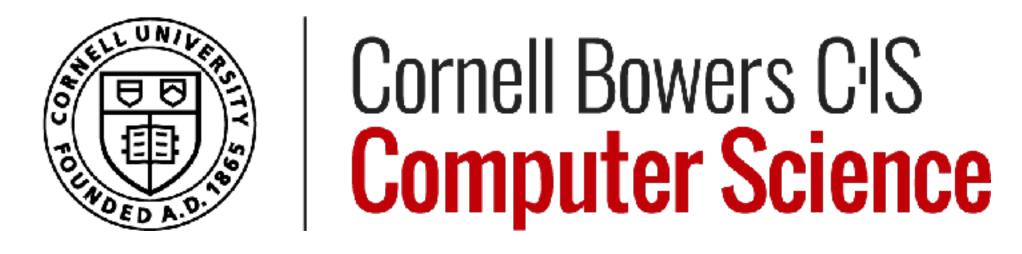
Nightmares of Policy Optimization (contd)

Sanjiban Choudhury

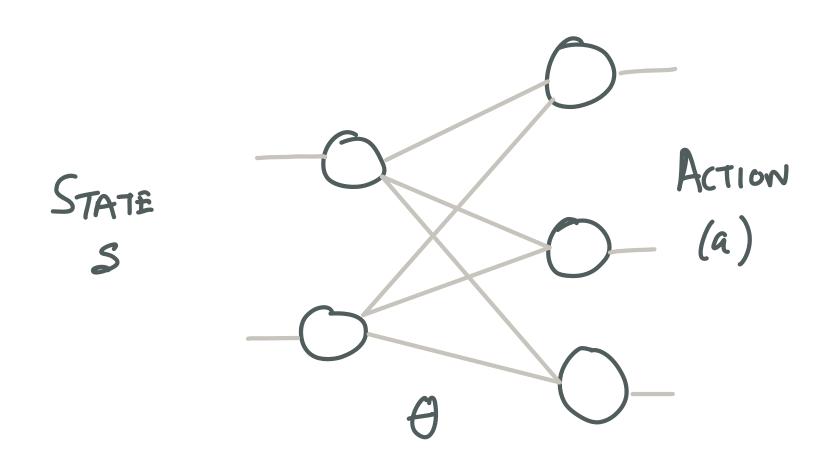


SUPERVISED LEARNING (CLASSIFICATION)

GIIVEN A PATA POINT

 (S, a^*)

WHAT IS THE CLASSIFICATION LOSS?



Prob over Actions: To (a)s)

SUPERVISED LEARNING (CLASSIFICATION)

GIIVEN A PATA POINT

 (S, a^*)

STATE
S
ACTION
(a)

WHAT IS THE CLASSIFICATION LOSS?

$$\mathcal{J}(\theta) = -\log \pi_{\theta}(a^*ls)$$

PROB OVER ACTIONS: To (a)s)

GRADIENT:
$$V_{\theta} \mathcal{L}(\theta) = -V_{\theta} \log T_{\theta} \left(a^* ls\right)$$

SUPERVISED LEARNING (WEIGHTED CLASSIFICATION)

STATE
S

ACTION

(a)

PROB OVER ACTIONS: To (a)s)

GIIVEN A PATA POINT

 (S_1, a_1, R_1) (S_1, a_1, R_2)

WHAT IS THE A CLASS I FICATION LOSS?

SUPERVISED LEARNING (WEIGHTED CLASSIFICATION)

GIIVEN A PATA POINT

PROB OVER ACTIONS: To (a)s)

 $\mathcal{L}(\theta) = -R_1 \log \pi_{\theta} (a_1 l_2)$ $-R_2 \log \pi_{\theta} (a_2 l_2)$

GIRADIENT:
$$\nabla_{\theta} \mathcal{L}(\theta) = -R_1 \nabla_{\theta} \log T_{\theta} (a_1 | s)$$

$$-R_2 \nabla_{\theta} \log T_{\theta} (a_2 | s)$$

Ę

POLICY GRAPIENT (MULTI- STEP CLASSIFICATION) STATE STATE PROB OVER ACTIONS: T_{θ} (a) s)

POLICY GRAPIENT (MULTI-STEP CLASSIFICATION) STATE (a) Convert to $(R_1 + R_2 + R_3 + \cdots + R_{13} +$ PROB OVER ACTIONS: To (a)s)

POLICY GRAPIENT (MULTI-STEP CLASSIFICATION) RETURNS (S_{1}, a_{1}, a_{1}) (S_{1}, a_{1}, a_{1}) $(S_{2}, a_{2}, a_{3}, a_{3})$ PROB OVER ACTIONS: To (a)s) (s_2, a_2, a_2) (s_3, a_2, a_2, a_2) $\mathcal{J}(\theta) = -\hat{Q}_1 \log \pi_{\theta} \left(a_1 1 s_1 \right) - \hat{Q}_2 \log \pi_{\theta} \left(a_2 1 s_2 \right) - \cdots$ Vo d(b) = - Q, Plog To (a, 151) - Q, Plog To (a, 152) -...

REINFORCE

Life is good!

This solves everything ...

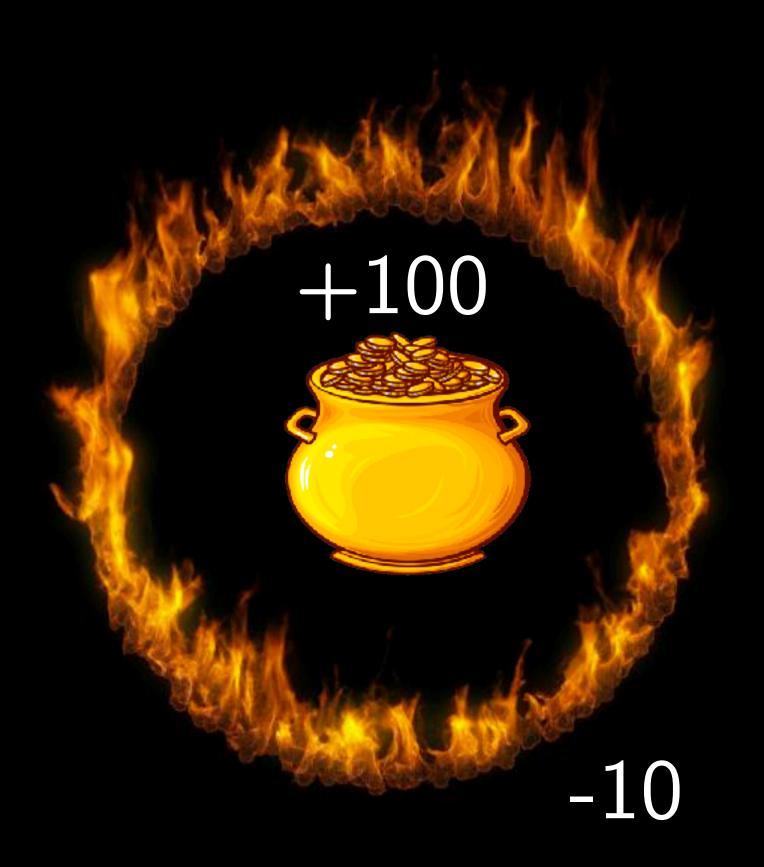
The Three Nightmares of Policy Optimization

