Information extraction

- Introduction
 - Task definition
 - Evaluation
 - IE system architecture

Acquiring extraction patterns

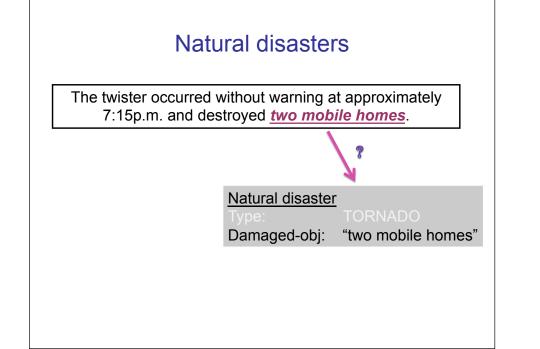
- Manually defined patterns
- Learning approaches
 - Semi-automatic methods for extraction from unstructured text
 - Fully automatic methods for extraction from structured text
- Semi-structured text
- Named entity detection
- Sequence-tagging methods for IE

Why?

• Provide intuition for useful *features* for the machine learning approaches

Learning IE patterns from examples

- Goal
 - Given a training set of annotated documents
 - answer keys / gold standard
 - Learn extraction patterns for each slot type using an appropriate machine learning algorithm.


Changes in Management

Evergreen Information said Barry Nelsen, who had a heart-bypass operation last week, resigned as president and chief executive. The board formally accepted the resignation of Thomas Casey, its former chairman, who stepped down effective Feb. 2.

Martin Bell was named president, CEO, and chairman. Mr. Bell -who has been chief financial officer since the fall -- also got voting control of 970,000 shares held by the Evergreen Partnership,

a vehicle for the company's three co-founde In-out-event

Excluding these shares, Evergreen Information	Туре:	OUT
million shares or exercisable warrants outsta	Person:	"Barry Nelsen"
spokeswoman.	Position:	PRESIDENT,
	C⊢	IIEF EXECUTIVE
The computer products and services conce		
fewer than 10 employees from about 35, and		Information"
managers' salaries. In a press release, it said		mormation
company is still viable.		

Syntactico-semantic patterns

The twister occurred without warning at approximately 7:15p.m. and destroyed *two mobile homes*.

Pattern:

Trigger: "destroyed"
condition: active voice verb?
Slot: Damaged-Object
Position: direct-object
condition: DO is a physical-object?

Learning IE patterns from examples

- Goal
 - Given a training set of annotated documents
 - Answer keys
 - · Annotated text spans
 - Learn extraction patterns for each slot type using an appropriate machine learning algorithm.

Information extraction

- Introduction
 - Task definition
 - Evaluation
 - IE system architecture
- Acquiring extraction patterns
 - Manually defined patterns
 - Learning approaches
 - Semi-automatic methods for extraction from unstructured text
 - Fully automatic methods for extraction from structured text
 - Semi-structured text
- Named entity detection
- Sequence-tagging methods for IE

Learning syntactico-semantic patterns

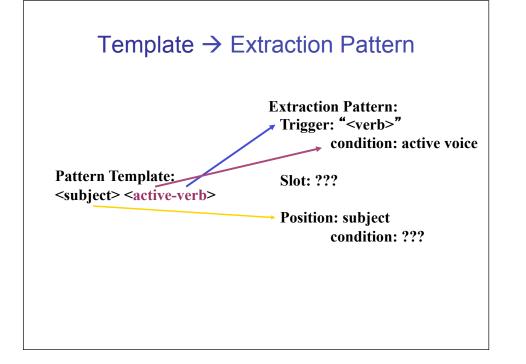
The twister occurred without warning at approximately 7:15p.m. and destroyed *two mobile homes*.

Pattern:

Trigger: "destroyed"
condition: active voice verb?
Slot: Damaged-Object
Position: direct-object
condition: DO is a physical-object?

Pattern templates

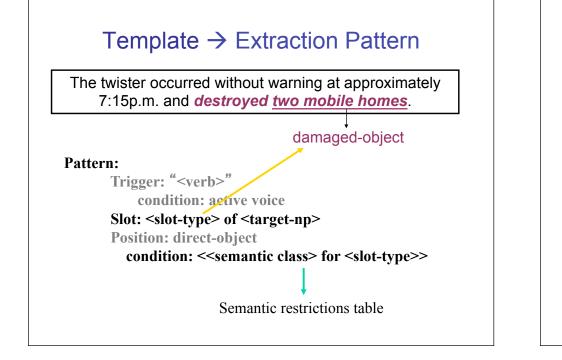
NP extraction; NPs in prominent grammatical roles


<subject> <passive-verb> <subject> <active-verb> <subject> <infinitival-verb> <subject> <auxiliary-verb>+<noun>

*<passive-verb> <dobj>
<active-verb> <dobj>
<infinitive> <dobj>
<verb>+<infinitive> <dobj>
<gerund> <obj>
<noun>+ <auxiliary> <dobj>

<noun>+<prep> <np> <active-verb>+<prep> <np> <passive-verb>+<prep> <np> <victim> was murdered <perpetrator> bombed <perpetrator> attempted to kill <victim> was victim

killed <victim> bombed <target> to kill <victim> threatened to attack <target> killing <victim> fatality was <victim>


bomb against <target>
killed with <instrument>
was aimed at <target>

Semantic restrictions table

[domain-specific role] [semantic constraint]

- Perpetrator
 - Person, government, terrorist organization
- Target (damaged-object)
 - Building, vehicle, physical-object
- Victim
 - Person
 - Location
 - Location
- Date
 - Date
- Instrument
 - Weapon

Template → Extraction Pattern

The twister occurred without warning at approximately 7:15p.m. and *destroyed <u>two mobile homes</u>*.

