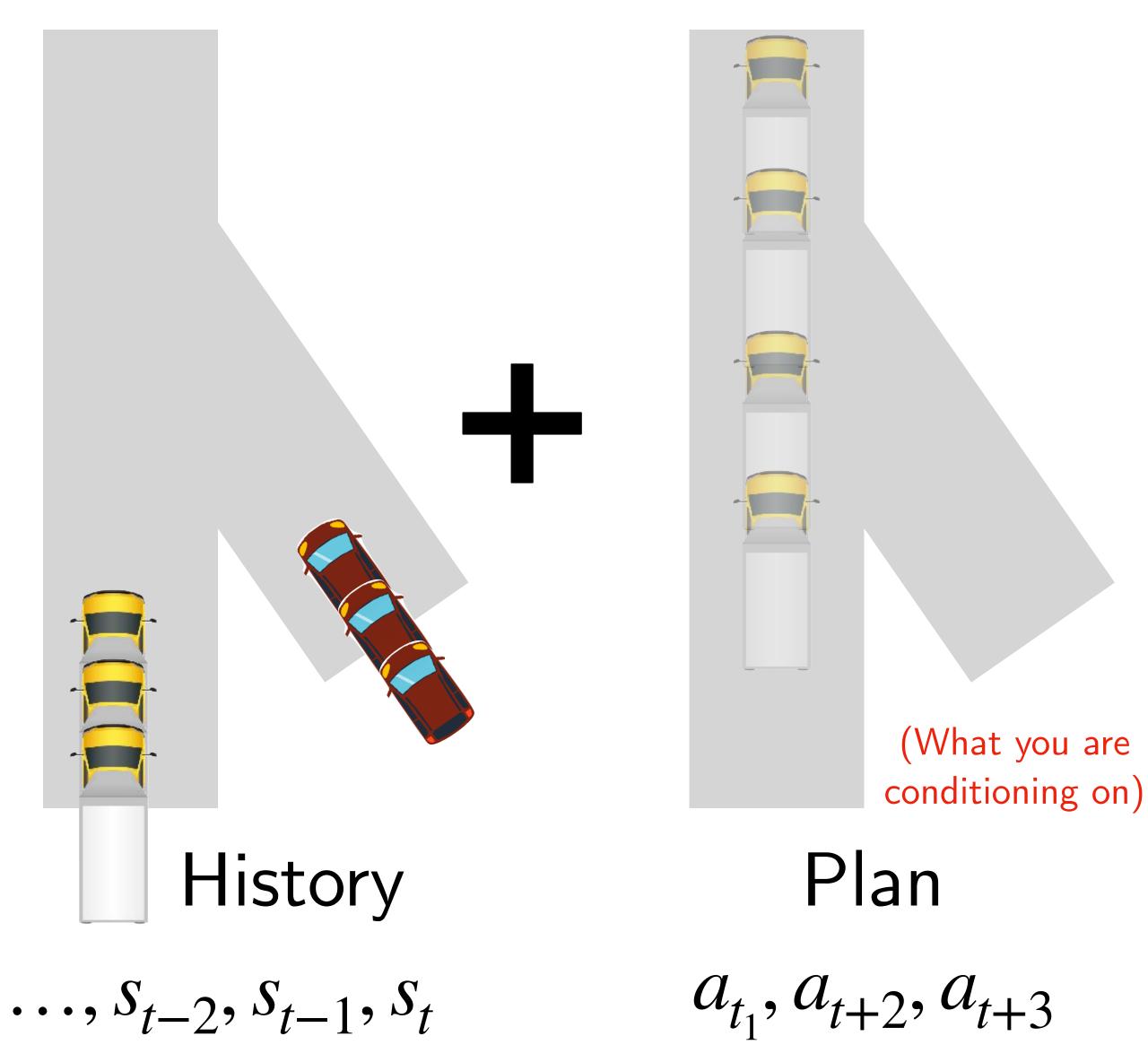
Forecasting-or-planning: a chicken-or-egg problem





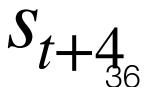


Solution: Train Conditional Forecasts



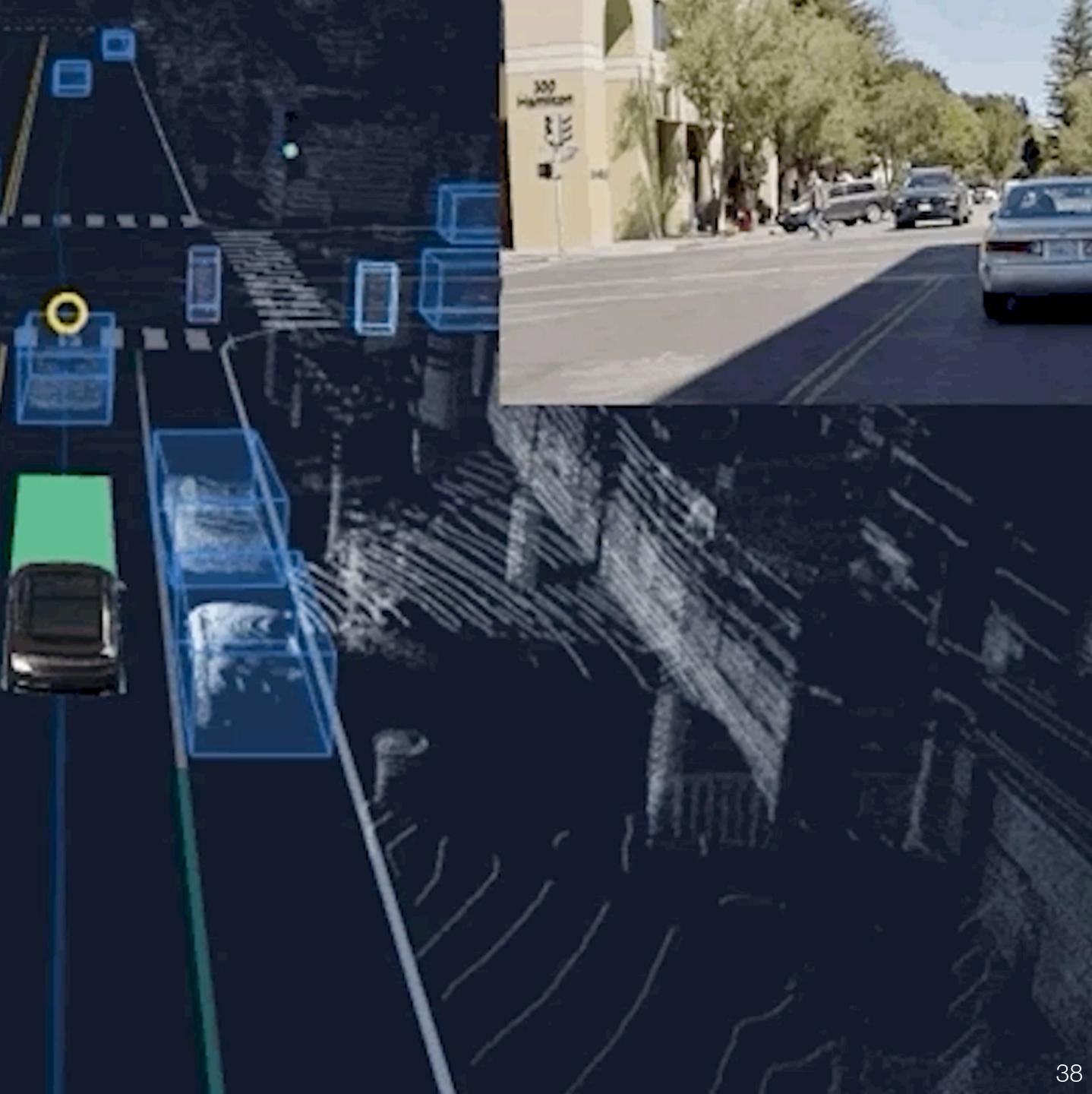
Forecast

 $S_{t+1}, S_{t+2}, S_{t+3}, S_{t+4}$



How can I use conditional forecasts in practice?