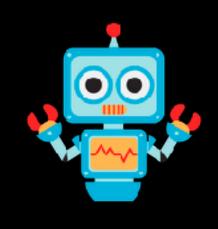
Nightmare 1:

Local Optima

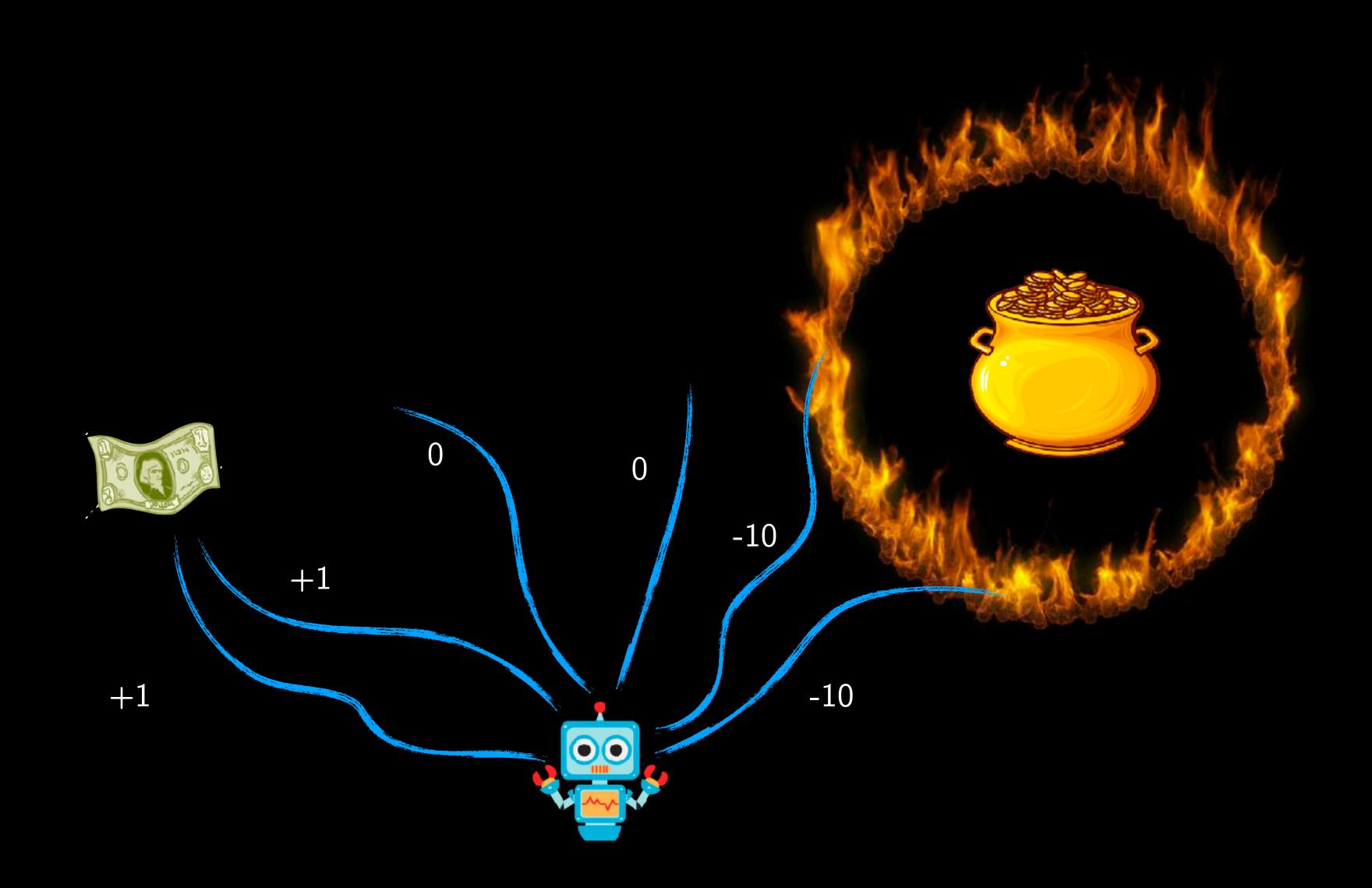
The Ring of Fire

+1



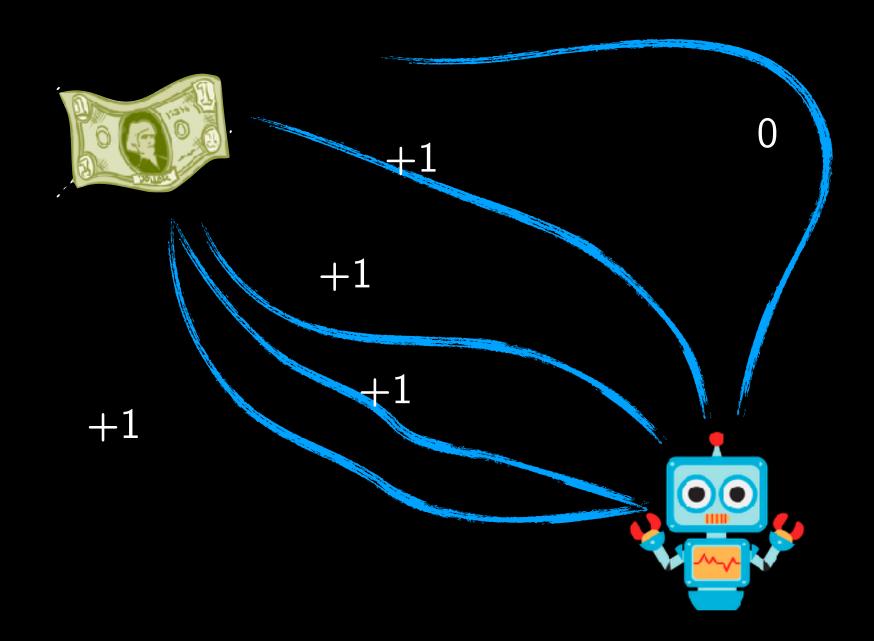


The Ring of Fire



The Ring of Fire

Get's sucked into a local optima!!

