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Bellman i1s Beautiful ...
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But errors in Bellman compound!!!

V(s) max r(s, a)+ V,(s')
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The problem of distribution shift
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The problem of distribution shift
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Compounding Errors in Mountain Car

Car—'on—the'—I—Iilll V*(X, y)




- ith a
iteration w
hen we run va|;Je e
en
What happens w 2 Layer MLP:

. 1

i >
22 '#:s*m,,
»’e‘%'~$-
| .-‘2~2z"~’~'&~,~;.~ 2
i e »’:&’&’:ﬁr
..'......-n- w/@.%:«'
-'"'.""-"'.'.',-,. R
LT .".'.',',.'....... ?@Q%:g
Z m-".-':.-':.-.- R 1
LEIIZIIIL NS
..n..". [ \h..
""'."~' \\Q..
..'..".. §\~~.
#.'#.'..' NS
0 .s'~"~.'... \&%
~'-'.~.-.-,~':;~*-.s'-'s.4l 0 1
"QIIQI'IO"'..'.:.“ i & ... ve
20 &
5




What happens when we run value iteration

2 Layer MLP?
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What happens when we run value iteration
a
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2 Layer MLP?
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To hell with Value Estimates!

Trust ONLY actual Returns



Bye Bye Bellman ...

‘not to be blinded by the
beauty of the Bellman
equation’

- Andrew Moore
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What if we focused on
finding good policies ... ?
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The Policy!
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Can we just focus on finding a good policy?

(a1 = +\°0°m
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Learn a mapping from Roll-out policies in the real-world

states to actions to estimate value
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The Game of

Tetris



What's a good policy representation for Tetris?

(4 rotations)*(10 slots)
- (6 impossible poses) = 34

State (s,) Action (a,)
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Think-Pair-Share

Think (30 sec): Ideas for how to represent policy for tetris?

Pair: Find a partner

Share (45 sec): Partners exchange
ideas
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Some inspiration for Tetris policy

Until 2008, the best artificial Tetris player was handcrafted,
as reported by Fahey (2003). Pierre Dellacherie, a self
declared average Tetris player, identified six simple features
and tuned the weights by trial and error.
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Dellacherie Features

(J1) (f2) (/3) (fa) (f5) (f6)
Landing Eroded Row Column Holes  Cumulative
Heights S Transitions Transitions Wells
The contribution of the last The number of filled cells A well is a succession of
piece to the cleared lines adjacent to the empty cells empty cells and the cells to
time the number of cleared summed over all rows the left and right are

lines. occupied



A magic formula 717

—4 X holes — cumulative wells

— row transitions — column transitions
— landing height + eroded cells
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A magic formula 717

—4 X holes — cumulative wells
— row transitions — column transitions
— landing hetght + eroded cells

This linear evaluation function cleared an average of 660,000 lines on the full grid ...
... In the simplified implementation used by the approaches discussed earlier, the games would
have continued further, until every placement would overflow the grid. Therefore, this report
underrates this simple linear rule compared to other algorithms.
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Tetris Policy

exp (GTf(s, a))

7to(als) = Z,:exp (GTf(s,a/))

a

f;(s,a) = # number ot holes
f-(s,a) = # max height
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The Goal of Policy Optimization

exp (BTf(s, a))
g;exp (67 f(s,a"))

7tp(als) =

T—1
min J(0) = Z E, (s, a)
7,
=0
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Can we do gradient
descent if we don't know
the dynamics??
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The Likelihood
Ratio Trick!




REINFORCE

Algorithm 20: The REINFORCE algorithm.

Start with an arbitrary initial policy 7ty

while not converged do

Run simulator with 7ty to collect {¢ (7) fi |
Compute estimated gradient

N 1 N T—1 ; ; ;
Vol== Y || ) Vglogmy (at()|5§)) R(¢W)
N = | =

~ Update parameters 6 < 0 + « Vo]
return 7ty
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Chugging through the gradient ..