©2021 | Aurora Proprietary



Pseudo code for planning with forecasts

Initialize with a library of candidate trajectories Ξ

For $\xi_{plan} \in \Xi$:

Call conditional forecast with history and ξ_{plan} to predict $\xi_{forecast}$ for all the agents

Compute cost of ξ_{plan} using $\xi_{forecast}$

Return cheapest plan ξ^*_{plan}

Pseudo code for planning with forecasts

Initialize with a library of candidate trajectories Ξ

For $\xi_{plan} \in \Xi$:

Call conditional forecast with history and ξ_{plan} to predict $\xi_{forecast}$

Compute cost of ξ_{plan} using $\xi_{forecast}$

Return cheapest plan ξ^*_{plan}

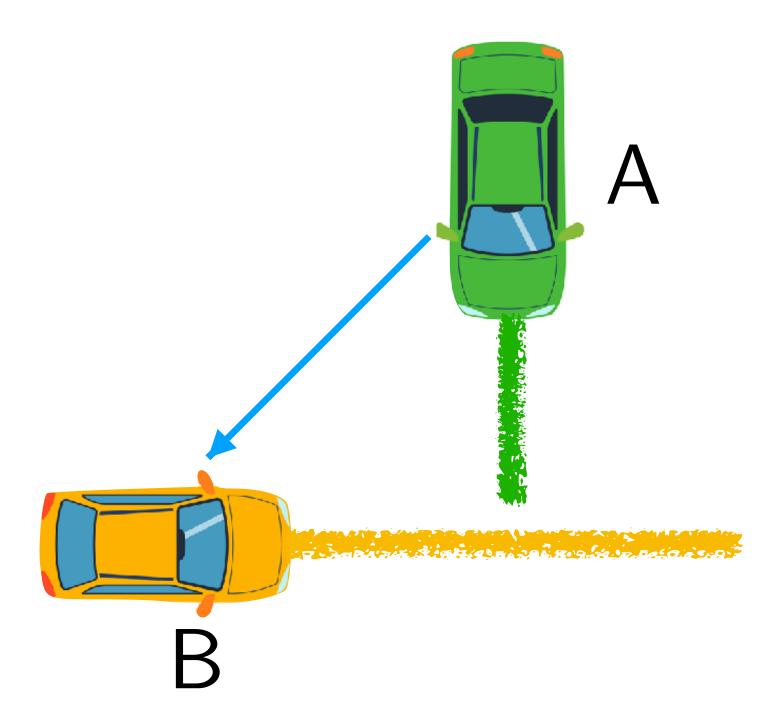
Trajectories are continuous sequences of motion. Space of all candidate trajectories is huge!!

There is a discrete grammar for self-driving ...