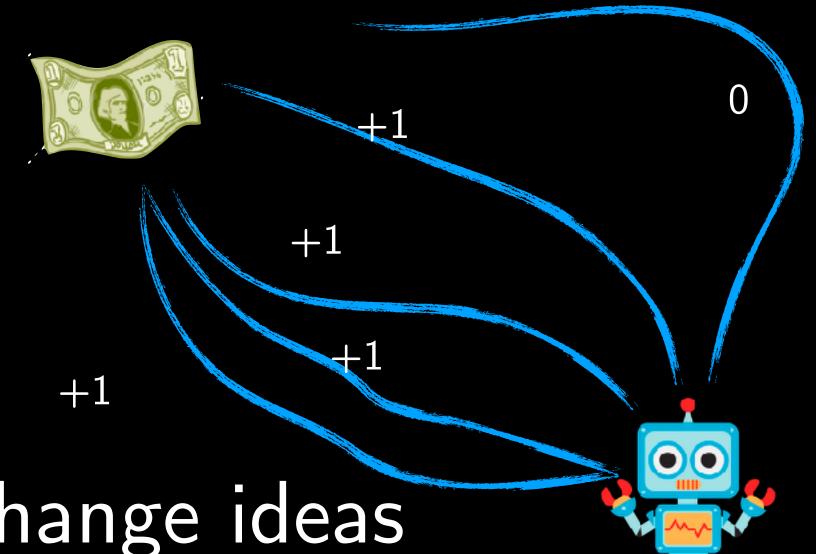


Activity!

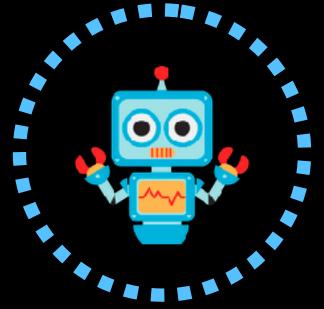
Think-Pair-Share

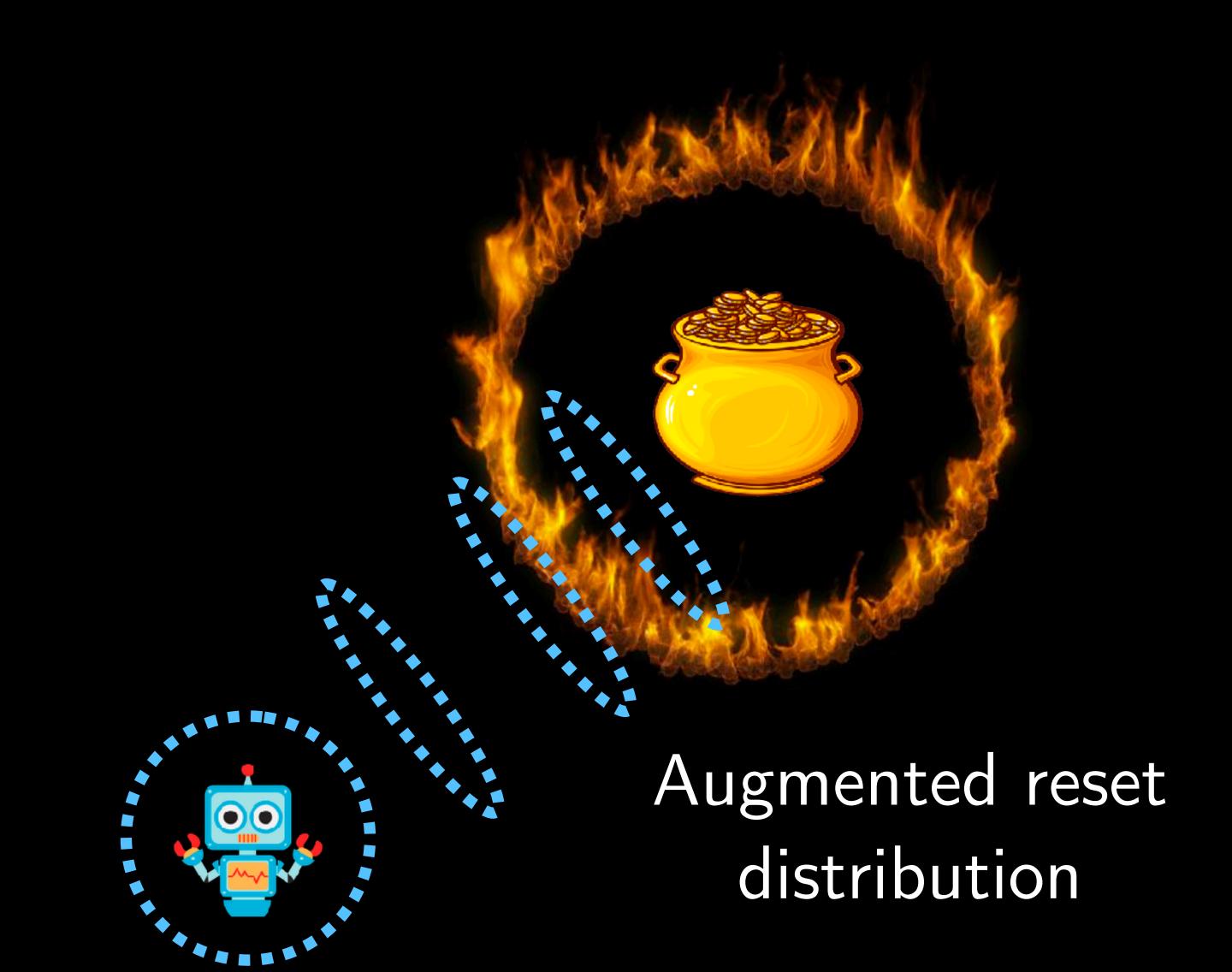
Think (30 sec): How do we get policy gradients to break out of local optima?

