
N-gram models
!  Unsmoothed n-gram models (review)
!  Smoothing

–  Add-one (Laplacian)
–  Good-Turing

!  Unknown words
!  Evaluating n-gram models
!  Combining estimators

–  (Deleted) interpolation
–  Backoff

Goals

!  Determine the next word in a sequence
– Probability distribution across all words in the

language
– P (wn | w1 w2 ! wn-1)

!  Determine the probability of a sequence of
words
–  P (w1 w2 ! wn-1 wn)

Probability of a word sequence

!  P (w1 w2 ! wn-1 wn)

!  Problem?
!  Solution: approximate the probability of a

word given all the previous words!

N-gram approximations

)|()|(12
1

1 !!
! " nnn
n

n wwwPwwP

P(wn |w1
n!1) " P(wn |wn!1)

!  Bigram model

!  Trigram model

!  Probability of a word sequence

!  General form

Training N-gram models
!  N-gram models can be trained by counting and

normalizing
–  Bigrams

–  General case

–  An example of Maximum Likelihood Estimation (MLE)
» Resulting parameter set is one in which the likelihood of the

training set T given the model M (i.e. P(T|M)) is maximized.

)(
)()|(1

1

1
11

1 !
+!

!
+!!

+! = n
Nn

n
n
Nnn

Nnn wcount
wwcount

wwP

)(
)()|(

1

1
1

!

!
! =

n

nn
nn wcount

wwcount
wwP

Bigram counts: MLE

!  Note the number of 0’s!

N-gram models
!  Unsmoothed n-gram models (review)
!  Smoothing

–  Add-one (Laplacian)
–  Good-Turing

!  Unknown words
!  Evaluating n-gram models
!  Combining estimators

–  (Deleted) interpolation
–  Backoff

Smoothing

!  Need better estimators than MLE for rare
events

!  Approach
– Somewhat decrease the probability of

previously seen events, so that there is a little
bit of probability mass left over for previously
unseen events

» Smoothing
» Discounting methods

Add-one smoothing
!  Add one to all of the counts before normalizing

into probabilities
!  MLE unigram probabilities

!  Smoothed unigram probabilities

!  Adjusted counts (unigrams)

N
wcount

wP x
x

)()(=

VN
Ncc ii +

+=)1(*

VN
wcount

wP x
x +

+
=

1)()(

corpus length
 in word tokens

vocab size
(# word types)

Add-one smoothing: bigrams

[example on board]

Add-one smoothing: bigrams
!  MLE bigram probabilities

!  Laplacian bigram probabilities

!  Laplacian trigram probabilities

P(wn |wn!1) =
count(wn!1wn)
count(wn!1)

P(wn |wn!1) =
count(wn!1wn)+1
count(wn!1)+V

Add-one bigram counts

!  Original
counts

!  New counts

Add-one smoothed bigram probabilites

!  Original

!  Add-one smoothing

Too much probability mass is moved

!  Estimated bigram
frequencies

!  AP data, 44 million words
–  Church and Gale (1991)

!  In general, add-one
smoothing is a poor method
of smoothing

!  Often much worse than
other methods in predicting
the actual probability for
unseen bigrams

r = fMLE femp fadd-1

0 0.000027 0.000137

1 0.448 0.000274

2 1.25 0.000411

3 2.24 0.000548

4 3.23 0.000685

5 4.21 0.000822

6 5.23 0.000959

7 6.21 0.00109

8 7.21 0.00123

9 8.26 0.00137

Methodology
!  Cardinal sin: test on the training corpus
!  Cardinal sin: train on the test corpus
!  Divide data into training set and test set

–  Train the statistical parameters on the training set; use them to
compute probabilities on the test set

–  Test set: 5%-20% of the total data, but large enough for reliable
results

!  Divide training into training and validation set
»  Validation set might be ~10% of original training set
»  Obtain counts from training set
»  Tune smoothing parameters on the validation set

!  Divide test set into development and final test set
–  Do all algorithm development by testing on the dev set
–  Save the final test set for the very end!use for reported results

Good-Turing discounting

!  Re-estimates the amount of probability mass to
assign to N-grams with zero or low counts by
looking at the number of N-grams with higher
counts.

