
Foundations of Artificial Intelligence

Bart Selman

Problem Solving by Search
R&N: Chapter 3

Introduction
“Search” is one of earliest areas studied in AI. Well-developed and

understood.

Originated with Newell and Simon�s work on problem solving;
Human Problem Solving (1972).

Automated reasoning is a natural search task.

More recently: Given that almost all AI formalisms
(planning, learning, etc) are NP-Complete or worse,
some form of search (or optimization) is generally
unavoidable (i.e., no smarter algorithm available).

Note: search and combinatorial optimization are closely related.

Outline

Problem-solving agents
Problem types
Problem formulation
Example problems
Basic search algorithms (quick; most you already

know!)

Problem solving agents are goal-directed agents:

1. Goal Formulation: Set of one or more (desirable)
world states (e.g. “checkmate opponent in chess” or
“reach vacation destination”).

2. Problem formulation: What actions and states to
consider given a goal and an initial state.

3. Search for solution: Given the problem, search for a
solution --- a sequence of actions to achieve the goal
starting from the initial state.

4. Execution of the solution

Problem-solving agents

Note: Formulation may feel somewhat “contrived,” but is
meant to model very general (human/computer) problem
solving process.

More details on “states” soon.

Example: Path Finding problemFormulate goal:
– be in Bucharest

(Romania)
–

Formulate problem:
– action: drive between

pair of connected cities
(direct road)

–
– state: traveler in a

certain city
(20 world states)

Find solution:
– sequence of cities

leading from start to
goal state, e.g., Arad,
Sibiu, Fagaras,
Bucharest

–
Execution

– drive from Arad to
Bucharest according to
the solution

Initial
State

Goal
State

Environment: fully observable (map),
deterministic, and the agent knows effects
of each action.

Note: Map is somewhat of a “toy” example. Our real
interest: Exponentially large spaces, with e.g. 10^100
or more states. Far beyond full search. Humans can
often still handle those! (We need to define a distance
measure.) One of the mysteries of cognition.

Micro-world: The Blocks World

T
A B C

D

Initial State

A

C
D

Goal State

gripper

How many
different possible
world states?

a) Tens?
b) Hundreds?
c) Thousands?
d) Millions?
e) Billions?
f) Trillions?

Size state space of blocks world example

n = 8 objects, k = 9 locations to build towers, one gripper. (One location in box.)

All objects distinguishable, order matter in towers. (Assume stackable

in any order.)

Blocks: Use r-combinations approach from Rosen (section 5.5; CS-2800).
- - - - - - - - - - - - - - - - consider 16 = (n + k – 1) “spots”

Select k – 1 = 8 “dividers” to create locations,

(16 choose 8) ways to do this, e.g.,

| | - - - | - | | - - - | | - | Allocate n = 8 objs to remaining spots, 8! ways, e.g.,

| | 4 1 8 | 5 | | 6 3 7 | | 2 | assigns 8 objects to the 9 locations

a b c d e f g h i based on dividers

So, total number of states (ignoring gripper): (16 choose 8) * 8! = 518,918,400

* 9 for location gripper: > 4.5 billion states even in this toy domain!

Search spaces grow exponentially with domain. Still need to search them, e.g., to
find a sequence of states (via gripper moves) leading to a desired goal state.
How do we represent states? [predicates / features]

Problem types
1) Deterministic, fully observable
Agent knows exactly which state it will be in; solution is a sequence of actions.

2) Non-observable --- sensorless problem
– Agent may have no idea where it is (no sensors); it reasons in terms of

belief states; solution is a sequence actions (effects of actions certain).
– Cars: drive by “dead reckoning” instead of GPS. Increasing

uncertainty in location.

3) Nondeterministic and/or partially observable: contingency problem
– Actions uncertain, percepts provide new information about current

state (adversarial problem if uncertainty comes from other agents).
– Solution is a “strategy” to reach the goal.

4) Unknown state space and uncertain action effects: exploration problem
-- Solution is a “strategy” to reach the goal (end explore environment).

In
cr

ea
sin

g
co

m
pl

ex
ity

Example: Vacuum world state space graph
(Russell & Norvig)

states?
actions?
goal test?
path cost?

The agent is in one of 8 possible world states.
Left, Right, Suck [simplified: left out No-op]
No dirt at all locations (i.e., in one of bottom two states).
1 per action: counts # of actions

Goal
(reach one in
this set of states)

Start state

Minimum path from Start to Goal state:
Alternative, longer plan:

3 actions
4 actions

Note: path with thousands of steps before reaching goal also exists.

