
CS 4700 - Foundations of Artificial Intelligence Homework 3
Fall 2019 Due Tuesday, November 12 (2:40pm)

1. MDP’s and Utility functions (20 Points)

You are a freshman at Cornell during O-Week, and you are still adjusting to the complicated campus.
What you want to do is get from North Campus (0, 0) to CollegeTown (2, 4) as efficiently as possible.
Being a future Computer Science student, you decide that it would be a good idea to formulate this as a
Markov Decision Process problem.

As you probably know, there are a number of routes to Collegetown, but for the purpose of this problem
we’ll simplify the expansive map of Cornell to a 3x5 grid:

0 1 2
0 North Campus MVR Empty
1 AAP Vet School Empty
2 West Campus Arts Quad Cornell Store
3 104 West Empty Ho Plaza
4 Law School Snee Hall CollegeTown

Formally, we define the states as a set:

S = {North Campus, MVR, AAP, Vet School, West Campus, Arts Quad,
Cornell Store, 104 West, Ho Plaza, Law School, Snee Hall, Collegetown}

Where each state is represented as a vector of its coordinates. For example, if you were in the start
state “North Campus”, it would be represented as [0 0], and the end state “Collegetown’, it would be
represented as [2 4].

The actions a are drawn from the set A = {Up, Down, Left, Right}, where they only apply if they
are valid. For example, going Up or Left from “North Campus” is not valid. Nor is going into an
“Empty” space.

The transition function is given as P (~s′ | a,~s) = 0.7 if s′ is the state you intended to go to by using
action a in state s, and 0.1 in each other valid direction (if a direction is not valid, then the probability
0.1 is for returning to the same state s for that action).

The reward function is given as

R(~s, a, ~s′) = −
∥∥∥~sg − ~s′∥∥∥

2

Where ~sg is the vector which represents the goal state: in this case, CollegeTown at [2 4].

Note: The ‖·‖2 notation indicates the L2-norm or Euclidean norm of the vector ~sg − ~s′. Think about∥∥∥~sg − ~s′∥∥∥
2

as the distance between the goal state ~sg and your current state ~s′. For example, suppose that

the goal state has coordinates (xg, yg), and your current state has coordinates (xc, yc). Then,∥∥∥~sg − ~s′∥∥∥
2

=
√

(xg − xc)2 + (yg − yc)2

This is just the classic distance formula. Don’t forget to take its negative to obtain the reward.

(a) Represent this MDP as a directed graph, complete with actions and probabilities on the edges, and
rewards in the states / nodes. (8)
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(b) You are given a policy πDR(~s) = For the given s, if it is possible to use the action Down, then do so,
else use the action Right. Write the utility Uπ(s) equations of your policy π for the states S = {North
Campus, Vet School, Ho Plaza, 104 West}. Let γ = 0.5. Note, you do not need to explicitly calculate
the utility of the policy at each given state, but rather simply state the equations. (12)

2. Discounting Rewards (14 Points)

At first, it seems strange that when we calculate the overall reward of a sequence of states/actions, we
discount rewards in future time-steps by a factor of γt. In this problem we’ll review why we do this.

Suppose we want to calculate the utility of a specific infinite-length sequence of states and actions
[s0, a0, s1, a1, s2, . . . ]. Define Uh([s0, a0, s1, a1, s2, . . . ]) to be the utility of that fixed sequence of states
and actions.

(a) Briefly describe two reasons why it is undesirable to simply sum up all the rewards we receive, as
follows:

Uh([s0, a0, s1, a1, s2, . . . ]) =
∞∑
t=0

R(st, at, st+1)

You should give one sentence per reason. Hint: If you’re unsure, check out section 16.1.1 of the
textbook (available on the course website) (2).

(b) Assume that every reward R(st, at, st+1) lies between the range [Rmin, Rmax], where Rmin and Rmax

are finite constants. Also suppose that 0 < γ < 1. Show that the sum of discounted rewards

Uh([s0, a0, s1, a1, s2, . . . ]) =
∞∑
t=0

γtR(st, at, st+1)

is always finite, and provide a lower and upper bound for it (7).

