
N-gram models 
!  Unsmoothed n-gram models (review) 
!  Smoothing 

–  Add-one (Laplacian) 
–  Good-Turing 

!  Unknown words 
!  Evaluating n-gram models 
!  Combining estimators 

–  (Deleted) interpolation 
–  Backoff 

Goals 

!  Determine the next word in a sequence 
– Probability distribution across all words in the 

language 
– P (wn | w1 w2 ! wn-1) 

!  Determine the probability of a sequence of 
words 
–  P (w1 w2 ! wn-1 wn) 

Probability of a word sequence 

!  P (w1 w2 ! wn-1 wn) 

!  Problem?  
!  Solution: approximate the probability of a 

word given all the previous words! 

N-gram approximations 
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!  Bigram model 

!  Trigram model 

!  Probability of a word sequence 

!  General form 



Training N-gram models 
!  N-gram models can be trained by counting and 

normalizing 
–  Bigrams 

–  General case 

–  An example of Maximum Likelihood Estimation (MLE) 
» Resulting parameter set is one in which the likelihood of the 

training set T given the model M (i.e. P(T|M)) is maximized. 
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Bigram counts: MLE 

!  Note the number of 0’s! 

N-gram models 
!  Unsmoothed n-gram models (review) 
!  Smoothing 

–  Add-one (Laplacian) 
–  Good-Turing 

!  Unknown words 
!  Evaluating n-gram models 
!  Combining estimators 

–  (Deleted) interpolation 
–  Backoff 

Smoothing 

!  Need better estimators than MLE for rare 
events 

!  Approach 
– Somewhat decrease the probability of 

previously seen events, so that there is a little 
bit of probability mass left over for previously 
unseen events 

» Smoothing 
» Discounting methods 



Add-one smoothing 
!  Add one to all of the counts before normalizing 

into probabilities 
!  MLE unigram probabilities 

!  Smoothed unigram probabilities 

!  Adjusted counts (unigrams) 
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Add-one smoothing: bigrams 

[example on board] 

Add-one smoothing: bigrams 
!  MLE bigram probabilities 

!  Laplacian bigram probabilities 

!  Laplacian trigram probabilities 

P(wn |wn!1) =
count(wn!1wn )
count(wn!1)

P(wn |wn!1) =
count(wn!1wn )+1
count(wn!1)+V

Add-one bigram counts 

!  Original 
counts 

!  New counts 



Add-one smoothed bigram probabilites 

!  Original 

!  Add-one smoothing 

Too much probability mass is moved 

!  Estimated bigram 
frequencies 

!  AP data, 44 million words 
–  Church and Gale (1991) 

!  In general, add-one 
smoothing is a poor method 
of smoothing 

!  Often much worse than  
other methods in predicting 
the actual probability for 
unseen bigrams 

r = fMLE femp fadd-1 

0 0.000027 0.000137 

1 0.448 0.000274 

2 1.25 0.000411 

3 2.24 0.000548 

4 3.23 0.000685 

5 4.21 0.000822 

6 5.23 0.000959 

7 6.21 0.00109 

8 7.21 0.00123 

9 8.26 0.00137 

Methodology 
!  Cardinal sin: test on the training corpus 
!  Cardinal sin: train on the test corpus 
!  Divide data into training set and test set 

–  Train the statistical parameters on the training set; use them to 
compute probabilities on the test set 

–  Test set: 5%-20% of the total data, but large enough for reliable 
results 

!  Divide training into training and validation set 
»  Validation set might be ~10% of original training set 
»  Obtain counts from training set 
»  Tune smoothing parameters on the validation set 

!  Divide test set into development and final test set 
–  Do all algorithm development by testing on the dev set 
–  Save the final test set for the very end!use for reported results 

Good-Turing discounting 

!  Re-estimates the amount of probability mass to 
assign to N-grams with zero or low counts by 
looking at the number of N-grams with higher 
counts. 

