
Bart Selman
CS4700

1

CS 4700:
Foundations of Artificial Intelligence

Bart Selman
selman@cs.cornell.edu

Module:
Adversarial Search

R&N: Chapter 5

Bart Selman
CS4700

2

Outline

Adversarial Search
Optimal decisions
Minimax
α-β pruning
Case study: Deep Blue
UCT and Go

Bart Selman
CS4700

3

Adversarial Reasoning: Games

Mathematical Game Theory

Branch of economics that views any multi-agent environment as
a game, provided that the impact of each agent on the others is
�significant�, regardless of whether the agents are cooperative or
competitive.

First step:
– Deterministic
– Turn taking
– 2-player
– Zero-sum game of perfect information (fully observable)

“my win is your loss” and vice versa; utility of final states
opposite for each player. My +10 is your -10.

Bart Selman
CS4700

4

Game Playing vs. Search

Multi-agent game vs. single-agent search problem

"Unpredictable" opponent need a strategy: specifies a move
for each possible opponent reply.
E.g with “huge” lookup table.

Time limits à unlikely to find optimal response, must
approximate

Rich history of game playing in AI, in particular in the area of chess.

Both Turing and Shannon viewed chess as an important challenge for
machine intelligence because playing chess appears to require some
level of intelligence.

Bart Selman
CS4700

5

A Brief History of Computer Chess

1912

1950s

1970s

1997

Today

Bart Selman
CS4700

6

Human-computer hybrid most exciting new level of play. Computers
as smart assistants are becoming accepted.
Area referred to as “Assisted Cognition.”

Bart Selman
CS4700

7

Why is Game-Playing a Challenge for AI?

Competent game playing is a mark of some aspects of “intelligence”

– Requires planning, reasoning and learning

Proxy for real-world decision making problems

– Easy to represent states & define rules

– Obtaining good performance is hard

“Adversary” can be nature

PSPACE-complete (or worse)

– Computationally equivalent to hardware debugging, formal verification,
logistics planning

– PSPACE believed to be harder than NP.

Bart Selman
CS4700

8

Traditional Board Games

Finite

Two-player

Zero-sum

Deterministic

Perfect Information

Sequential

Bart Selman
CS4700

9

Key Idea: Look Ahead

X’s turn

O’s turn

X

3x3 Tic-Tac-Toe
optimal play

We start 3 moves per player in:

Tic-tac-toe (or Noughts and
crosses, Xs and Os)

loss loss

Bart Selman
CS4700

10

Look-ahead based Tic-Tac-Toe

X’s turn

O’s turn

X

TieTieTieTie

Bart Selman
CS4700

11

Look-ahead based Tic-Tac-Toe

X’s turn

O’s turn

TieTieTieTie

Loss for XLoss for X

Bart Selman
CS4700

12

Look-ahead based Tic-Tac-Toe

X’s turn

O’s turn

TieTieTieTie

Loss for XLoss for X

Bart Selman
CS4700

13

Look-ahead based Tic-Tac-Toe

X’s turn

TieTieTieTie Loss for XLoss for X

O’s turn
Loss for X Tie Loss for X

Bart Selman
CS4700

14

Loss for X Loss for XTie

X’s turn

Approach: Look first at bottom tree. Label bottom-most boards.
Then label boards one level up, according result of best possible move.
… and so on. Moving up layer by layer.

Termed the Minimax Algorithm
– Implemented as a depth-first search

Each board in game tree gets unique
game tree value (utility; -1/0/+1)
under optimal rational play.
(Convince yourself. Proof?)

E.g. 0 for top board.

What if our opponent
does not play optimally?

Bart Selman
CS4700

15

Aside: Game
tree learning

Can (in principle) store all board values in large table. 3^19 = 19,683
for tic-tac-toe.

Can use table to try to train classifier to predict “win”, “loss”, or “draw.”

Issue: For real games, one can only look at tiny, tiny fragment of
table.

Reinforcement learning builds on this idea.

See eg Irvine Machine Learning archive.
archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame

archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame%E2%80%8E

Bart Selman
CS4700

16

Look-ahead based Chess

X’s turn

O’s turn

X

White’s turn

Black’s
turn

But there’s a catch…

Bart Selman
CS4700

17

How big is this tree?