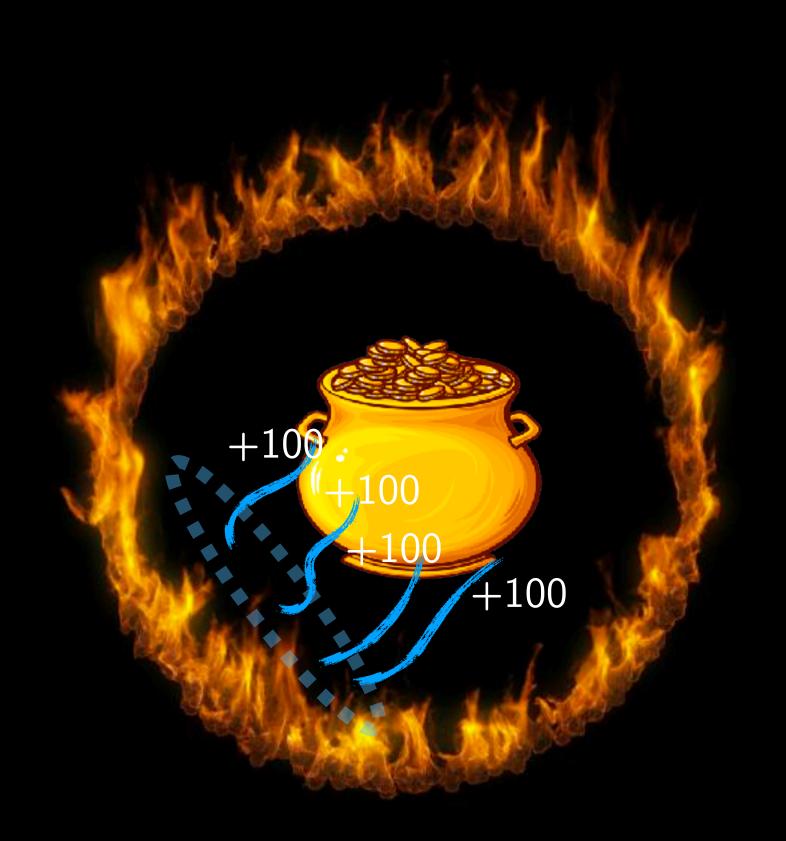
Pair: Find a partner

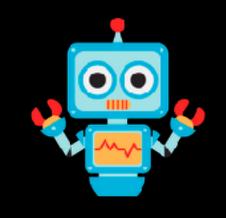


Share (45 sec): Partners exchange ideas

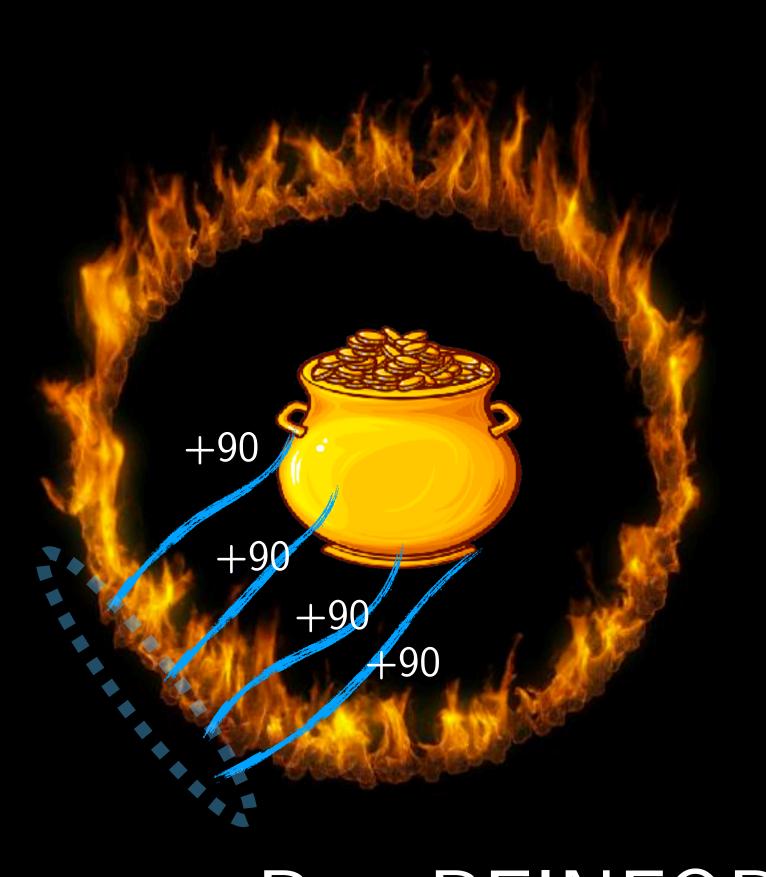


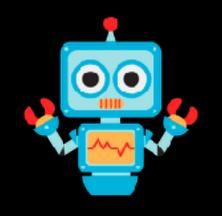




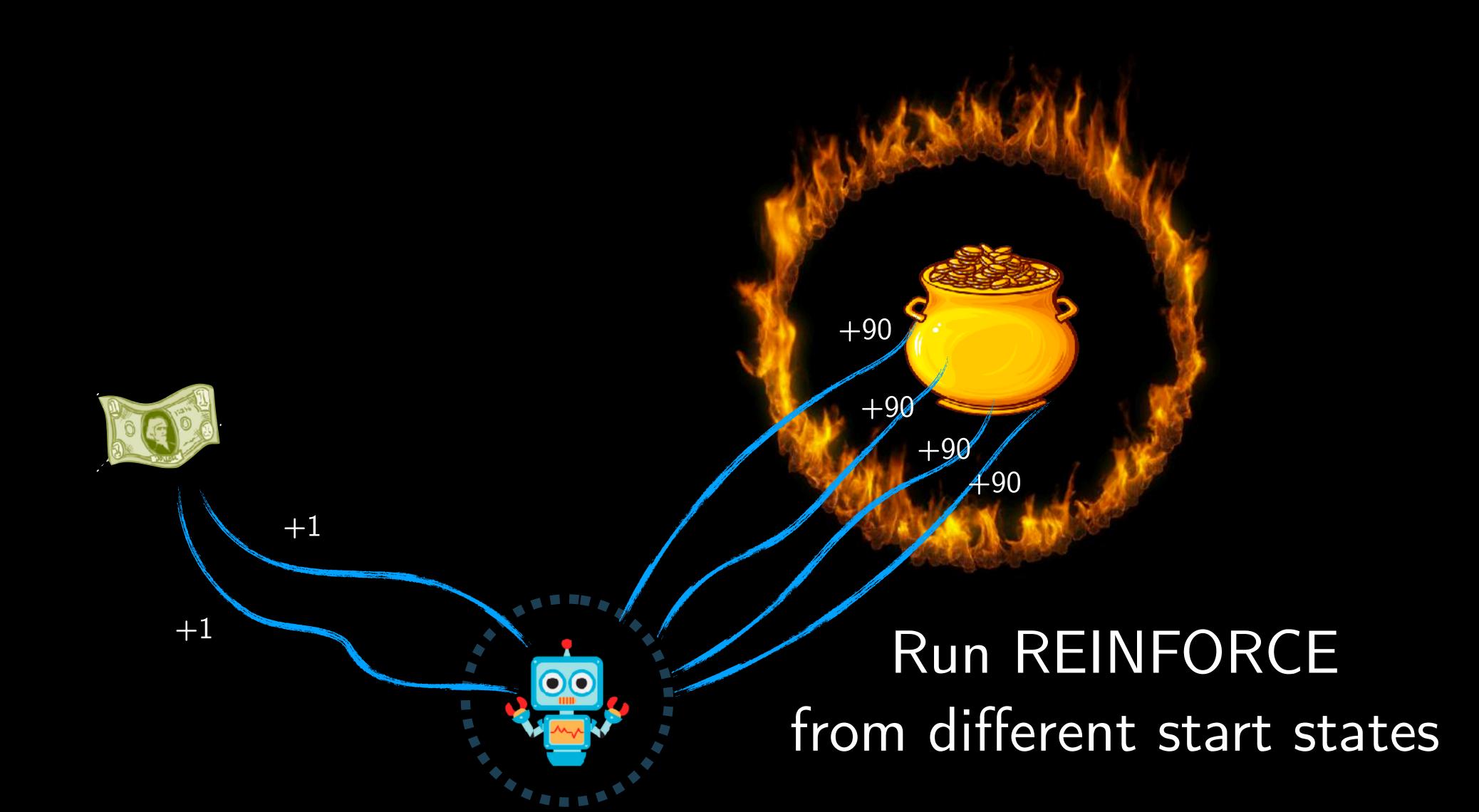


Run REINFORCE from different start states





Run REINFORCE from different start states



Solution: Use a good "reset" distribution

Choose a reset distribution $\mu(s)$ instead of start state distribution

Try your best to "cover" states the expert will visit

Suffer at most a penalty of
$$\|\frac{d_{\pi^*}}{\mu}\|_{\infty}$$

KEINFORCE (WITH RESETS) START WITH RANDOM POLICY TA WHILE NOT CONVERGED: ROLLOUT To COLLECT $(S_1, Q_1, T_1, S_2, a_2, T_2, \dots)$ (STARTING FROM INITIAL) STATE $S_1 \sim \mu(s)$ $S_1 = \frac{a_1}{a_1} \frac{a_2}{s_2} \frac{a_3}{s_3} \frac{a_2}{s_3}$ Compute GRAPIENTS (J=) Ve log To (a 1 2) Q UPPATE BY BY

Nightmare 2:

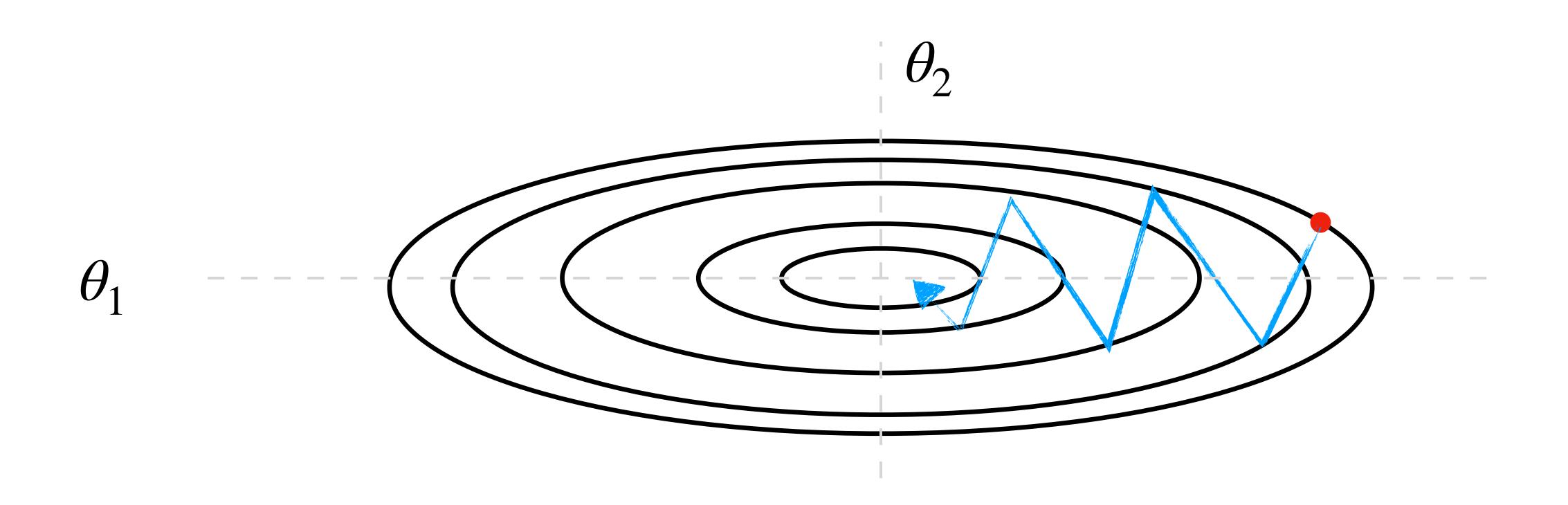
Distribution Shift

Is gradient descent the best direction?

$$\nabla_{\theta} J = E_{p(\xi|\theta)} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) Q^{\pi_{\theta}}(s_t, a_t) \right]$$

Note all the terms in the above equation that depend on theta. If we change theta by a small amount, how do these terms change?

What would gradient descent do here?

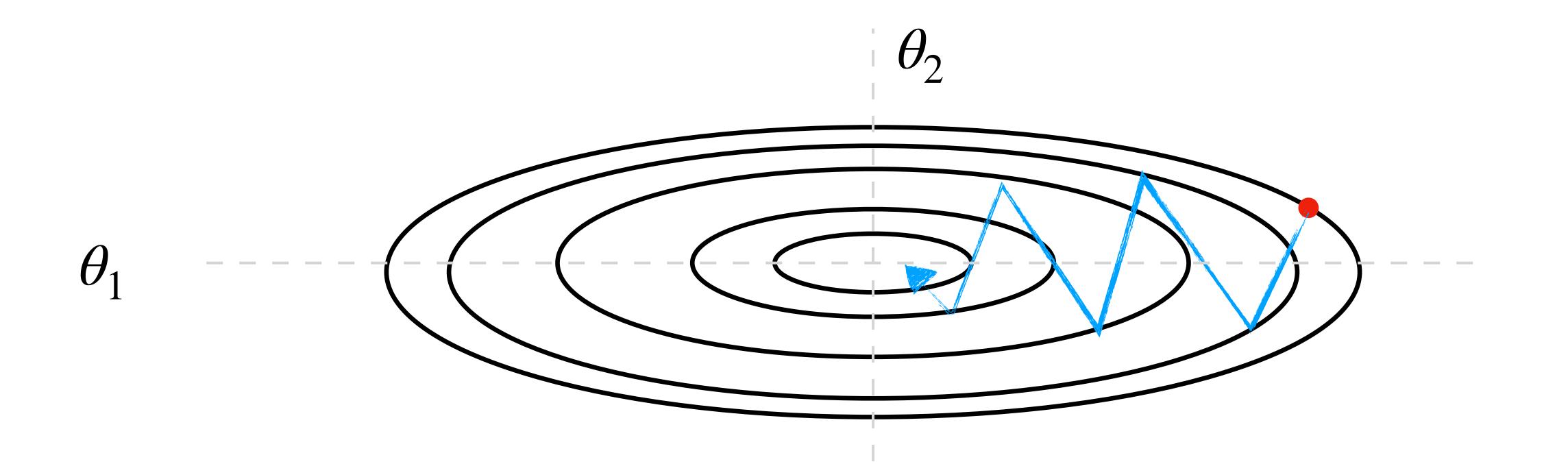


What assumption does it make that is breaking? How can we make it choose a better direction?