Example: The 8-puzzle
“sliding tile puzzle”

states? the boards, i.e., locations of tiles
actions? move blank left, right, up, down
goal test? goal state (given on right; tiles in order)
path cost? 1 per move

Note: finding optimal solution of n-puzzle family is NP-hard!
Also, from certain states you can’t reach the goal.
Total number of states 9! = 362,880 (more interesting space;
not all connected… only half can reach goal state)

Aside:
variations
on goal state.
eg empty square
bottom right or
in middle.

15-puzzleGoal state

Search space:
16!/2 = 1.0461395 e+13,
about 10 trillion.
Too large to store in RAM
(>= 100 TB). A challenge to search
for a path from a given board to goal.

Korf, R., and Schultze, P. 2005. Large-scale parallel breadth-first search. In
Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-05).
See Fifteen Puzzle Optimal Solver. With effective search: opt. solutions in seconds!
Average: milliseconds.

Longest minimum path: 80 moves. Just 17 boards, e.g,

Average minimum soln. length: 53.

People can find solns. But not necessarily
minimum length. See solve it! (Gives strategy.)

Korf (UCLA):
Disk errors
become a
problem. (cosmic
rays)

http://kociemba.org/fifteen/fifteensolver.html
http://www.youtube.com/watch?v=EtXE08bOVZM

st

at
es

 in
 b

ill
io

ns
Where are the 10 trillion states?

minimum distance from goal state (# moves)
dist. # states

etc.

dist. # states

17 boards farthest away from goal state (80 moves)

Each require 80 moves to reach:
Intriguing similarities. Each number
has its own few locations.

4
1

What is
it about
these 17
boards
out of
over 10
trillion?

13
<2,5,6>

<15,12,11>/
<9,10,14>

?

?

<3,7,8>

?

Interesting machine learning task:
Learn to recognize the hardest boards!
(Extremal Combinatorics, e.g. LeBras, Gomes, and Selman AAAI-12)

17 boards farthest away from goal state (80 moves)

There is one very special case: Most “regular” extreme case:

Thanks to Jonathan GS

Each quadrant
reflected along
diagonal. “move
tiles furthest away”

Goal state

A few urls:

Play the eight puzzle on-line
Play the fifteen puzzle on-line

Let’s consider the search for a solution.

http://cheesygames.com/slider/
http://migo.sixbit.org/puzzles/fifteen/

Searching for a solution
to the 8-puzzle.

A breadth-first search tree

Start state

Goal

Branching factor 1, 2, or 3 (max). So, approx. 2 --- # nodes roughly doubles at
each level. Number states of explored nodes grows exponentially with depth.

Aside: in this
tree, immediate
duplicates are
removed.

For 15-puzzle, hard initial states: 80 levels deep, requires

exploring approx. 2^80 ≈ 10^24 states.

If we block all duplicates, we get closer to 10 trillion (the number of

distinct states: still a lot!).

Really only barely feasible on compute cluster with lots of memory and

compute time. (Raw numbers for 24 puzzle: truly infeasible.)

Can we avoid generating all these boards? Do with much less search?
(Key: bring average branching factor down.)

Gedanken experiment: Assume that you knew for each state, the minimum
number of moves to the final goal state. (Table too big, but assume there is
some formula/algorithm based on the board pattern that gives this number
for each board and quickly.)

Using the minimum distance information, is there a clever way to find a
minimum length sequence of moves leading from the start state to the goal
state? What is the algorithmic strategy?

Search tree.

Start state

Goal

Branching factor approx. 2. So, with “distance oracle” we only need
to explore approx. 2 * (min. solution length). (Why 2 times?)

d = 5
(oracle)

d >= 5

d >= 4 d >= 3d = 3

d >= 4d = 4

Hmm. How do I know? d = min dist. to goal

Note: at least one
neighbor with d =
4.

d = 2

d = 1

d = 0

Select

Select

d >= 1

Select

Select

Select

For 15-puzzle, hard initial states: 80 levels deep, requires exploring
approx. 2^80 ≈ 10^24 states.

But, with distance oracle, we would only need to explore roughly 80 * 2 =
160 states! (only linear in size of solution length)

We may not have the exact distance function (“perfect heuristics”), but
we can still “guide” the search using an approximate distance function.

This is the key idea behind “heuristic search” or “knowledge-based search.”
We use knowledge / heuristic information about the distance to the goal to
guide our search process. We can go from exponential to polynomial or even
linear complexity. More common: brings exponent down significantly.
E.g. from 2^L to 2^(L/100).