!  Let Nc be the number of N-grams that occur c
times.
–  For bigrams, N0 is the number of bigrams of count 0,

N1 is the number of bigrams with count 1, etc.
!  Revised counts:

c

c

N
Ncc 1*)1(++=

Good-Turing discounting results
!  Works very well in

practice
!  Usually, the GT

discounted estimate
c* is used only for
unreliable counts
(e.g. < 5)

!  As with other
discounting
methods, it is the
norm to treat N-
grams with low
counts (e.g. counts
of 1) as if the count
was 0

r = fMLE femp fadd-1 fGT

0 0.000027 0.000137 0.000027

1 0.448 0.000274 0.446

2 1.25 0.000411 1.26

3 2.24 0.000548 2.24

4 3.23 0.000685 3.24

5 4.21 0.000822 4.22

6 5.23 0.000959 5.19

7 6.21 0.00109 6.21

8 7.21 0.00123 7.24

9 8.26 0.00137 8.25

N-gram models
!  Unsmoothed n-gram models (review)
!  Smoothing

–  Add-one (Laplacian)
–  Good-Turing

!  Unknown words
!  Evaluating n-gram models
!  Combining estimators

–  (Deleted) interpolation
–  Backoff

Unknown words

!  Closed vocabulary
– Vocabulary is known in advance
– Test set will contain only these words

!  Open vocabulary
– Unknown, out of vocabulary words can occur
– Add a pseudo-word <UNK>

!  Training the model???

Evaluating n-gram models
!  Best way: extrinsic evaluation

–  Embed in an application and measure the total
performance of the application

–  End-to-end evaluation
!  Intrinsic evaluation

–  Measure quality of the model independent of any
application

–  Perplexity
»  Intuition: the better model is the one that has a tighter fit to the

test data or that better predicts the test data

Perplexity

For a test set W = w1 w2 ! wN,

 PP (W) = P (w1 w2 ! wN)

-1/N

The higher the (estimated) probability of the word
sequence, the lower the perplexity.

Must be computed with models that have no
knowledge of the test set.

=
1

P(w1w2...wN)
N

N-gram models
!  Unsmoothed n-gram models (review)
!  Smoothing

–  Add-one (Laplacian)
–  Good-Turing

!  Unknown words
!  Evaluating n-gram models
!  Combining estimators

–  (Deleted) interpolation
–  Backoff

Combining estimators
!  Smoothing methods

–  Provide the same estimate for all unseen (or rare) n-grams with
the same prefix

–  Make use only of the raw frequency of an n-gram
!  But there is an additional source of knowledge we can

draw on --- the n-gram “hierarchy”
–  If there are no examples of a particular trigram,wn-2wn-1wn, to

compute P(wn|wn-2wn-1), we can estimate its probability by using
the bigram probability P(wn|wn-1).

–  If there are no examples of the bigram to compute P(wn|wn-1), we
can use the unigram probability P(wn).

!  For n-gram models, suitably combining various models of
different orders is the secret to success.

Simple linear interpolation

!  Construct a linear combination of the multiple
probability estimates.
–  Weight each contribution so that the result is

another probability function.

–  Lambda’s sum to 1.

!  Also known as (finite) mixture models
!  Deleted interpolation

–  Each lambda is a function of the most discriminating
context

)()|()|()|(11212312 nnnnnnnnn wPwwPwwwPwwwP !!! ++= """""

Backoff (Katz 1987)

!  Non-linear method
!  The estimate for an n-gram is allowed to back off through

progressively shorter histories.
!  The most detailed model that can provide sufficiently

reliable information about the current context is used.
!  Trigram version (high-level):

=!!)|(ˆ 12 iii wwwP

0)(),|(1212 >!!!! iiiiii wwwCifwwwP

0)(

0)(),|(

1

1211

>

=

!

!!!

ii

iiiii

wwCand
wwwCifwwP"

.),(2 otherwisewP i!

Final words!
!  Problems with backoff?

–  Probability estimates can change suddenly on adding
more data when the back-off algorithm selects a
different order of n-gram model on which to base the
estimate.

–  Works well in practice in combination with
smoothing.

!  Good option: simple linear interpolation with MLE
n-gram estimates plus some allowance for
unseen words (e.g. Good-Turing discounting)