Vo log mp(als) = Vg |0 f(s,a) —logZexp (OTf(s, a’))]

oy Do S) o2 (07 f ()
I Yo exp (07 f(s,a))

— f(s,a) — Z, f(S/a,) 7ty (a'|s)
= f(s,a) = Exy(as) [f(s,4)




Understanding the REINFORCE update

)"ET f'\ [S',G) = #}mm,

R:‘“ <

R =4+ } =>Z 1, (54) - f_;%—f, (547 - _ 5§
&
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R= 41
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Causality: Can actions affect the past?

Time

32



The Policy Gradient Theorem

Vo] = E,z0) lz (VglOngg at|st) (Zr Sy, Apr) + Z r(sy,apy)

tl_

o(216) [; (Vg log 7o (ay|s;) E r(st/,at/))

=t

Vol = Epe) [ 2 Vo log mg(at|st) Q”"(St,ﬂt)]

)
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Life is good!

This solves
everything ...




The Three Nightmares of Policg Optimization
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Nightmare I

| ocal OPtima




The Ring of Fire




ing of Fire

The R




The Ring of Fire

Get's sucked into a local optimal!




ldea: What it we had a "good reset distribution?”

Pl
»
’
»

Nominal reset distribution *




ldea: What it we had a "good reset distribution?”

Augmented reset
distribution



ldea: What it we had a "good reset distribution?”

' Run REINFORCE
‘g’ from ditferent start states



ldea: What it we had a "good reset distribution?”

' Run REINFORCE
‘g’ from ditferent start states



ldea: What it we had a "good reset distribution?”

Run REINFORCE
from different start states




Solution: Use a good "restart” distribution

Choose a restart distribution u(s) instead of start state distribution

Try your best to "cover states the expert will visit

7z->I<

H

oo

Suffer at most a penalty of ||
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Nightmare 2

Distribution Shitt




s gradient descent the best direction?’

I'—-1
VQ] — EP(§|9) Z V@ lOg . (at|st) Qng (St, at)
t=0

Note all the terms in the above equation that depend on theta.
If we change theta by a small amount, how do these terms change’
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What would gradient descent do here?

What assumption does it make that is breaking?
How can we make it choose a better direction?
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Gradient Descent as Steepest Descent

Gradient Descent is simply Steepest Descent with L2 norm

minJ(@ + Af) st ||AQ]|| <e
AG
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Steepest Descent with a different norm

A different norm G means a different notion of “small step”

AO=— G 'V,J(0)
Ad
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What is the best norm for policy gradient?

Vg] E n(&(6) Z V@ IOg 7lQ (at|st) QT[O (St, at)

Don't make small changes in €, make small changes in the
“distribution zy(a|s)"

min J(Q + A@) S.T. KL(]T(6’+A(9) | |7T6)) S €
AG



"Natural Gradient Descent

Start with an arbitrary initial policy 7g

while not converged do

Run simulator with 77, to collect {&() f\i ,
Compute estimated gradient

N 1 N [/T=1 N i ]
Vo] = N ; (Z Vg log 71y (a§)|s§))) R(g())

L Update parameters 6 < 0 + G
return 77y N

Modern variants are TRPO, PPO, etc
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But does this work on
real robots?’
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Policy Gradient Methods for Robotics

[Peters and Schaal, 2006}

(a) Performance (b) Teach in  (c) Initial re- (d) Improved re-
. 100f the system by Imitation produced motion produced motion
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Episodes

Initially, we teach a rudimentary stroke by supervised learning as can be seen in Figure 3 (b); however, it fails to reproduce the behavior as
shown in (c); subsequently, we improve the performance using the episodic Natural Actor-Critic which yields the performance shown in (a)
and the behavior in (d). After approximately 200-300 trials, the ball can be hit properly by the robot.
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ightmare 5:

High Variance

thite= 2
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The Policy Gradient Theorem
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Y Vg log mmg(at|st) Q7 (st, at)
| i=0 _

Local Optima: Use Exploration
Distribution

Distribution Shift: Natural Gradient
Descent

High Variance: Subtract baseline
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