The measure we considered would be the “perfect” heuristic. Eliminates tree
search! Find the right “path” to goal state immediately.

Search tree.

Start state

Goal

Perfect “heuristics,” eliminates search.
Approximate heuristics, significantly reduces search.
Best (provably) use of search heuristic info: A* search (soon).

Basic idea: State evaluation
function can effectively guide
search.

Also in multi-agent settings.
(Chess: board eval.)

Reinforcement learning:
Learn the state eval function.

General question: Given a state space,
how good a heuristics can we find?

State evaluation functions
or “heuristics”

Provide guidance in terms of what action to take next.

General principle: Consider all neighboring states, reachable via some
action. Then select the action that leads to the state with the highest
utility (evaluation value). This is a fully greedy approach.

Aside: “Highest utility” was “shortest distance to the goal” in previous
example.

Because eval function is often only an estimate of the true state value,
greedy search may not find the optimum path to the goal.

By adding some search with certain guarantees on the approximation, we
can still get optimal behavior (A* search) (i.e. finding the optimal path
to the solution). Overall result: generally exponentially less search
required.

N-puzzle heuristics (“State evaluation function” wrt the goal to be reached):

1) Manhattan Distance: For each tile the number of grid units between its
current location and its goal location are counted and the values for all
tiles are summed up. (underestimate; too “loose”; not very powerful)

2) Felner, Ariel, Korf, Richard E., Hanan, Sarit, Additive Pattern

Database Heuristics, Journal of Artificial Intelligence Research 22

(2004) 279-318. The 78 Pattern Database heuristic takes a lot of memory

but solves a random instance of the 15-puzzle within a few milliseconds

on average. Finding an optimal solution (80 moves cases) takes a few

seconds each. So, thousands of nodes considered instead of many

billions.

Note: many approx. heuristics (“conservative” / underestimates to goal)

combined with search can still find optimal solutions.

State evaluation function (or utility
value) is a very general and useful idea.
Example:
• In chess, given a board, what would be the

perfect evaluation value that you would want to know?
(Assume the perspective of White player.)

A: f(board) à {+1, 0, -1}, with +1 for guaranteed win for White,
0 draw under perfect play, and
-1 loss under perfect play.

Perfect play: all powerful opponent.
Given f, how would you play then?

In practice, we only know (so far) of an approximation of f.
f(board) à [-1,+1] (interval from -1 to +1)
based on “values” of chess pieces, e.g., pawn 1 point, rook 5 points.
Informally, board value gives “probability (?) of winning.”

State evaluation function (or utility
value) is a very general and useful idea.
Examples:
• TD-Gammon backgammon player. Neural net

was trained to find approximately optimal state (board)
evaluation values (range [-1,+1]). (Tesauro 1995)

• “Robocopter” --- automated helicopter control;
trained state evaluation function.
State given by features, such as,
position, orientation, speed, and
rotors position and speed. Possible
actions: change rotors speed and

angle. Evaluation: assigns value
in [-1,+1] to capture stability.

(Abbeel, Coates, and Ng 2008)

Example: Robotic assembly

states?: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions?: continuous motions of robot joints
goal test?: complete assembly
path cost?: time to execute

Other example search tasks

VLSI layout: positioning millions of components and connections on a chip
to minimize area, circuit delays, etc.

Robot navigation / planning
Automatic assembly of complex objects

Protein design: sequence of amino acids that will fold into the 3-
dimensional protein with the right properties.

Literally thousands of combinatorial search / reasoning / parsing /
matching problems can be formulated as search problems in exponential
size state spaces.

Any type of task where the solution is “hiding” in an exponential /
combinatorial space of possibilities.

Key aspect of intelligence: Our ability to deal with such spaces.

Search Techniques

Searching for a (shortest / least cost) path to goal state(s).

Search through the state space.

We will consider search techniques that use an
explicit search tree that is generated by the
initial state + successor function.

initialize (initial node)
Loop

choose a node for expansion
according to a strategy

goal node? à done
expand node with successor function

Tree-search algorithms

Basic idea:
– simulated exploration of state space by generating successors of

already-explored states (a.k.a. ~ expanding states)
–

Note: 1) Here we only check a node for possibly being a goal state, after we
select the node for expansion.
2) A “node” is a data structure containing state + additional info (parent
node, etc.

Fig. 3.7 R&N, p. 77

Tree search example
Node selected
for expansion.

Nodes added to tree.

Selected for expansion.

Added to tree.

Note: Arad added (again) to tree!
(reachable from Sibiu)

Not necessarily a problem, but
in Graph-Search, we will avoid
this by maintaining an
“explored” list.