41

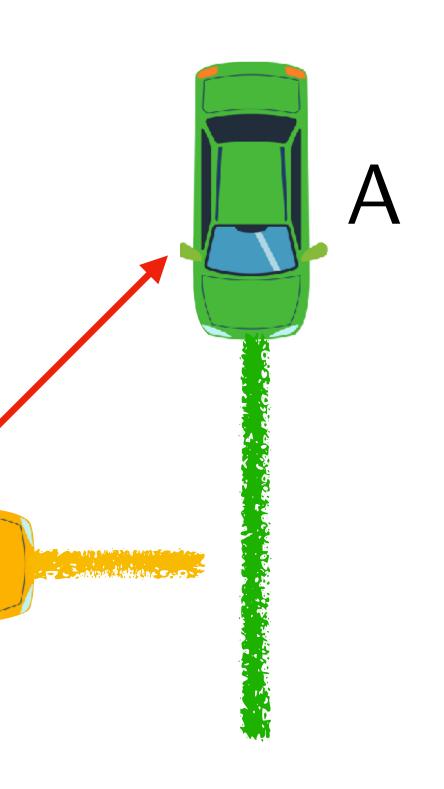
3 fundamental modes of space-time paths

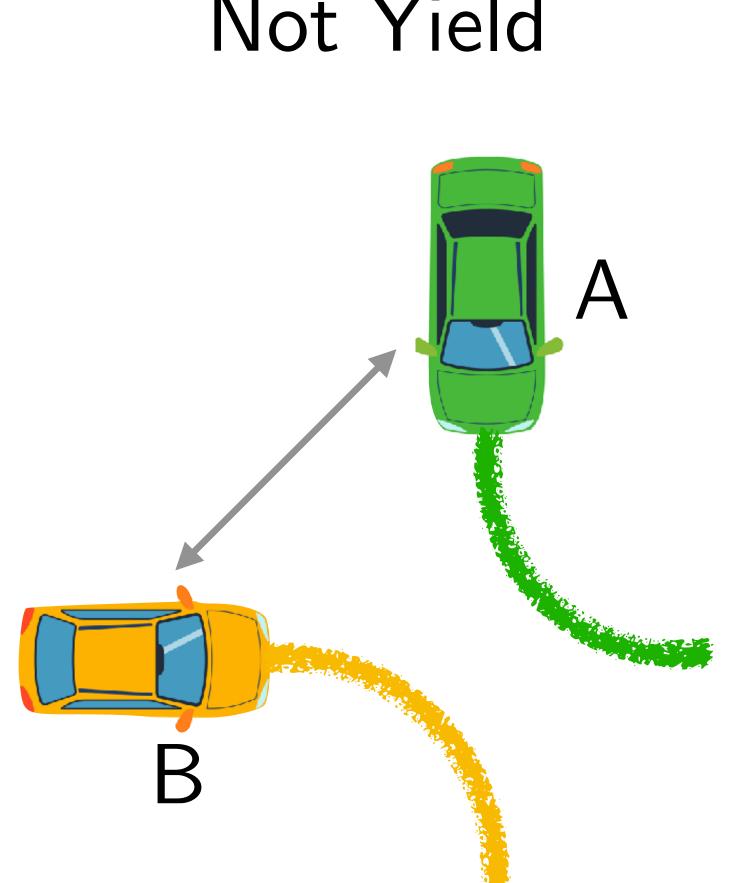
A Yields to B



B Yields to A

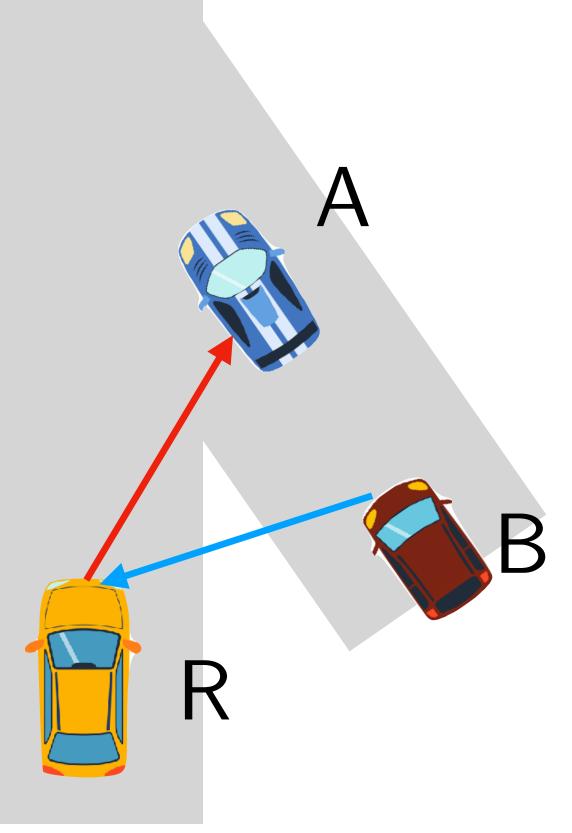
Not Yield

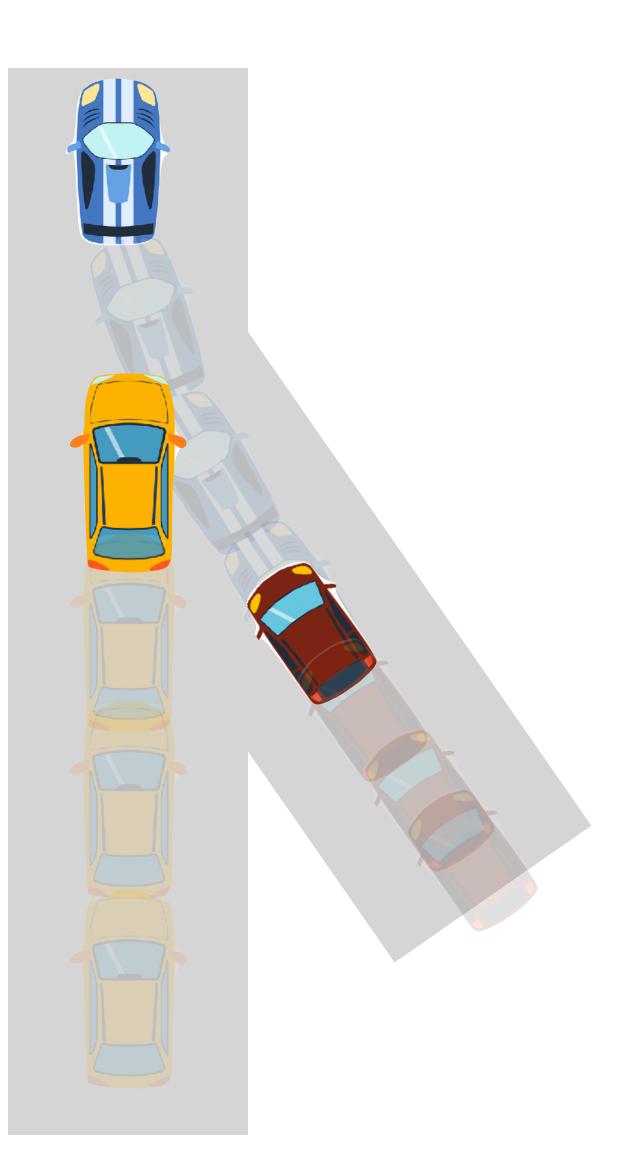




Mode \equiv A single basin of forecast

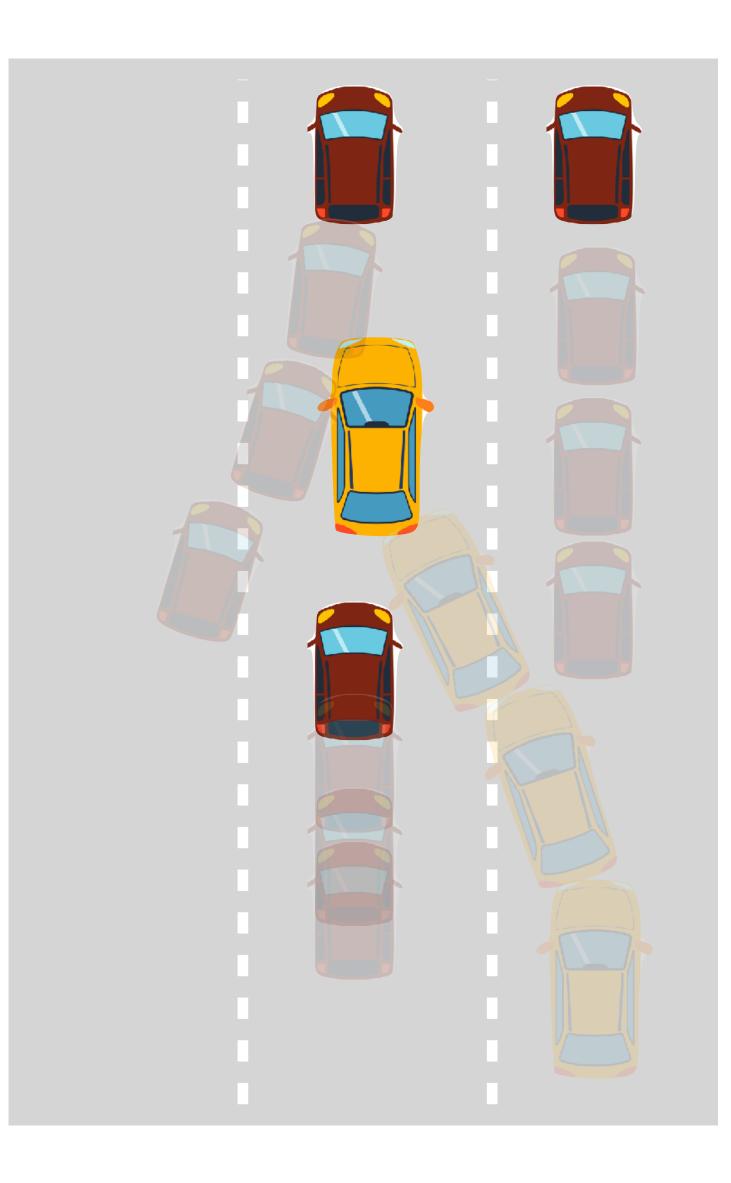
R Yields to A B Yields to R





Mode \equiv A single basin of forecast

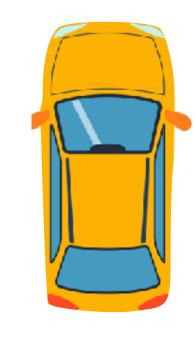
B R Yields to A R Yields to B C Yields to R R