Approx. 10^120 > Number of atoms in the observable universe (10^80)

We can really only search a tiny, miniscule faction of this tree!

Around 60 x 10^9 nodes for 5 minute move. Approx. 1 / 10^70 fraction.

~35 moves per
position

~80
levels
deep

Bart Selman
CS4700

18

What’s the work-around?Don’t search to the very end

– Go down 10-12 levels (still deeper than most humans)

– But now what?

– Compute an estimate of the position’s value

• This heuristic function is typically designed by a domain expert

Consider a game tree
with leaf utilities (final
boards) +1 / 0 / -1 (or +inf / 0 –inf).
What are the utilities of
intermediate boards in the
game tree? +1 / 0 / -1

(or +inf / 0 / -inf)
The board heuristics is trying to estimate these values from a quick
calculation on the board. Eg, considering material won/loss on chess
board or regions captures in GO. Heuristic value of e.g. +0.9, suggests
true value may be +1. “Probability of winning” (Really?)

What do
humans do?

Bart Selman
CS4700

19

What is a problem for the board heuristics (or evaluation functions)
at the beginning of the game?

(Consider a heuristics that looks at lost and captured pieces.)

What will the heuristic values be near the top?

Close to 0! Not much has happened yet….

Other issue: children of any node are mostly quite similar.
Gives almost identical heuristic board values. Little or no
information about the right move.

Solution: Look ahead. I.e., build search tree several levels
deep (hopefully 10 or more levels). Boards at bottom of
tree more diverse. Use minimax search to determine value
of starting board, assuming optimal play for both players.
(max player picks board with max value among its children;
min player picks board with min value among its childern.)

Bart Selman
CS4700

20

IBM knew this when they “acquired” the Deep Thought team.
They could predict what it would take to beat Kasparov.

Intriguing
aside:
What is the
formal
computational
complexity of
chess? Use
Big-O notation.

(Discussed
before.)

Bart Selman
CS4700

21

Will deeper search give stronger play? Always? And why?

Very counterintuitive: there are “artificial games” where searching

deeper leads to worse play! (Nau and Pearl 1980) Not in natural games!

Game tree anomaly.

Heuristic board eval value is sometimes informally

referred to as the “chance of winning” from that position.

That’s a bit odd, because in a deterministic game with

perfect information and optimal play, there is no “chance”

at all! Each board has a fixed utility:

-1, 0, or +1 (a loss, draw, or a win). (result from game theory)

Still, “chance of winning” is an informally useful notion. But,

remember, no clear semantics to heuristic values.

What if board eval gives true board utility? How much

search is needed to make a move?

We’ll see that using machine learning and “self play,”

we can get close for backgammon.

Bart Selman
CS4700

22

Limitations?

Two important factors for success:

– Deep look ahead

– Good heuristic function

Are there games where this is not feasible?

Bart Selman
CS4700

23

Limitations?

Two important factors for success:

– Deep look ahead

– Good heuristic function

Are there games where this is not feasible?

Looking 14 levels
ahead in Chess ≈
Looking 4 levels

ahead in Go

Bart Selman
CS4700

24

Limitations?

Two important factors for success:

– Deep look ahead

– Good heuristic function

Are there games where this is not feasible?

Looking 14 levels
ahead in Chess ≈
Looking 4 levels

ahead in Go

Moves have
extremely delayed

effects

Bart Selman
CS4700

25

Limitations?

Two important factors for success:

– Deep look ahead

– Good heuristic function

Are there games where this is not feasible?

Looking 14 levels
ahead in Chess ≈
Looking 4 levels

ahead in Go

Moves have
extremely delayed

effects

Minimax players for GO were very weak until 2007…but then
play at master level. Now, AlphaGo world champion.

Bart Selman
CS4700

26

Limitations?

Two important factors for success:

– Deep look ahead

– Good heuristic function

Are there games where this is not feasible?

Looking 14 levels
ahead in Chess ≈
Looking 4 levels

ahead in Go

Moves have
extremely delayed

effects

New sampling based search method:
Upper Confidence bounds applied to Trees (UCT)

Monte Carlo sampling of lines of play. Remarkably effective.

Bart Selman
CS4700

27

Well… Why not use a strategy / knowledge,
as humans do?

Consider for Tic-Tac-Toe:

Sounds reasonable… right?