 Pattern Template:
 damaged-object

 Trigger: "<verb>"
 condition: active voice

 Slot: <slot-type> of <target-np>
 Position: direct-object

 condition: DO is <semantic class> of <slot-type>>

 Extraction Pattern:
 Trigger: "destroyed"

 condition: active voice verb?
 Slot: Damaged-Object

 Position: direct-object
 condition: active voice verb?

 Slot: Damaged-Object
 Position: direct-object

 condition: DO is a physical-object?

Autoslog algorithm

- For each annotated "string fill", s, in the training data
 - Parse the sentence that contains s. Also obtain NE and semantic class information for all of its NPs.
 - Apply the syntactic pattern templates in order. Execute the first one that applies to determine:
 - the trigger word
 - the triggering constraints (syntactic)
 - the *position* of phrase to be extracted (grammatical role)
 - Determine slot type
 - The annotated slot type for s in the training corpus
 - Determine the semantic constraints
 - Defined a priori based on typical semantic class of fillers
 - Semantic restrictions table
 - Create and save the extraction pattern

Applying the patterns

The bombs destroyed and completely leveled <u>two mobile</u> <u>homes</u>.

Extraction pattern:

Trigger: "destroyed" condition: active voice verb? Slot: Damaged-Object Position: direct-object condition: DO is a physical-object?

Extracts:

Slot: Damaged-Object Position: "two mobile homes"

Autoslog algorithm characteristics

- Domain-independent pattern templates
 - So require little/no modification when switching domains
- Requires (minimally) a partial parser
- Assumes semantic category(ies) for each slot are known, and all potential slot fillers can be tested w.r.t. them
- Produces very high-precision IE system

Learned terrorism patterns

- <victim> was murdered
- <perpetrator> bombed
- <perpetrator> attempted to kill
- was aimed at <target>

Bad patterns are possible

took <victim>

victim

They took 2-year-old <u>Gilberto Molasco</u>, son of Patricio Rodriquez, and 17-year-old Andres Argueta, son of Ernesto Argueta.

Natural disasters patterns

- <subject> = disaster-event (earthquake) registered (active)
- registered (active) <direct obj> = magnitude
 - Yesterday's earthquake registered 6.9 on the Richter scale.
- measuring (gerund) <direct obj> = magnitude
 measuring 6.9 ...
- aid (noun)...in/to/for (prep) <obj> = disaster-event-location/ victim
 - ...sending medical aid to Afghanistan...
 - ...sending medical aid to earthquake victims

Advantages and Disadvantages

- · Learns bad patterns as well as good patterns
 - Too general (e.g. triggered by "is" or "are" or by verbs not tied to the domain)
 - Too specific
 - Just plain wrong
 - Parsing errors
 - Target NPs occur in a prepositional phrase and Autoslog can't determine the trigger (e.g. is it the preceding verb or the preceding NP?)
- Requires that a person review the proposed extraction patterns, discarding bad ones
- No computational linguist needed (?)
- Reduced human effort from 1200-1500 hours to ~4.5 hours

Results

- 1500 texts, 1258 answer keys
- 4780 slots (6 types)
- Autoslog generated 1237 patterns
- After human filtering: 450 patterns
- Compare to manually built patterns

System/Data Set	Recall	Precision	F-measure
Manual/TST3	46	56	50.51
Autoslog/TST3	43	56	48.65
Manual/TST4	44	40	41.90
Autoslog/TST4	39	45	41.79

Autoslog-TS

- · Largely unsupervised
- Two sets of documents: relevant, not relevant
- Apply pattern templates to extract every NP in the texts
- Compute *relevance rate* for each pattern *i* :

Pr (relevant text | text contains i) = freq of *i* in relevant texts / frequency of *i* in corpus

 Sort patterns according to relevance rate and frequency relevance rate * log (freq)

Autoslog-TS

- Human review of learned patterns is still required
- Also requires, for each pattern, the manual labeling of the semantic category of the extracted slot filler

Information extraction

- Introduction
 - Task definition
 - Evaluation
 - IE system architecture
- Acquiring extraction patterns
 - Manually defined patterns
 - Learning approaches
 - Semi-automatic methods for extraction from unstructured text
 - Fully automatic methods for extraction from structured text
 - Semi-structured text
 - Named entity detection
 - Sequence-tagging methods for IE

Information extraction

- Introduction
 - Task definition
 - Evaluation
 - IE system architecture
- Acquiring extraction patterns
 - Manually defined patterns
 - Learning approaches
 - Semi-automatic methods for extraction from unstructured text
 - + Fully automatic methods for extraction from structured text
 - Semi-structured text
- Named entity detection
- Sequence-tagging methods for IE

Have a great spring break!