44

Instead of containing on plans, just condition on modes

Back to the scene

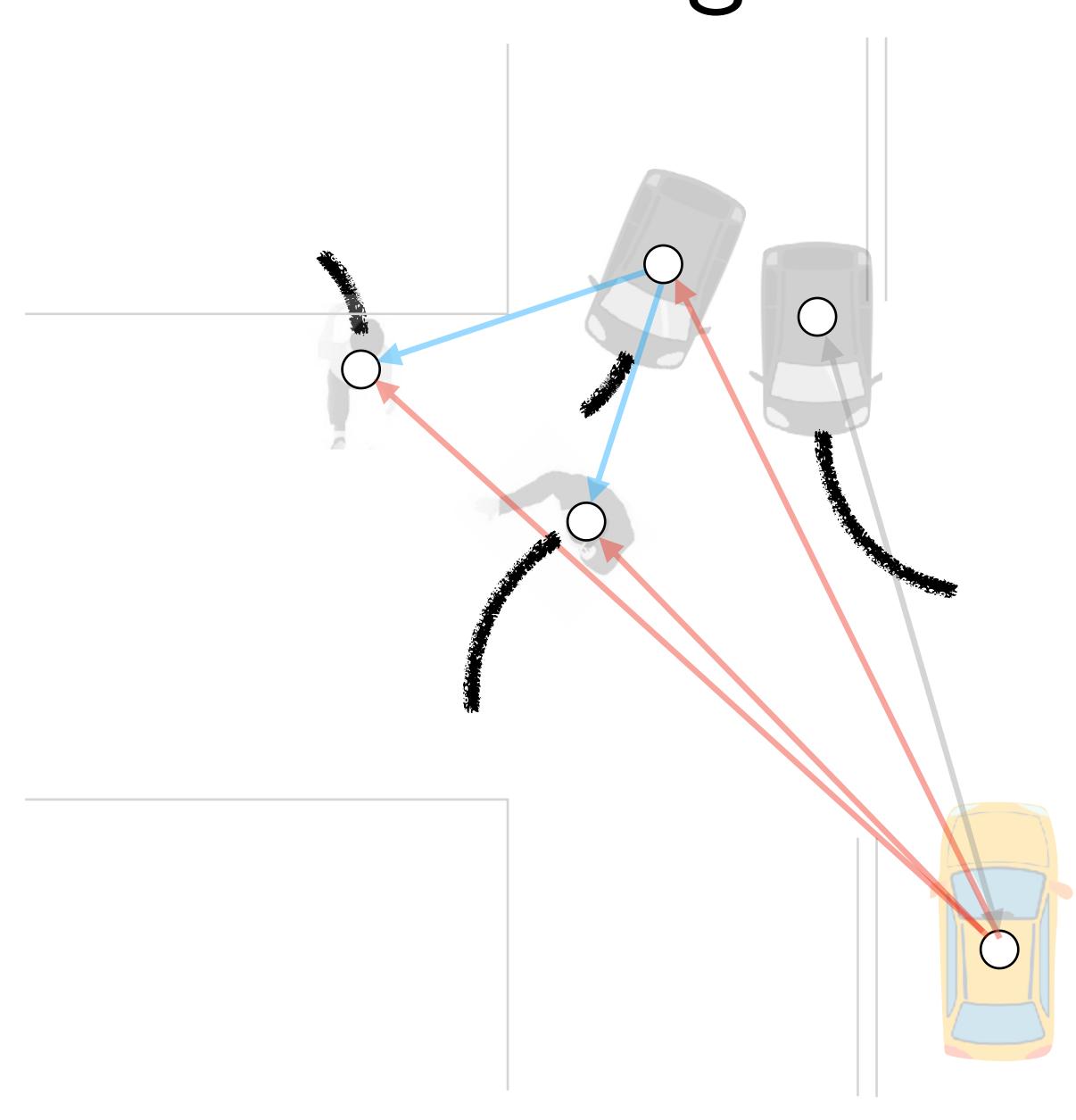


Message Passing on a Graph

Given a set of modes chosen by the robot

Infer what modes others are likely to choose

Message Passing on a Graph

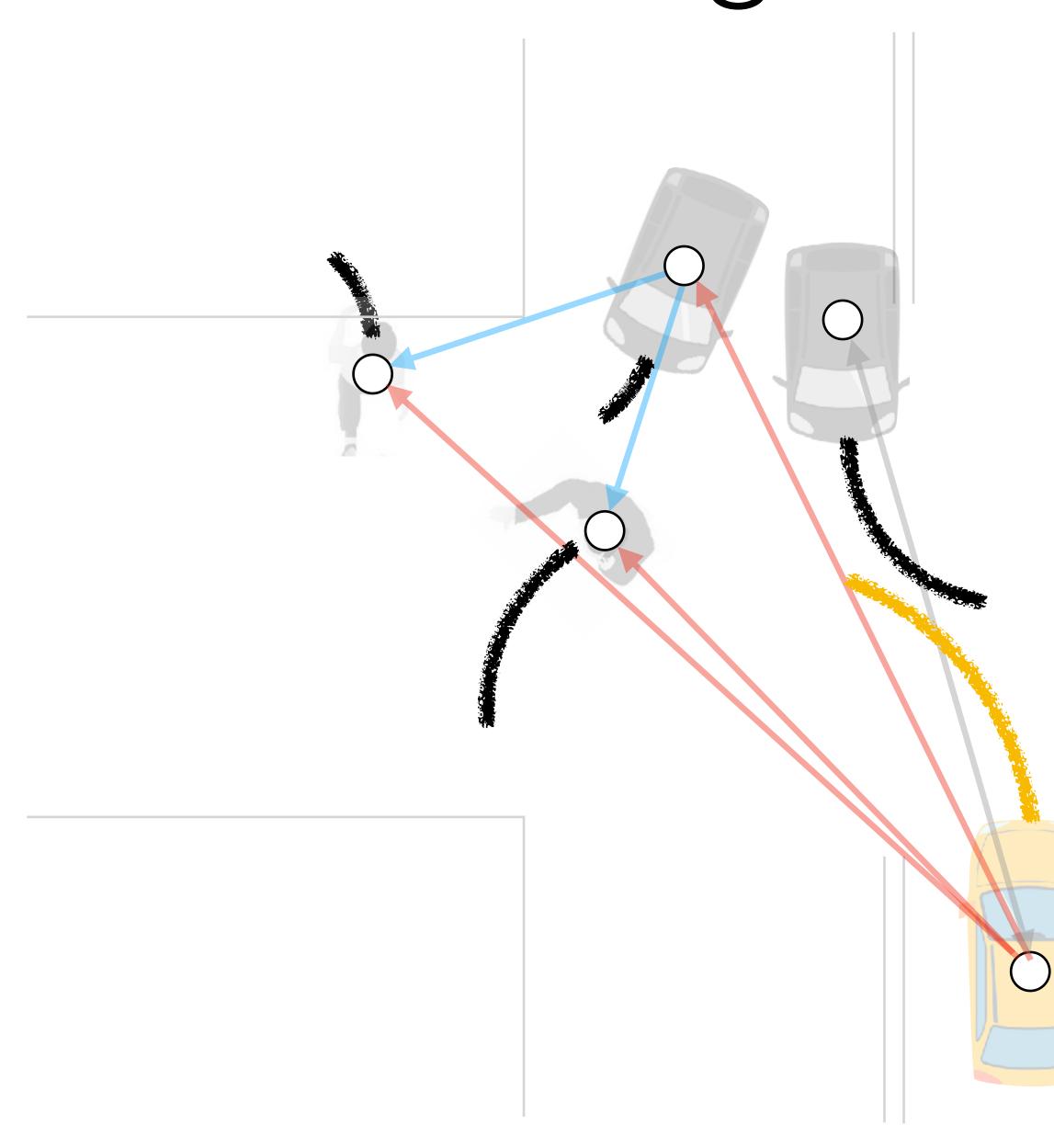


Given a set of modes chosen by the robot

Infer what modes others are likely to choose

Forecast actors given modes

Message Passing on a Graph



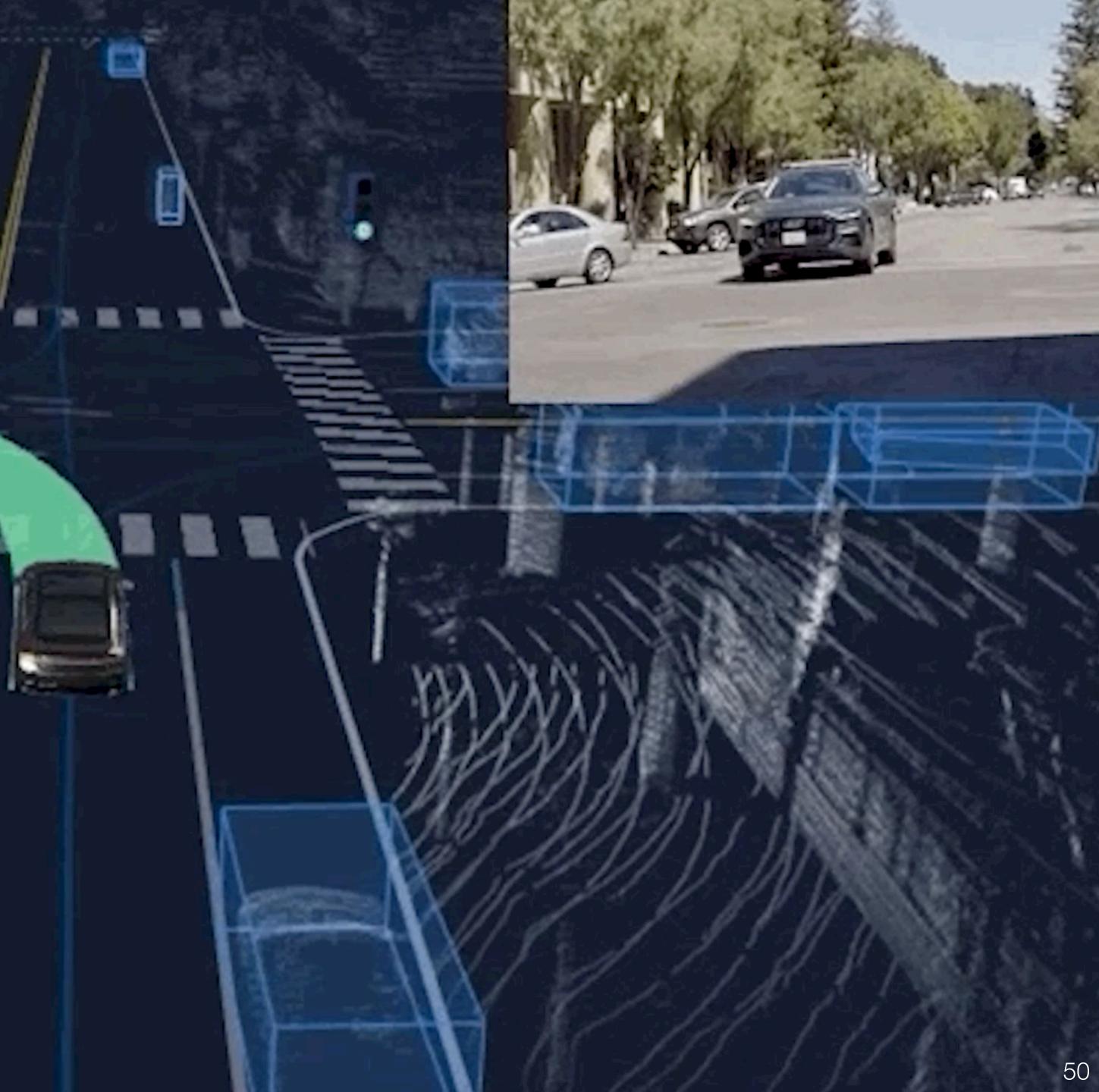
Given a set of modes chosen by the robot

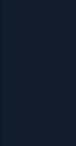
Infer what modes others are likely to choose