Gradient Descent as Steepest Descent

Gradient Descent is simply Steepest Descent with L2 norm

$$\min_{\Delta \theta} J(\theta + \Delta \theta) \text{ s.t. } ||\Delta \theta|| \le \epsilon \qquad \qquad \Delta \theta = -\nabla_{\theta} J(\theta)$$

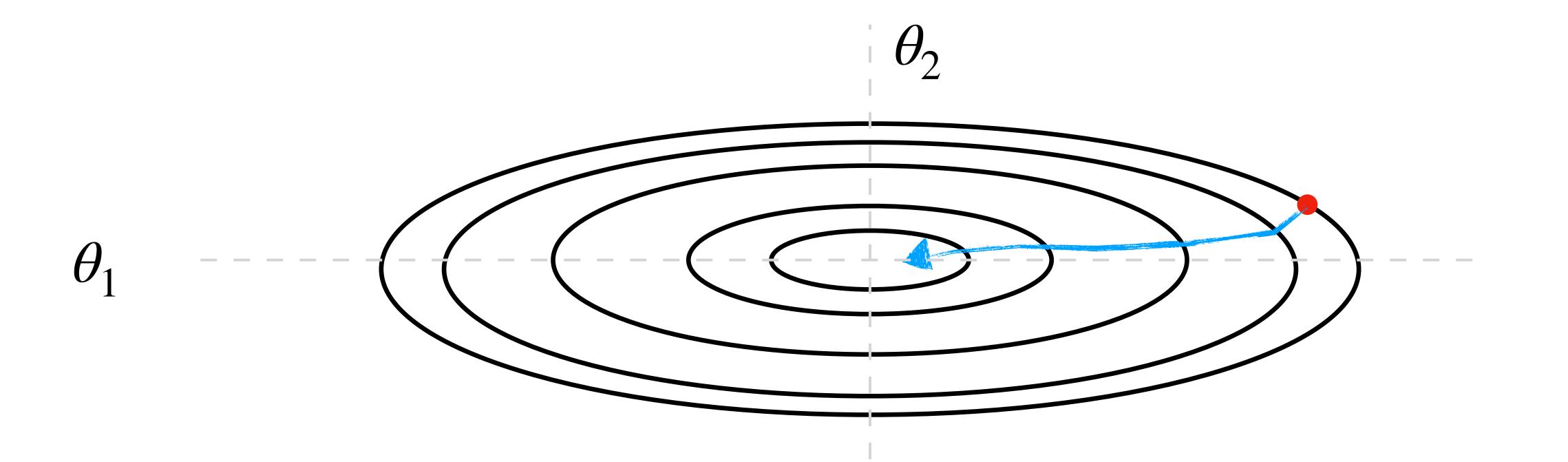


28

Steepest Descent with a different norm

A different norm G means a different notion of "small step"

$$\min_{\Delta \theta} J(\theta + \Delta \theta) \text{ s.t. } \Delta \theta^T G \Delta \theta \le \epsilon \qquad \qquad \Delta \theta = - G^{-1} \nabla_{\theta} J(\theta)$$



29

What is the best norm for policy gradient?

$$\nabla_{\theta} J = E_{p(\xi|\theta)} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) Q^{\pi_{\theta}}(s_t, a_t) \right]$$

Don't make small changes in θ , make small changes in the "distribution $\pi_{\theta}(a \mid s)$ "

$$\min_{\Delta \theta} J(\theta + \Delta \theta) \quad \text{s.t. } KL(\pi_{(\theta + \Delta \theta)} | | \pi_{\theta}) \le \epsilon$$

REINFORCE (WITH NATURAL GRADIENTS)

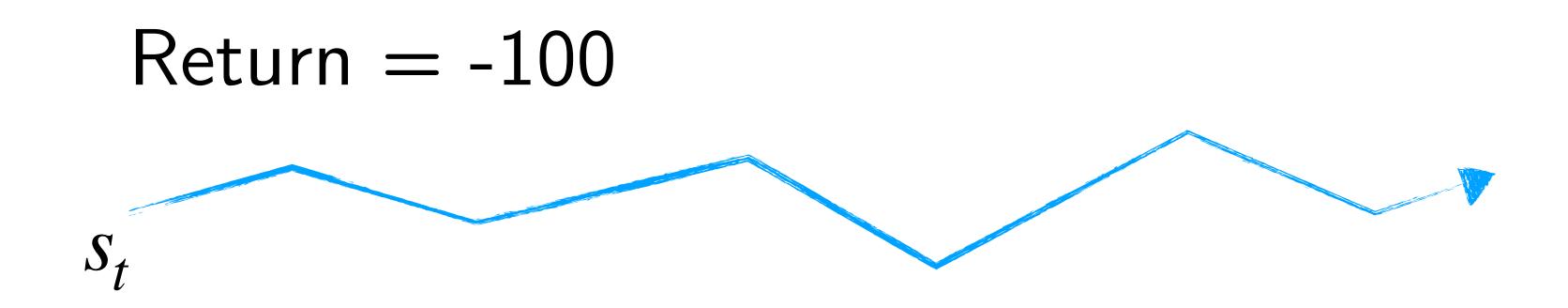
START WITH RANDOM POLICY TA r, s₂ a₂ s₃ a₈ WHILE NOT CONVERGED: ROLLOUT T_{Θ} To collect $(S_1, Q_1, T_1, S_2, Q_2, T_2, \cdots)$ CREATE DATASET COMPUTE GRAPIENTS (J=) Volog To (a,15) Q $(S_{4}, q_{4}, \hat{Q}_{4})$ $\in D$ $G_{7}(B) = \int V_{6} \log T_{6}(a|s) V_{6} \log T_{6}(a|s)$ 8 + 8 + x6(0) V3 J UPPATE FISCHER INFORMATION

MATRIX

Nightmare 3:

High Variance

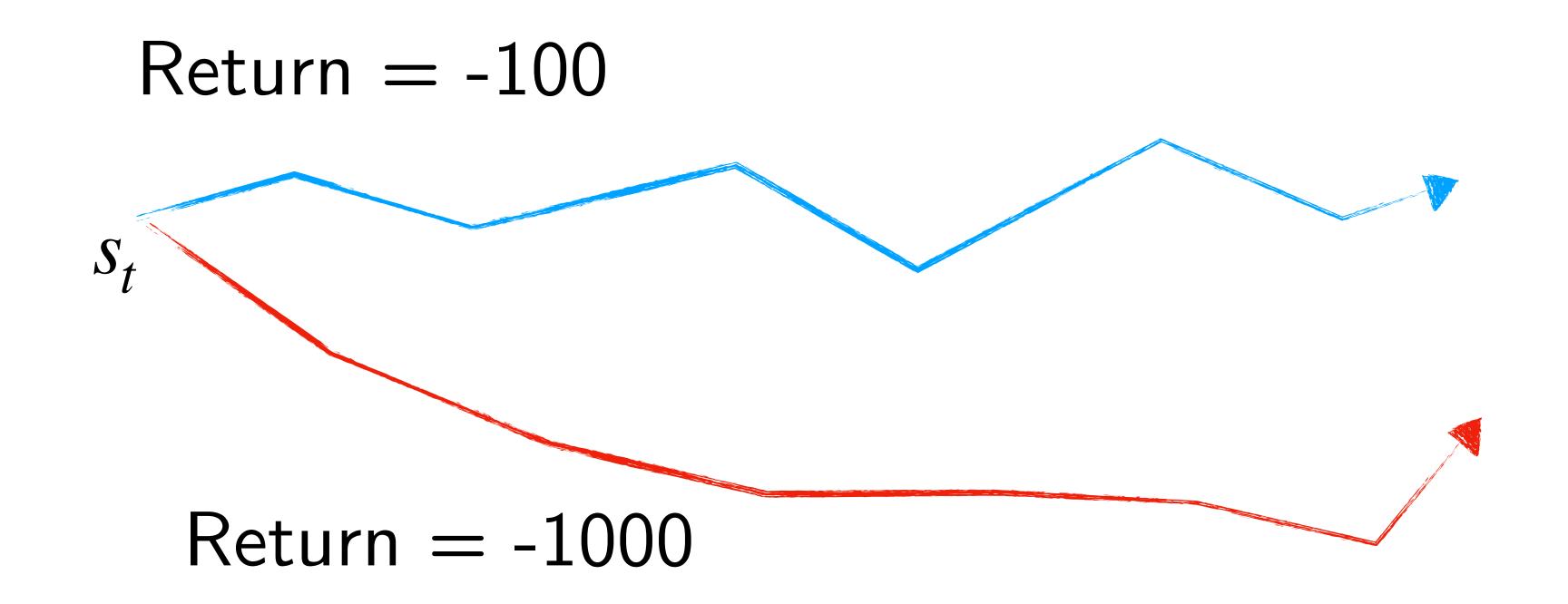
Consider the following single roll-out



What would the gradient at s_t be?

Is this a good roll-out or a bad roll out?

It depends on other trajectories!



How can we incorporate relative information?

Problem: High Variance

$$\nabla_{\theta} J = E_{p(\xi|\theta)} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) Q^{\pi_{\theta}}(s_t, a_t) \right]$$

One of the reasons for the high variance is that the algorithm does not know how well the trajectories perform compared to other trajectories.

Solution: Subtract a baseline!

$$\nabla_{\theta} J = E_{d^{\pi_{\theta}}(s)} E_{\pi_{\theta}(a|s)} \left[\nabla_{\theta} \log(\pi_{\theta}(a|s)) \left(Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s) \right) \right].$$

Does this bias the gradient ??

$$= E_{d^{\pi_{\theta}}(s)} E_{\pi_{\theta}(a|s)} \left[\nabla_{\theta} \log(\pi_{\theta}(a|s) A^{\pi_{\theta}}(s,a)) \right]$$
(Advantage)

KEINFORCE (WITH BASELINE)

START WITH RANDOM POLICY TA

NOT CONVERGED: WHILE

ROLLOUT To COLLECT $(S_1, a_1, \tau_1, S_2, a_2, \tau_2, \cdots)$

TRAIN $V_{\phi}(s) = \frac{2}{(s_{t},\hat{q})_{\epsilon_{N}}} ||V_{\phi}(s) - \hat{Q}_{1}||$ $\int_{S_{1}}^{a_{1}-V(s)} \hat{Q}_{2}^{s} - V(s) \hat{Q}_{3}^{s} - V(s)$ $\int_{S_{1}}^{a_{1}-V(s)} \hat{Q}_{2}^{s} - V(s) \hat{Q}_{3}^{s} - V(s)$

 $(S_{\ell}, G_{\ell}, \widehat{Q}_{\ell})$

ED

COMPUTE GRAPIENTS VOJ= 2 Volg TO (a12) (Q+ Volst)

UPPATE A + A + X VAJ

S2 Q2 S3 Q3

Recap (again) in 60 seconds!

1. Local Optima: Use Exploration Distribution

2. Distribution Shift: *Natural*Gradient Descent

3. High Variance: Subtract baseline

If we are estimating values ... can we bring back MC and TD?

Monte-Carlo

 $V(s) \leftarrow V(s) + \alpha(G_t - V(s))$

Zero Bias

High Variance

Always convergence

Temporal Difference

 $V(s) \leftarrow V(s) + \alpha(c + \gamma V(s') - V(s))$

Can have bias

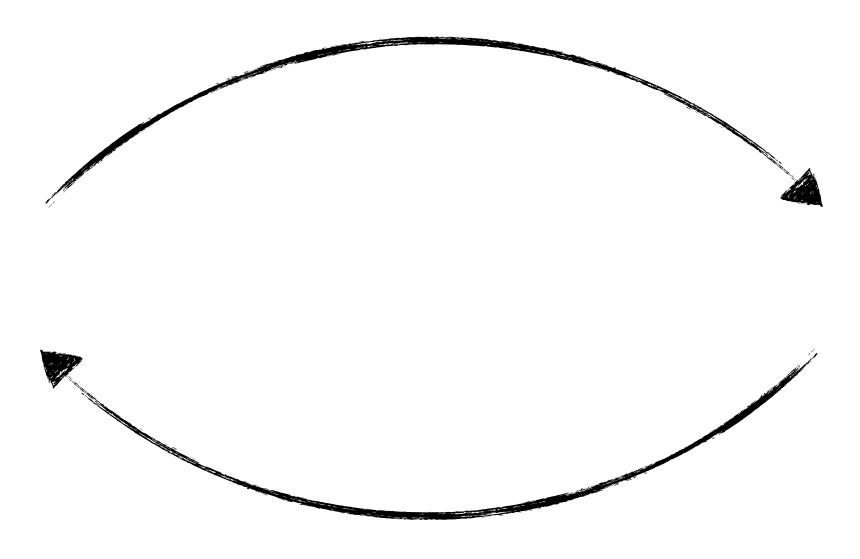
Low Variance

(Just have to wait till heat death of the universe)

