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Life is good!  

This solves 
everything …
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The Three Nightmares of Policy Optimization
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Nightmare 1: 

Local Optima
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Get’s sucked into a local optima!!



Activity!
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Think-Pair-Share 

Think (30 sec): How do we get policy gradients to break out of 
local optima?

Pair: Find a partner 

Share (45 sec): Partners exchange ideas 



Idea: What if we had a “good reset distribution?”

Nominal reset distribution 



Idea: What if we had a “good reset distribution?”

Augmented reset 
distribution
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Solution: Use a good “reset” distribution
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Try your best to “cover” states the expert will visit

Suffer at most a penalty of ∥
dπ*

μ
∥∞

Choose a reset distribution  instead of start state distributionμ(s)
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START with Ranion poncy
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Nightmare 2: 

Distribution Shift



Is gradient descent the best direction?
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Note all the terms in the above equation that depend on theta. 
If we change theta by a small amount, how do these terms change?



What would gradient descent do here?
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What assumption does it make that is breaking? 
How can we make it choose a better direction?

θ1

θ2



Gradient Descent as Steepest Descent
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Gradient Descent is simply Steepest Descent with L2 norm

Δθ = − ∇θJ(θ)

θ1

θ2

min
Δθ

J(θ + Δθ) s.t | |Δθ | | ≤ ϵ



Steepest Descent with a different norm
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A different norm G means a different notion of “small step”

θ1

θ2

Δθ = − G−1 ∇θJ(θ)min
Δθ

J(θ + Δθ) s.t ΔθTGΔθ ≤ ϵ



What is the best norm for policy gradient?
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Don’t make small changes in , make small changes in the  
“distribution ”

θ
πθ(a |s)

min
Δθ

J(θ + Δθ) s.t. KL(π(θ+Δθ) | |πθ) ≤ ϵ
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Nightmare 3: 

High Variance



Consider the following single roll-out
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Return = -100

What would the gradient at  be? st

st

Is this a good roll-out or a bad roll out?



It depends on other trajectories!
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Return = -100

st

Return = -1000

How can we incorporate relative information? 



Problem: High Variance
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One of the reasons for the high variance is that the algorithm does not 
know how well the trajectories perform compared to other trajectories.



Solution: Subtract a baseline!
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Does this bias the gradient ??

(Advantage)
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Recap (again) in 60 seconds!

1. Local Optima: Use Exploration 
Distribution 

2. Distribution Shift: Natural 
Gradient Descent 

3. High Variance: Subtract 
baseline



If we are estimating 
values … can we bring 

back MC and TD?
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Actor-Critic Algorithms
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Actor Critic

Policy improvement 
of  π

Estimates value 
functions  Qπ

ϕ /Vπ
ϕ /Aπ

ϕ

Natural Gradient Descent TD, MC



The General Actor Critic Framework
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(TD, MC)

Credit: Sergey Levine
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“Soft” Actor Critic
Haarnoja 2018

https://www.youtube.com/watch?v=FmMPHL3TcrE
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https://www.youtube.com/watch?v=ROwJ_O2NINc


From Policy Gradient to Policy Search 
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Peng et al, 2019

Supervised 
Learning!

Supervised 
Learning!
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tl;dr

1. Local Optima: Use Exploration 
Distribution 

2. Distribution Shift: Natural Gradient 
Descent 

3. High Variance: Subtract baseline