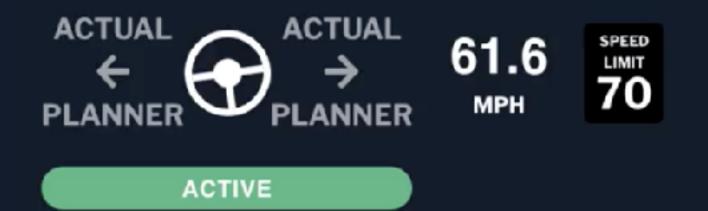
Forecast actors given modes

Plan given forecast

©2021 | Aurora Proprietary

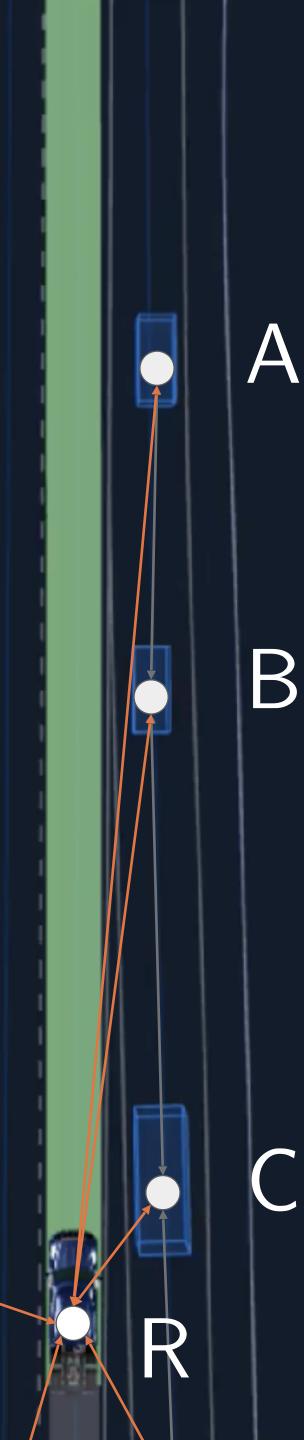




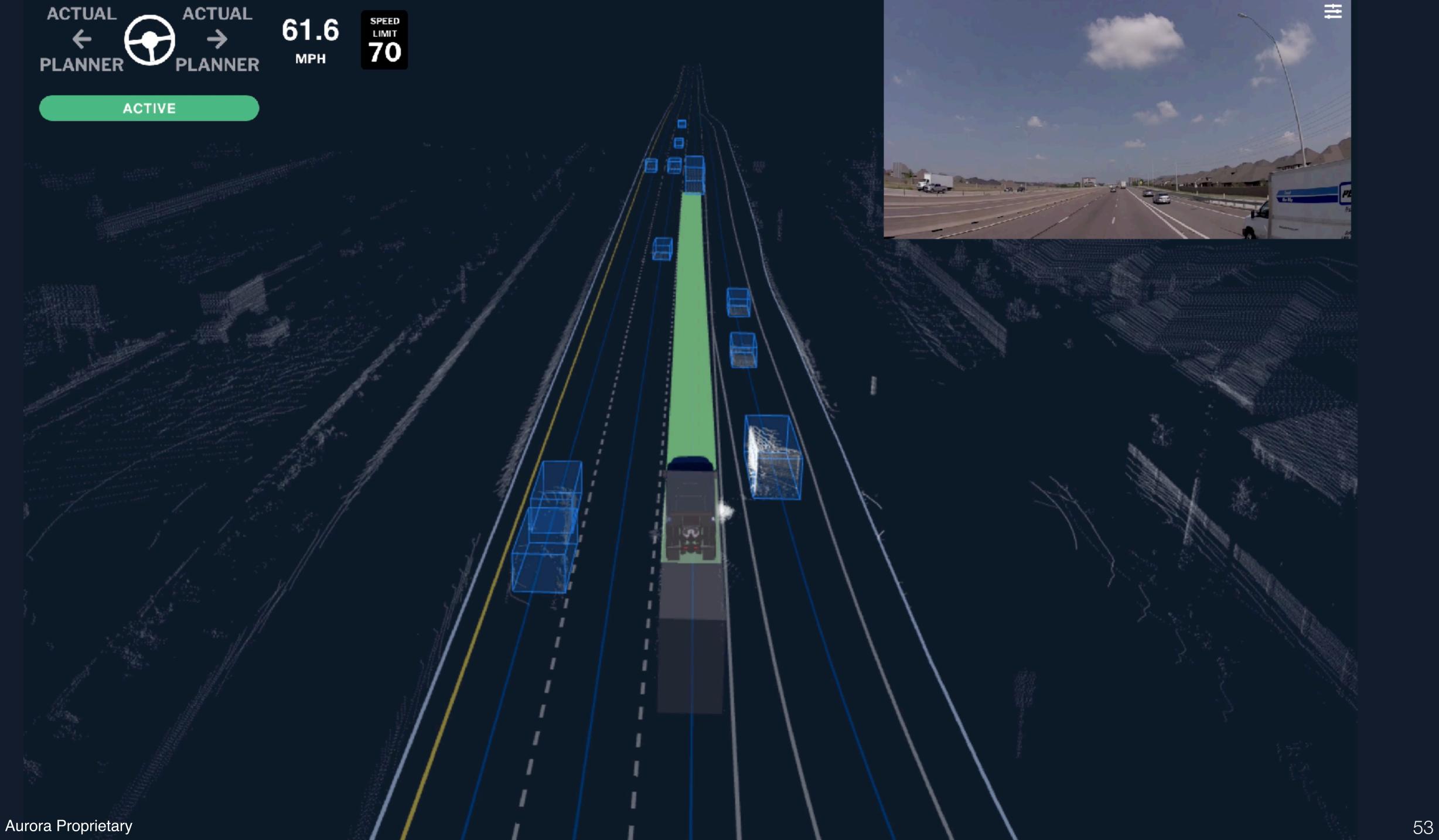


R Yields to A R Yields to B C Yields to R

©2021 | Aurora Proprietary



B



©2021 | Aurora Proprietary

Shaky foundations of forecasting

Are we using the right model? Conditional forecasting

Are we collecting data correctly?

Are we using the right loss?

Shaky foundations of forecasting

Are we using the right model? Conditional forecasting

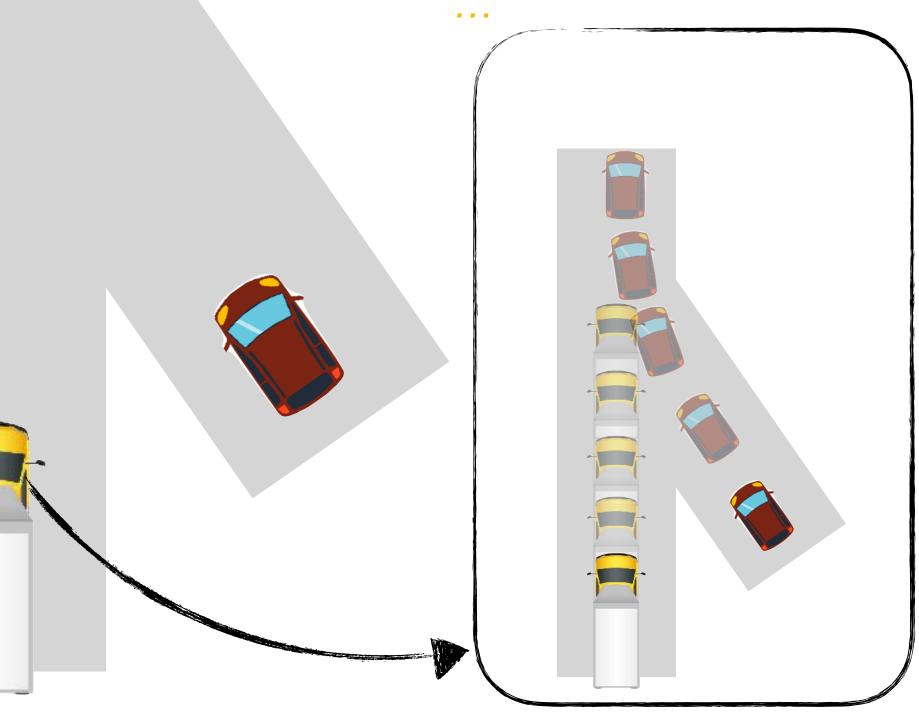
Are we collecting data correctly?

Are we using the right loss?

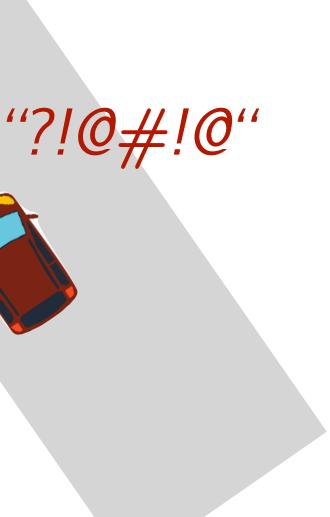
What happens when we deploy the forecast at test time?

What happens when we deploy model?

"The car will probably merge ahead, so I can slow down very smoothly

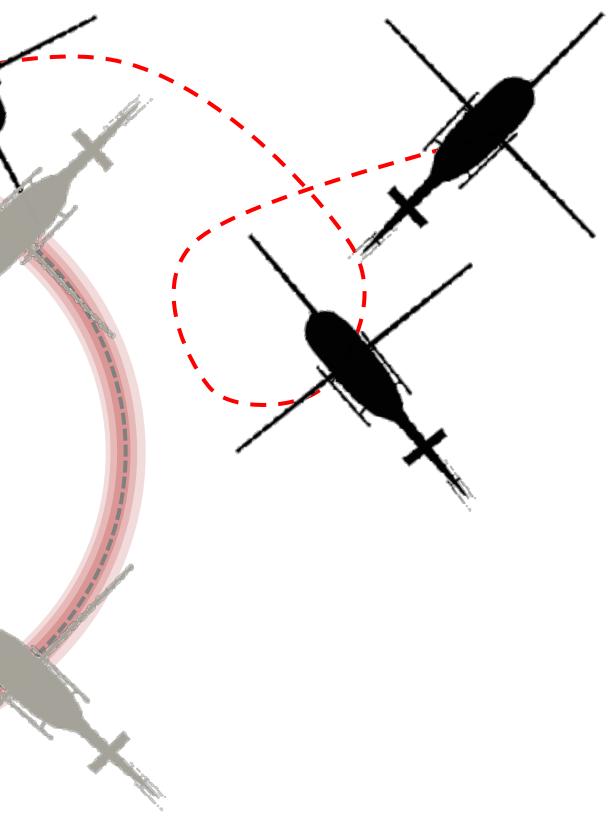


"What the heck does this truck want to do, go ahead or behind ?!?!"

