N-gram models

Smoothing

 Add-one (Laplacian) Good-Turing Unknown words Evaluating n-gram models Combining estimators (Deleted) interpolation Backoff 	
Probability of a word sequence	

Unsmoothed n-gram models (review)

P (w₁ w₂ ... w_{n-1} w_n)

$$P(w_1^n) = P(w_1) P(w_2|w_1) P(w_3|w_1^2) \dots P(w_n|w_1^{n-1})$$
$$= \prod_{k=1}^n P(w_k|w_1^{k-1})$$

Problem?

 Solution: *approximate* the probability of a word given all the previous words...

Goals

- Determine the next word in a sequence
 - Probability distribution across all words in the language
 - $P(w_n | w_1 w_2 \dots w_{n-1})$
- Determine the probability of a sequence of words
 - P (w₁ w₂ ... w_{n-1} w_n)

N-gram approximations

Bigram model

$$P(w_n | w_1^{n-1}) \approx P(w_n | w_{n-1})$$

- Trigram model $P(w_n \mid w_1^{n-1}) \approx P(w_n \mid w_{n-2} w_{n-1})$
- Probability of a word sequence $P(w_1^n) = P(w_1) P(w_2|w_1) P(w_3|w_1^2) \dots P(w_n|w_1^{n-1})$

$$=\prod_{k=1}^{n} P(w_k | w_1^{k-1})$$

• General form $P(w_1^n) \approx \prod_{k=1}^n P(w_k | w_{k-N+1}^{k-1})$

Training N-gram models

- N-gram models can be trained by counting and normalizing
 - Bigrams

$$P(w_n | w_{n-1}) = \frac{count(w_{n-1}w_n)}{count(w_{n-1})}$$
– General case

$$P(w_n \mid w_{n-N+1}^{n-1}) = \frac{count(w_{n-N+1}^{n-1}w_n)}{count(w_{n-N+1}^{n-1})}$$

An example of Maximum Likelihood Estimation (MLE)
 » Resulting parameter set is one in which the likelihood of the training set T given the model M (i.e. P(T|M)) is maximized.

Bigram counts

	1	want	to	eat	Chinese	food	lunch
Ι	8	1087	0	13	0	0	0
want	3	0	786	0	6	8	6
to	3	0	10	860	3	0	12
eat	0	0	2	0	19	2	52
Chinese	2	0	0	0	0	120	1
food	19	0	17	0	0	0	0
lunch	4	0	0	0	0	1	0

• Note the number of 0's...

N-gram models

Unsmoothed n-gram models (review)

Smoothing

- Add-one (Laplacian)
- Good-Turing
- Unknown words
- Evaluating n-gram models
- Combining estimators
 - (Deleted) interpolation
 - Backoff

Smoothing

- Need better estimators than MLE for rare events
- Approach
 - Somewhat decrease the probability of previously seen events, so that there is a little bit of probability mass left over for previously unseen events
 - » Smoothing
 - » Discounting methods