Oops!!
Consider
Black uses
the strategy…

Rule 3 Rule 4

Rule 2

Bart Selman
CS4700

28

So, although one can capture strategic knowledge of many games
in high-level rules (at least to some extent), in practice any
interesting game will revolve precisely around the exceptions to
those rules!

Issue has been studied for decades but research keeps coming back to
game tree search (or most recently, game tree sampling).

Currently only one exception: reinforcement learning for backgammon.
(discussed later)
A very strong board evaluation function was learned in self-play.
Represented as a neural net.
Minimal search remained (backgammon) or sampling search

(AlphaGo).

Bart Selman
CS4700

29

Formal definition of a game:
– Initial state
– Successor function: returns list of (move, state) pairs
– Terminal test: determines when game over

Terminal states: states where game ends
– Utility function (objective function or payoff function):

gives numeric value for terminal states

We will consider games with 2 players (Max and Min)

Max moves first.

Bart Selman
CS4700

30

Game Tree Example:
Tic-Tac-Toe

Tree from
Max’s
perspective

Bart Selman
CS4700

31

Minimax Algorithm

Minimax algorithm
– Perfect play for deterministic, 2-player game
– Max tries to maximize its score
– Min tries to minimize Max’s score (Min)
– Goal: Max to move to position with highest minimax value

à Identify best achievable payoff against best play

Bart Selman
CS4700

32

Minimax Algorithm

Payoff for Max

Bart Selman
CS4700

33

Minimax Algorithm (cont�d)

3 9 0 7 2 6

Payoff for Max

Bart Selman
CS4700

34

Minimax Algorithm (cont�d)

3 9 0 7 2 6

3 0 2

Payoff for Max

Bart Selman
CS4700

35

Minimax Algorithm

3 9 0 7 2 6

3 0 2

3

Payoff for Max

What if
payoff(Q) = 100
payoff(R) = 200

Starting DFS, left to right,
do we even need to know eval(H)?

Do DFS. Real games:
use iterative deepening.
(gives “anytime” approach.)

Prune! Prune!

>= 3

<= 0

(DFS left to right)

<= 2alpha-beta
pruning

Bart Selman
CS4700

36

Properties of minimax algorithm:

Complete? Yes (if tree is finite)

Optimal? Yes (against an optimal opponent)

Time complexity? O(bm)

Space complexity? O(bm) (depth-first exploration, if it generates all
successors at once)

For chess, b ≈ 35, m ≈ 80 for "reasonable" games
à exact solution completely infeasible

m – maximum depth of the tree; b – legal moves

here

Bart Selman
CS4700

37

Minimax Algorithm

Limitations
– Generally not feasible to traverse entire tree
– Time limitations

Key Improvements
– Use evaluation function instead of utility (discussed earlier)

• Evaluation function provides estimate of utility at given position

– Alpha/beta pruning

Bart Selman
CS4700

38

Can we improve search by reducing the size of the game tree
to be examined?

à Yes! Using alpha-beta pruning

α-β Pruning

Principle
– If a move is determined worse than another move already

examined, then there is no need for further examination of the
node.

Analysis shows that will be able to search almost twice as deep.
Really is what makes game tree search practically feasible.
E.g. Deep Blue 14 plies using alpha-beta pruning.
Otherwise only 7 or 8 (weak chess player). (plie = half move / one player)

Bart Selman
CS4700

39

α-β Pruning Example

Bart Selman
CS4700

40

Bart Selman
CS4700

41

Bart Selman
CS4700

42

Bart Selman
CS4700

43

Note: order
children matters!What gives best pruning?

Visit most promising (from min/max perspective) first.

Bart Selman
CS4700

44

Alpha-Beta Pruning

Rules:
– α is the best (highest) found so far along the path for Max
– β is the best (lowest) found so far along the path for Min
– Search below a MIN node may be alpha-pruned if

its β <= α of some MAX ancestor
– Search below a MAX node may be beta-pruned if its

α >= β of some MIN ancestor.

See also fig. 5.5 R&N.