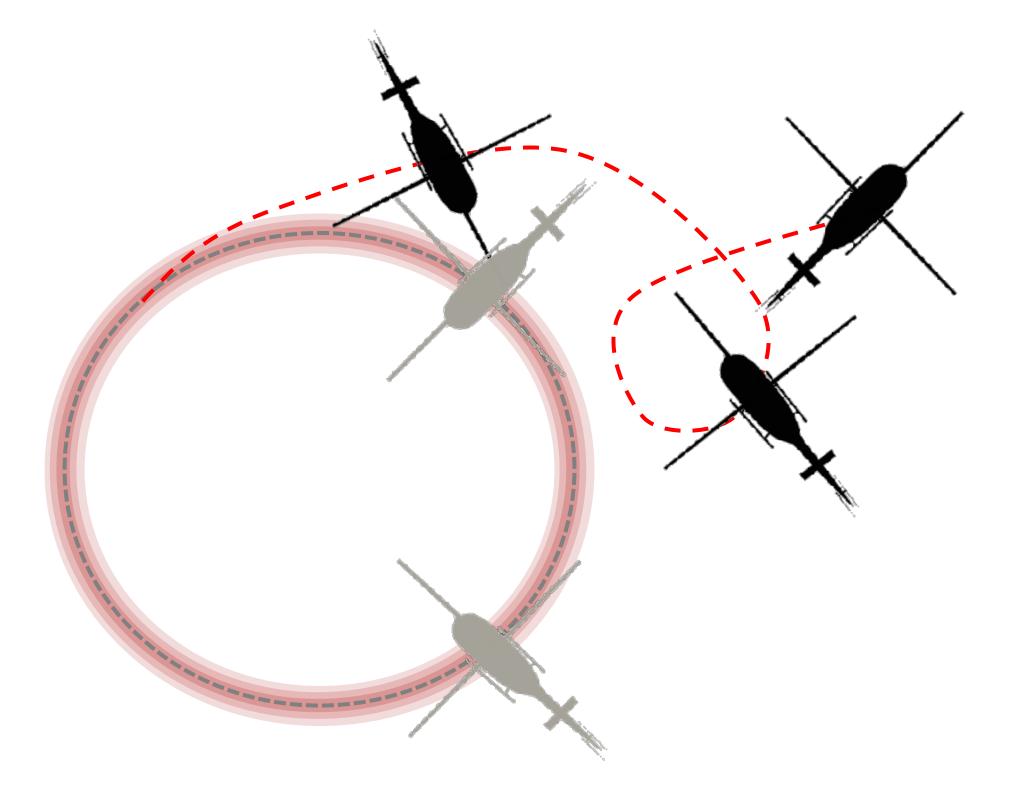


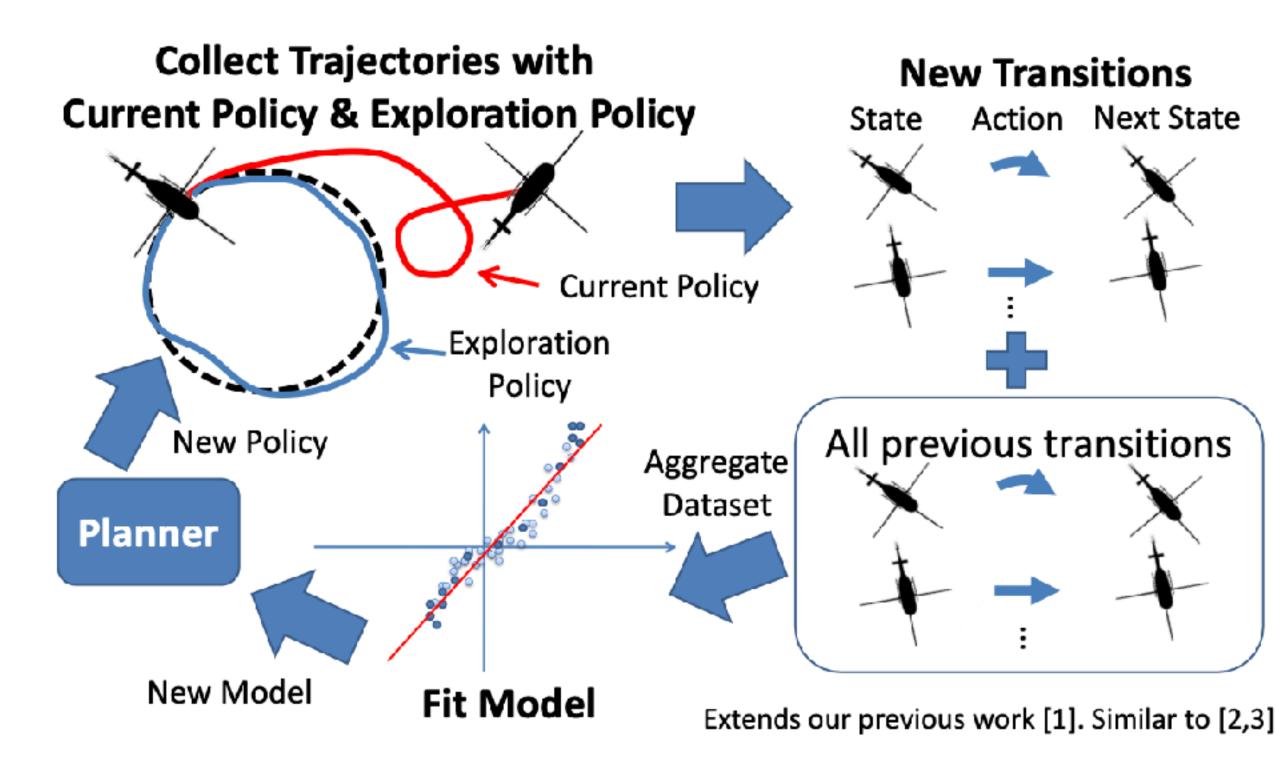
We gathered data when the human was driving the AV

We have seen this problem before!

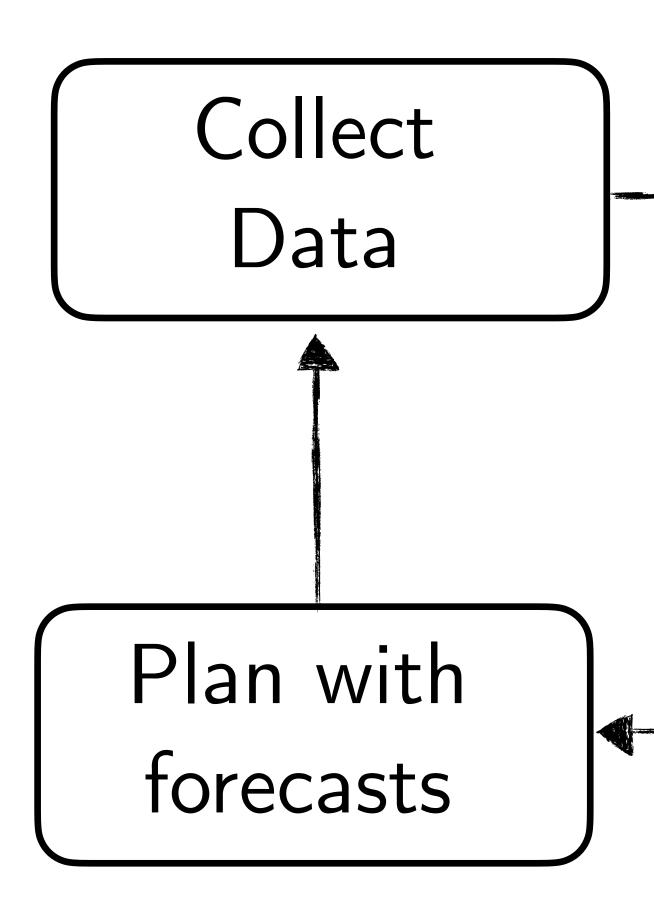


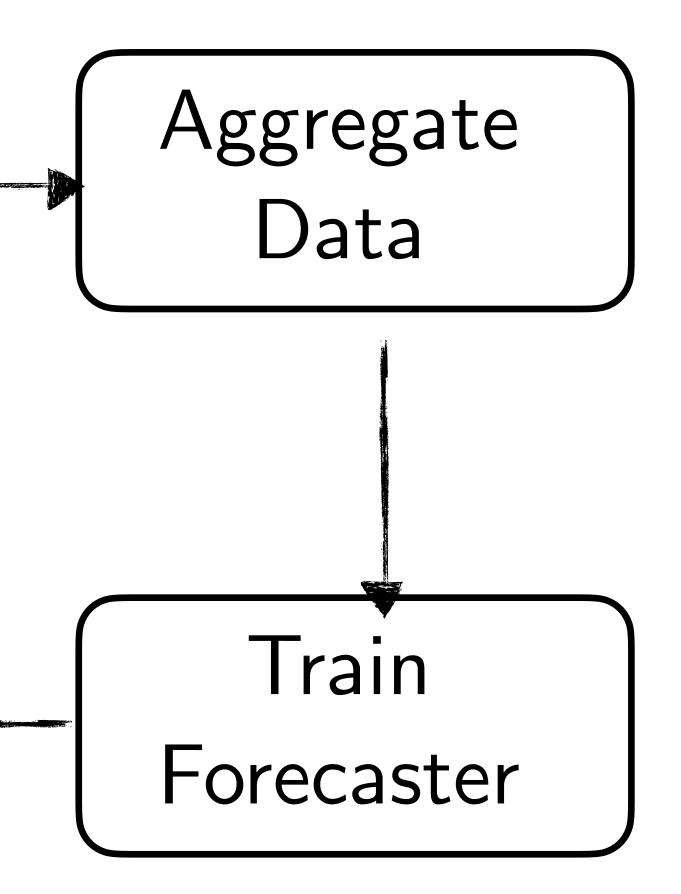
Solution: DAGGER for SysID





DAGGER for Forecasting!