May *not* converge if using function approximation

Actor-Critic Algorithms

Actor



Policy improvement of π

Estimates value functions $Q_{\phi}^{\pi}/V_{\phi}^{\pi}/A_{\phi}^{\pi}$

Natural Gradient Descent

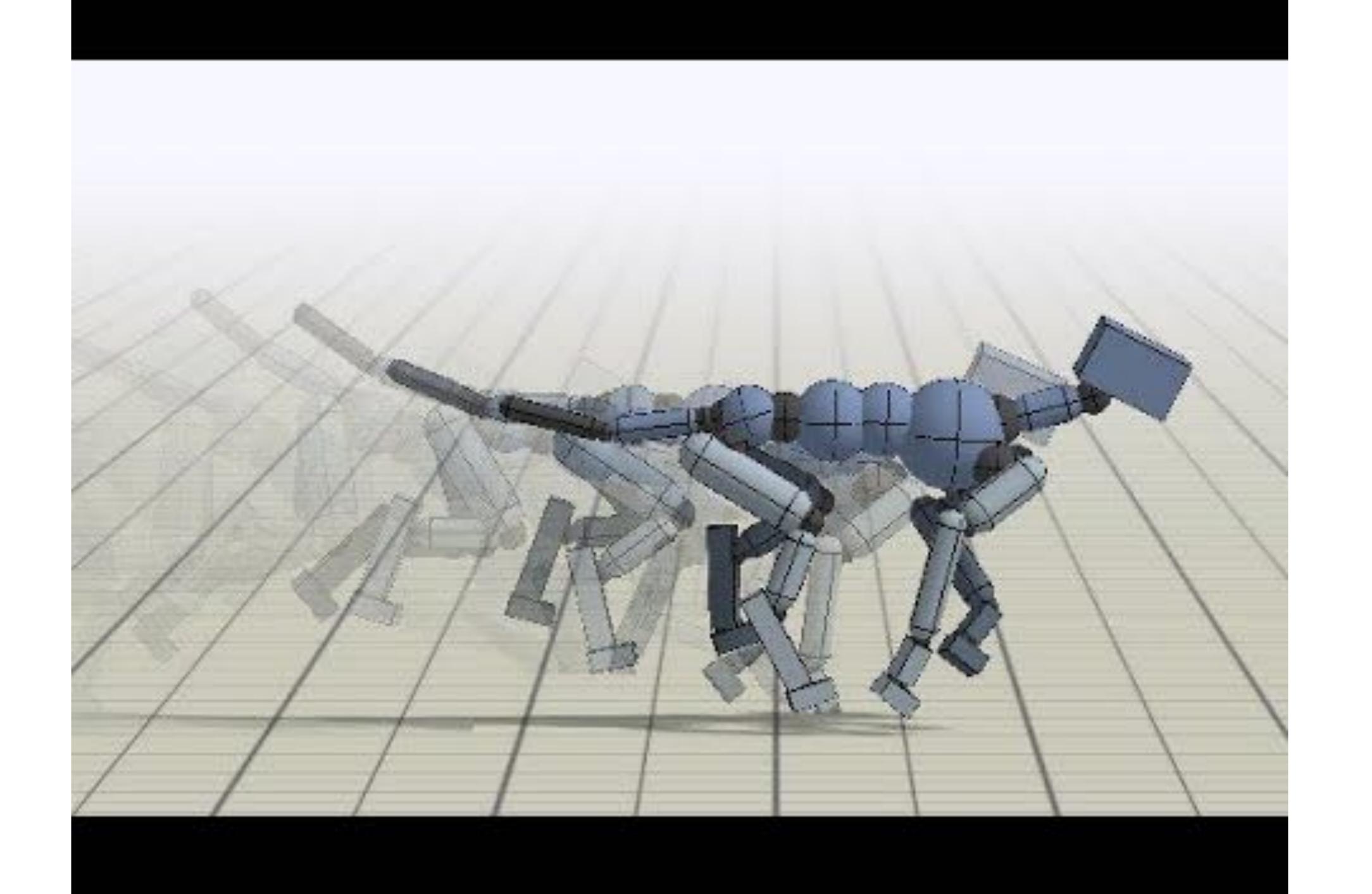
TD, MC

The General Actor Critic Framework

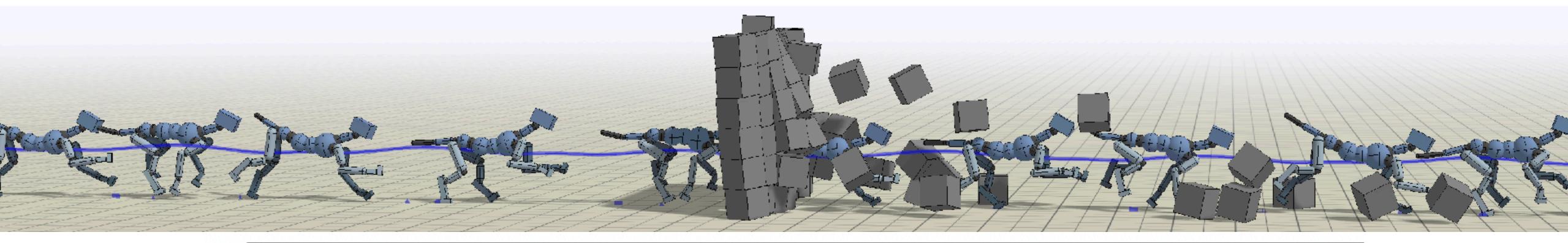
batch actor-critic algorithm:

- 1. sample $\{\mathbf{s}_i, \mathbf{a}_i\}$ from $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ (run it on the robot)
- 2. fit $\hat{V}_{\phi}^{\pi}(\mathbf{s})$ to sampled reward sums (TD, MC) 3. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$
- 4. $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

"Soft" Actor Critic



From Policy Gradient to Policy Search



Algorithm 1 Advantage-Weighted Regression

```
1: \pi_1 \leftarrow \text{random policy}
```

2: $\mathcal{D} \leftarrow \emptyset$

3: for iteration $k = 1, ..., k_{\text{max}}$ do

4: add trajectories $\{\tau_i\}$ sampled via π_k to \mathcal{D}

5:
$$V_k^{\mathcal{D}} \leftarrow \arg\min_{V} \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} \left[\left| \left| \mathcal{R}_{\mathbf{s}, \mathbf{a}}^{\mathcal{D}} - V(\mathbf{s}) \right| \right|^2 \right]$$
 Supervised Learning!

6:
$$\pi_{k+1} \leftarrow \arg \max_{\pi} \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} \left[\log \pi(\mathbf{a}|\mathbf{s}) \exp \left(\frac{1}{\beta} \left(\mathcal{R}_{\mathbf{s}, \mathbf{a}}^{\mathcal{D}} - V_k^{\mathcal{D}}(\mathbf{s}) \right) \right) \right]$$
 Supervised Learning!

7: end for

Peng et al, 2019

tl,dr

The Policy Gradient Theorem

$$\begin{split} \nabla_{\theta} J &= E_{p(\xi|\theta)} \left[\sum_{t=0}^{T-1} \left(\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \left(\sum_{t'=0}^{t-1} r(s_{t'}, a_{t'}) + \sum_{t'=t}^{T-1} r(s_{t'}, a_{t'}) \right) \right) \right] \\ &= E_{p(\xi|\theta)} \left[\sum_{t=0}^{T-1} \left(\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \sum_{t'=t}^{T-1} r(s_{t'}, a_{t'}) \right) \right], \end{split}$$

$$\nabla_{\theta} J = E_{p(\xi|\theta)} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) Q^{\pi_{\theta}}(s_t, a_t) \right]$$

15

- Local Optima: Use Exploration Distribution
- 2. Distribution Shift: *Natural* Gradient Descent
- 3. High Variance: Subtract baseline