Bart Selman
CS4700

45

More abstractly

α is the value of the best
(i.e., highest-value) choice
found so far at any choice
point along the path for
max

If v is worse than α, max
will avoid it

à prune that branch

Define β similarly for min

Bart Selman
CS4700

46

Properties of α-β Prune

Pruning does not affect final result

Good move ordering improves effectiveness of pruning b(e.g., chess,
try captures first, then threats, froward moves, then backward
moves…)

With "perfect ordering," time complexity = O(bm/2)
à doubles depth of search that alpha-beta pruning can explore

Example of the value of reasoning about which
computations are relevant (a form of metareasoning)

Bart Selman
CS4700

47

A few quick approx. numbers for Chess:

b = 35

200M nodes / second ===> 5 mins = 60 B nodes in search tree

(2 M nodes / sec. software only, fast PC ===> 600 M nodes in tree)

35^7 = 64 B

35^5 = 52 M

So, basic minimax: around 7 plies deep. (5 plies)

With, alpha-beta 35^(14/2) = 64 B. Therefore, 14 plies deep. (10 plies)

Aside:

4-ply ≈ human novice

8-ply / 10-ply ≈ typical PC, human master (not exhaustive!)

14-ply ≈ Deep Blue, Kasparov (not exhaustive!; + depth 25

for “selective extensions”) / 7 moves by each player.

Bart Selman
CS4700

48

Resource limits

Can’t go to all the way to the “bottom:”

evaluation function
= estimated desirability of position

cutoff test:
e.g., depth limit
(Use Iterative Deepening)

“Unstable positions:”
Search deeper.
Selective extensions.
E.g. exchange of several
pieces in a row.

à add quiescence search:
à quiescent position: position where
next move unlikely to cause large
change in players� positions

What is the problem with that?

Horizon effect.

Bart Selman
CS4700

49

Evaluation Function

– Performed at search cutoff point
– Must have same terminal/goal states as utility function
– Tradeoff between accuracy and time → reasonable complexity
– Accurate

• Performance of game-playing system dependent on
accuracy/goodness of evaluation

• Evaluation of nonterminal states strongly correlated with actual
chances of winning

Bart Selman
CS4700

50

Evaluation functions
For chess, typically linear weighted sum of features

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

e.g., w1 = 1 with
f1(s) = (number of white pawns) – (number of black pawns), etc.

Key challenge – find a good evaluation features:
Not just material! (as used by novice)
Isolated pawns are bad.
How well protected is your king?
How much maneuverability to you have?
Do you control the center of the board?
Strategies change as the game proceeds

Features are a form of chess knowledge. Hand-coded in eval function.
Knowledge tightly integrated in search.
Feature weights: can be automatically tuned (“learned”).

Standard issue in machine learning:
Features, generally hand-coded; weights tuned automatically.

Combination of “inaccurate” board eval + search is very effective.
(empirical finding!)

When Chance is involved:
Backgammon Board

1 2 3 4 5 70 8 9 10 11 126

24 23 22 2025 19 18 17 16 15 14 1321

Bart Selman
CS4700

52

Expectiminimax

Generalization of minimax for games with chance nodes

Examples: Backgammon, bridge

Calculates expected value where probability is taken
over all possible dice rolls/chance events

- Max and Min nodes determined as before
- Chance nodes evaluated as weighted average

Game Tree for Backgammon
MAX

DICE

MIN

DICE

MAX

TERMINAL

… … …

…

…

…

………

…
…

… …

…
…

…

…

…

1/36
1,1

6,5 6,6

6,5 6,6

1/18
1,2

1/36
1,1

C

1/18
1,2

Bart Selman
CS4700

54

Expectiminimax

Expectiminimax(n) =

Utility(n) for n, a terminal state

for n, a Max node

for n, a Min node

for n, a chance node

expectiminimax()sÎs Succ(n) max
expectiminimax()sÎs Succ(n) min

() ()*expectiminimax()s Succ n P s sÎS

Bart Selman
CS4700

55

1.32.1

2

.1 .9.9 .1

1

1A 2A

4

3

2 3 3

1

4

4

40.921

20

.1 .9.9 .1

1

1A 2A

1

1

20

20 30 30

30

400 400

400

Expectiminimax

Small chance at high payoff wins.
But, not necessarily the best thing
to do!

.9 * 2 + .1 * 3 = 2.1

2.1 40.9

33

Bart Selman
CS4700

56

Summary

--- game tree search
--- minimax
--- optimality under rational play
--- alpha-beta pruning
--- board evaluation function (utility) / weighted sum of features and

tuning
--- expectiminimax