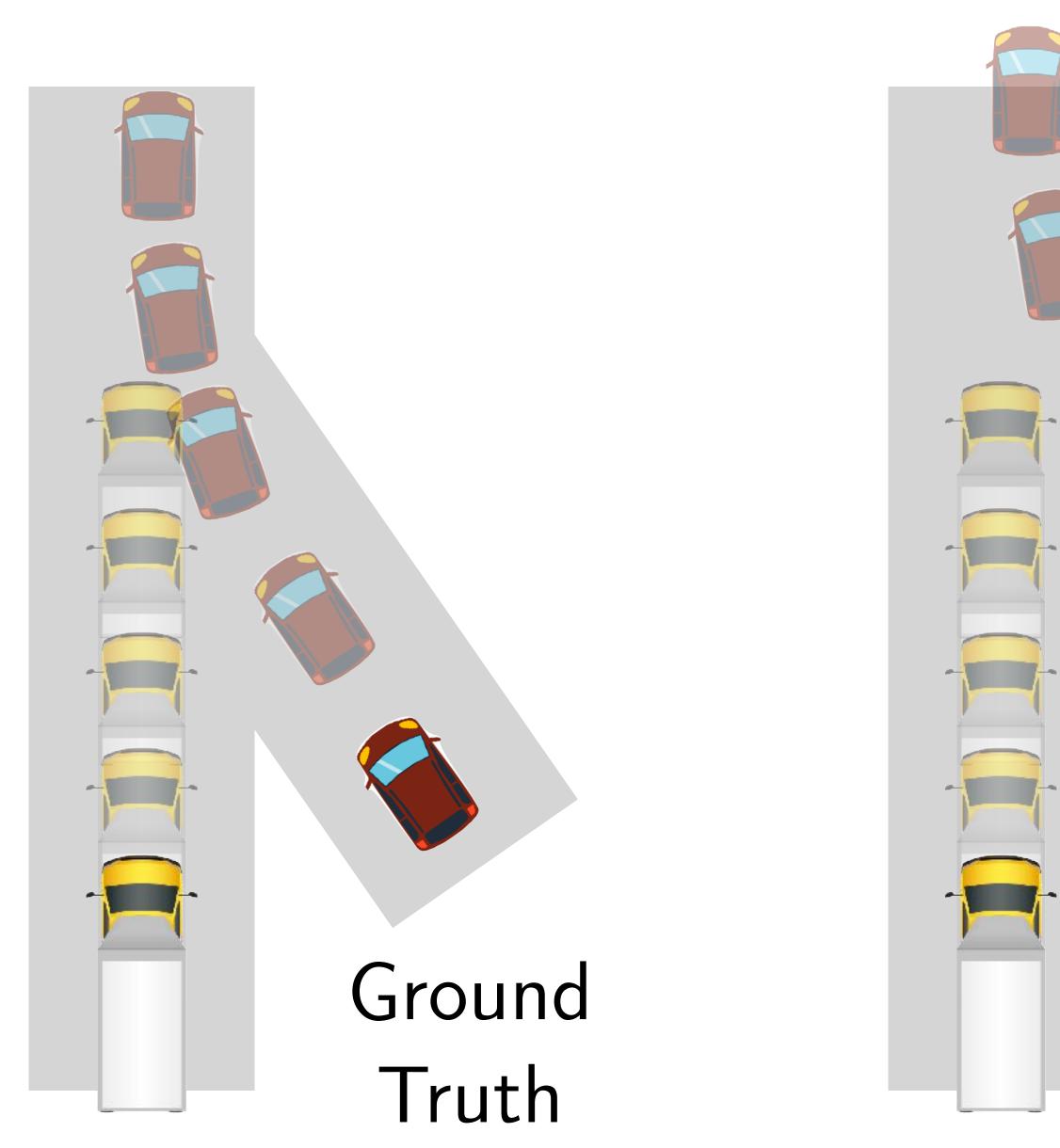
Shaky foundations of forecasting

Are we using the right model? Conditional forecasting

Are we collecting data correctly? Interactively collect data

Are we using the right loss?

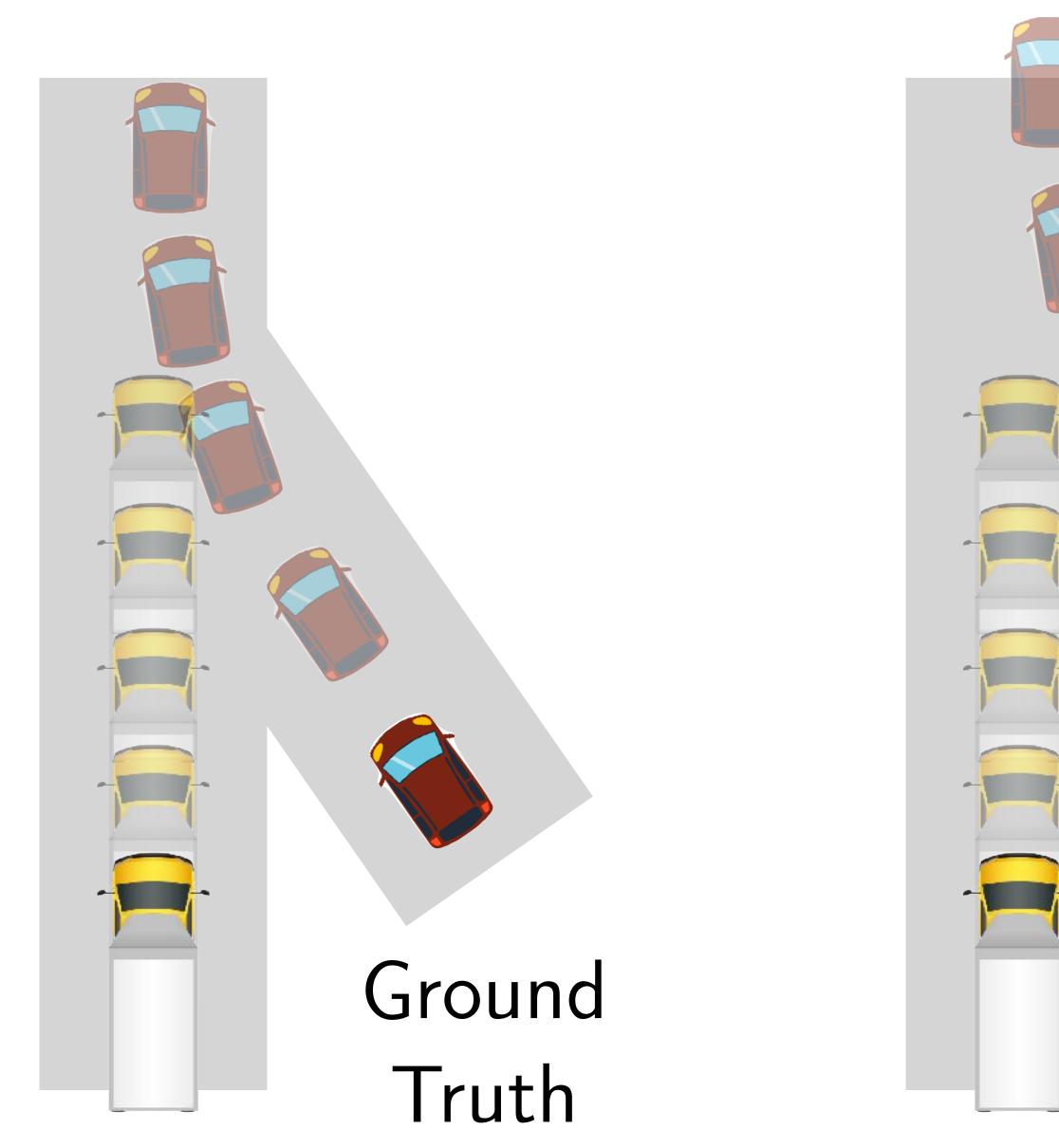
Take a look at the two potential forecasts