(c) Suppose that receiving a reward of +1 at time-step t = 5 is twice as good as receiving a reward of
+1 at time-step t = 10. What should my γ be? Round to 3 decimal places (3).

(d) Now, suppose I change my mind and I now think that getting the reward of +1 at t = 5 is more
than twice as good as receiving the reward of +1 at t = 10. Should I increase or decrease γ? (A short
English sentence is enough.) (2)

3. Solve MDP using policy iteration (16 Points)

A robot is tasked with collecting empty soda cans in an office building, and placing them in a bin. It runs
on a rechargeable battery.

As a simple example, assume that the robot can only distinguish between two charge levels; the set of
states is S = {high, low}.
In each state, the agent can decide whether to

• actively search for a can for a certain period of time

• remain stationary and wait for someone to bring it a can

• head back to its home base to recharge its battery.

We write the action set as A = {search, wait, recharge}.
Suppose this system can be represented as an MDP with the following transition probabilities and rewards.
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s a s′ P (s′|s, a) R(s, a, s′) Inuition (optional)
high search high 0.7 +4 If the robot actively searches for cans,

the expected number of cans it collects
will be higher (+4). However, search-
ing runs down the robot’s battery.
There’s a 70% chance that the battery
will stay high, but a 30% chance that
it will go to low.

low 0.3 +4
high wait high 1.0 +1 If the robot stays still, the expected

number of cans it collects is lower (+1).
However, the battery is guaranteed to
stay high.

low 0.0 +1
high recharge high 1.0 0 If we charge, we don’t collect any cans

(so reward is 0). We always end up with
high battery after charging.

low 0.0 0
low search high 0.4 −10 With probability 0.4, if the robot has

low battery and searches, its battery
will completely die. Then a human will
need to find the robot and charge it,
which is costly (reward −10).

low 0.6 +4 Otherwise with probability 0.6, the
robot’s battery stays alive, and we col-
lect cans from searching.

low wait high 0.0 +1
low 1.0 +1 Waiting will not affect the battery level,

so it will stay low. The expected num-
bers of cans collected from waiting is
+1.

low recharge high 1.0 0 If we charge, we don’t collect any cans
(so reward is 0). We always end up with
high battery after charging.

low 0.0 0

(a) How many unique policies are there in this example (3)?

(b) In general, if there are s states and a actions possible from each state, how many unique policies are
there? (After finding your answer, it should be clear why it’s often impossible to iterate over every
single possible policy.) (3)

(c) Manually run policy iteration for this MDP. Set the initial policy to be the policy of always searching
(this is a bad policy). Initialize the utility of both states to be 0. Let γ = 0.5. For each iteration,
calculate the updated utilities and updated policy for each state, and show your work. (10)

You only need to show 2 iterations. By then, the policy should have converged. Box your final
policy(10).
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4. Q-learning (15 Points)

Recall that a Q-function Q(s, a) describes the expected reward for taking action a in state s. In particular,
utility and an ideal Q function are related via...

U(s) = max
a
Q(s, a)

If one takes an action a at state s and reaches a new state s′, then the update rule is as follows...

Q(s, a)← Q(s, a) + α
(
R(s, a, s′) + γmax

a′
Q(s′, a′)−Q(s, a)

)

γ : discount factor such that 0 ≤ γ ≤ 1

α : learning rate such that 0 < α ≤ 1

P (s′|s, a) : transition probability for state s′ after taking action a in state s

s : state

a : action

s′ : next state

For the correct Q-values, this should converge to an assignment such that the following holds...

Q(s, a) =
∑
s′

P (s′|s, a) · (R(s, a, s′) + γmax
a′

Q(s′, a′))

(a) Comment briefly on how the convergence relationship connects to expected utility, and why this is a
good description of what we want from a Q function. Hint: A good answer should include the words
”expected” and ”utility” (4).

(b) Why does α need to be between 0 and 1? What happens if α = 1? (4)

(c) What does the max do in these equations? (2)

(d) What is the Q function for the North Campus state from Question 1? (5)
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