!  Let Nc be the number of N-grams that occur c 
times. 
–  For bigrams, N0 is the number of bigrams of count 0, 

N1 is the number of bigrams with count 1, etc. 
!  Revised counts: 
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Good-Turing discounting results 
!  Works very well in 

practice 
!  Usually, the GT 

discounted estimate 
c* is used only for 
unreliable counts 
(e.g. < 5) 

!  As with other 
discounting 
methods, it is the 
norm to treat N-
grams with low 
counts (e.g. counts 
of 1) as if the count 
was 0 

r = fMLE femp fadd-1 fGT 

0 0.000027 0.000137 0.000027 

1 0.448 0.000274 0.446 

2 1.25 0.000411 1.26 

3 2.24 0.000548 2.24 

4 3.23 0.000685 3.24 

5 4.21 0.000822 4.22 

6 5.23 0.000959 5.19 

7 6.21 0.00109 6.21 

8 7.21 0.00123 7.24 

9 8.26 0.00137 8.25 

N-gram models 
!  Unsmoothed n-gram models (review) 
!  Smoothing 

–  Add-one (Laplacian) 
–  Good-Turing 

!  Unknown words 
!  Evaluating n-gram models 
!  Combining estimators 

–  (Deleted) interpolation 
–  Backoff 

Unknown words 

!  Closed vocabulary 
– Vocabulary is known in advance 
– Test set will contain only these words 

!  Open vocabulary 
– Unknown, out of vocabulary words can occur 
– Add a pseudo-word <UNK> 

!  Training the model??? 

Evaluating n-gram models 
!  Best way: extrinsic evaluation 

–  Embed in an application and measure the total 
performance of the application 

–  End-to-end evaluation 
!  Intrinsic evaluation 

–  Measure quality of the model independent of any 
application 

–  Perplexity 
»  Intuition: the better model is the one that has a tighter fit to the 

test data or that better predicts the test data 



Perplexity 

For a test set W = w1 w2 ! wN, 
 
        PP (W)  = P (w1 w2 ! wN) 

-1/N 

The higher the (estimated) probability of the word 
sequence, the lower the perplexity.  

Must be computed with models that have no 
knowledge of the test set.  

=
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P(w1w2...wN )
N

N-gram models 
!  Unsmoothed n-gram models (review) 
!  Smoothing 

–  Add-one (Laplacian) 
–  Good-Turing 

!  Unknown words 
!  Evaluating n-gram models 
!  Combining estimators 

–  (Deleted) interpolation 
–  Backoff 

Combining estimators 
!  Smoothing methods 

–  Provide the same estimate for all unseen (or rare) n-grams with 
the same prefix 

–  Make use only of the raw frequency of an n-gram 
!  But there is an additional source of knowledge we can 

draw on --- the n-gram “hierarchy” 
–  If there are no examples of a particular trigram,wn-2wn-1wn, to 

compute P(wn|wn-2wn-1), we can estimate its probability by using 
the bigram probability P(wn|wn-1 ). 

–  If there are no examples of the bigram to compute P(wn|wn-1), we 
can use the unigram probability P(wn). 

!  For n-gram models, suitably combining various models of 
different orders is the secret to success. 

Simple linear interpolation 

!  Construct a linear combination of the multiple 
probability estimates. 
–  Weight each contribution so that the result is 

another probability function. 

–  Lambda’s sum to 1. 

!  Also known as (finite) mixture models 
!  Deleted interpolation 

–  Each lambda is a function of the most discriminating 
context 
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Backoff  (Katz 1987) 

!  Non-linear method 
!  The estimate for an n-gram is allowed to back off through 

progressively shorter histories. 
!  The most detailed model that can provide sufficiently 

reliable information about the current context is used. 
!  Trigram version (high-level): 
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Final words! 
!  Problems with backoff? 

–  Probability estimates can change suddenly on adding 
more data when the back-off algorithm selects a 
different order of n-gram model on which to base the 
estimate. 

–  Works well in practice in combination with 
smoothing. 

!  Good option: simple linear interpolation with MLE 
n-gram estimates plus some allowance for 
unseen words (e.g. Good-Turing discounting) 