Forecast

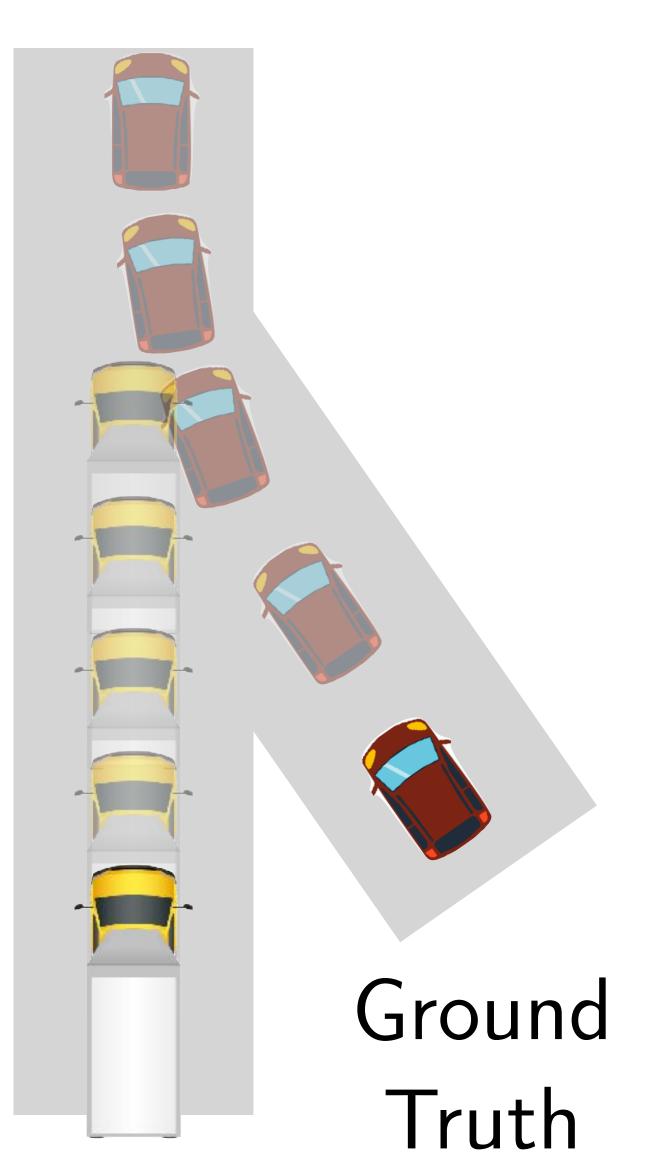
Forecast 2

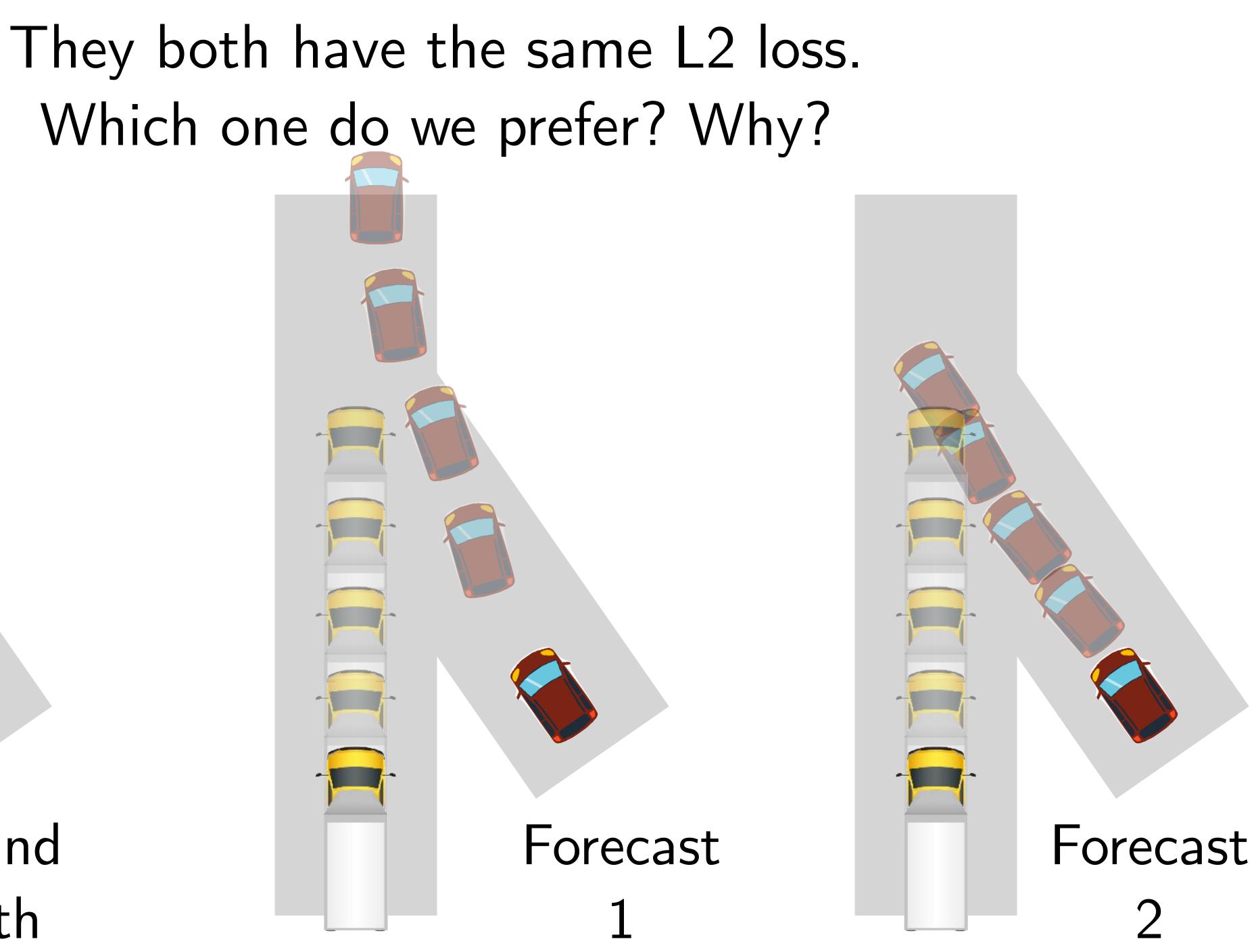
They both have the same L2 loss



Forecast

2 n ec





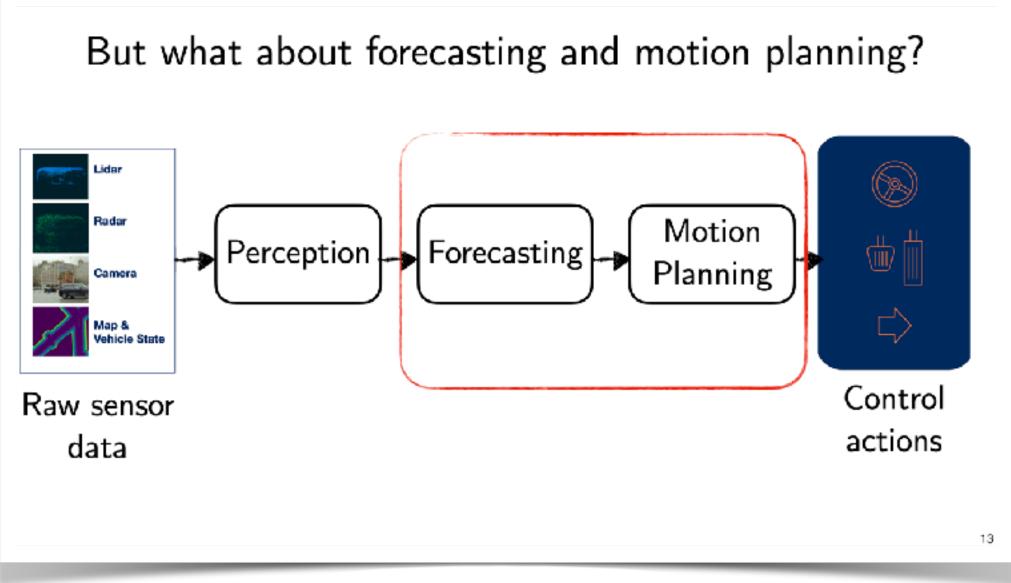
Shaky foundations of forecasting

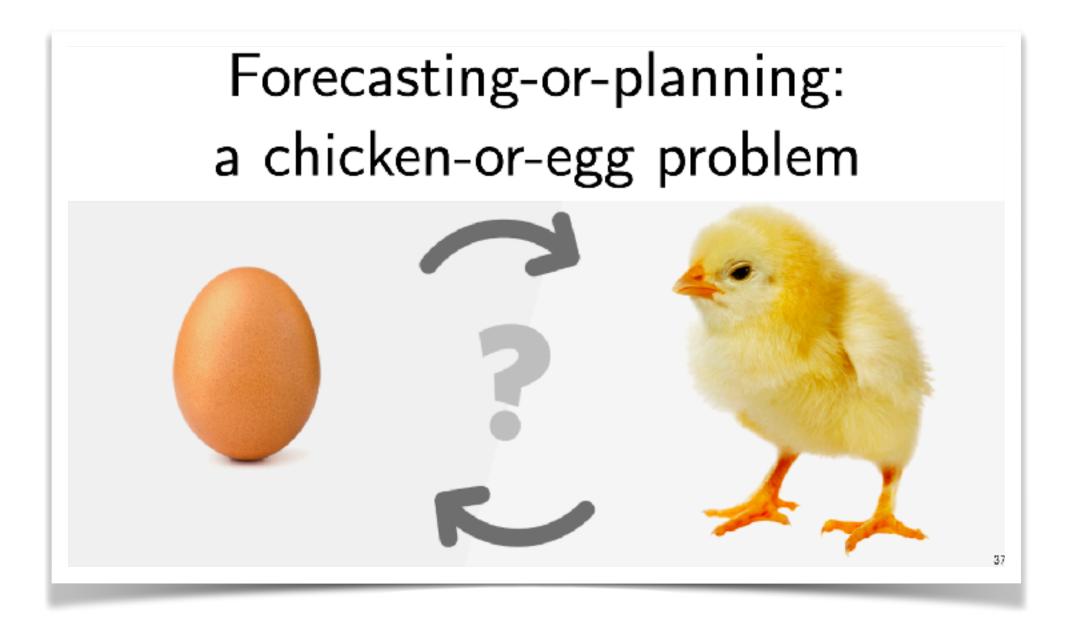
Are we using the right model? Conditional forecasting

Are we collecting data correctly? Interactively collect data

Are we using the right loss? Replace L2 loss with Cost loss

tl;dr





Shaky foundations of forecasting

Are we using the right model? Conditional forecasting

Are we collecting data correctly? Interactively collect data

Are we using the right loss? Replace L2 loss with Cost loss

67

66