Graph-search

Note:
1) Uses “explored” set to avoid visiting already explored states.
2) Uses “frontier” set to store states that remain to be explored and expanded.
3) However, with eg uniform cost search, we need to make a special check when

node (i.e. state) is on frontier. Details later.

Fig. 3.7 R&N, p. 77. See also exercise 3.13.

Search strategies

A search strategy is defined by picking the order of node expansion.

Strategies are evaluated along the following dimensions:
– completeness: does it always find a solution if one exists?
– time complexity: number of nodes generated
– space complexity: maximum number of nodes in memory
– optimality: does it always find a least-cost solution?
–

Time and space complexity are measured in terms of
– b: maximum branching factor of the search tree
– d: depth of the least-cost solution
– m: maximum depth of the state space (may be ∞)
–

Uninformed search strategies

Uninformed (blind) search strategies use only the
information available in the problem definition:

– Breadth-first search
– Uniform-cost search
– Depth-first search
– Depth-limited search
– Iterative deepening search
– Bidirectional search
–

Key issue: type of queue used for the fringe of the search tree
(collection of tree nodes that have been generated but not yet
expanded)

Breadth-first search

Expand shallowest unexpanded node.

Implementation:
– fringe is a FIFO queue, i.e., new nodes go at end

(First In First Out queue.)
Fringe queue: <A>

Select A from
queue and expand.

Gives
<B, C>

Queue: <B, C>

Select B from
front, and expand.

Put children at the
end.

Gives
<C, D, E>

Fringe queue: <C, D, E>

Fringe queue: <D, E, F, G>

Assuming no further children, queue becomes
<E, F, G>, <F, G>, <G>, <>. Each time node checked
for goal state.

Properties of breadth-first search

Complete? Yes (if b is finite)

Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)

Space? O(bd+1) (keeps every node in memory;
needed also to reconstruct soln. path)

Optimal soln. found?
Yes (if all step costs are identical)

Space is the bigger problem (more than time)

b: maximum branching factor of the search tree
d: depth of the least-cost solution

Note: check for
goal only when
node is expanded.

Why?
Depth d, goal
may be last
node (only
checked when
expanded.).

Uniform-cost search

Expand least-cost (of path to) unexpanded node
(e.g. useful for finding shortest path on map)

Implementation:
– fringe = queue ordered by path cost
–

Complete? Yes, if step cost ≥ ε (>0)
Time? # of nodes with g ≤ cost of optimal solution (C*),

O(b(1+ëC*/ εû)
Space? # of nodes with g ≤ cost of optimal solution,

O(b(1+ëC*/ εû)
Optimal? Yes – nodes expanded in increasing order of g(n)
Note: Some subtleties (e.g. checking for goal state).

See p 84 R&N. Also, next slide.

g – cost of reaching a node

Uniform-cost search
Two subtleties: (bottom p. 83 Norvig)
1) Do goal state test, only when a node is selected for expansion.

(Reason: Bucharest may occur on frontier with a longer than
optimal path. It won’t be selected for expansion yet. Other nodes
will be expanded first, leading us to uncover a shorter path to
Bucharest. See also point 2).

2) Graph-search alg. says “don’t add child node to frontier if already on
explored list or already on frontier.” BUT, child may give a shorter path
to a state already on frontier. Then, we need to modify the existing
node on frontier with the shorter path. See fig. 3.14 (else-if part).

Depth-first search
“Expand deepest unexpanded node”

Implementation:
– fringe = LIFO queue, i.e., put successors at front (“push on stack”)

Last In First Out

Fringe stack:
A

Expanding A,
gives stack:

B
C

So, B next.

Expanding B,
gives stack:

D
E
C

So, D next.

Expanding D,
gives stack:

H
I
E
C

So, H next.
etc.

What is main advantage over breadth first search?

What information is stored? How much storage required?

The stack. O(depth x branching).

Properties of depth-first search
Complete?

Time? O(bm): bad if m is much larger than d
– but if solutions are dense, may be much faster than breadth-first

Space?

Guarantee that
opt. soln. is found?

Note: In “backtrack search” only one successor is generated
à only O(m) memory is needed; also successor is modification of
the current state, but we have to be able to undo each modification.
More when we talk about Constraint Satisfaction Problems (CSP).

b: max. branching factor of the search tree
d: depth of the shallowest (least-cost) soln.
m: maximum depth of state space

No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
à complete in finite spaces

O(bm), i.e., linear space!

No

Note: Can also
reconstruct soln. path
from single stored
branch.

Iterative deepening search

Iterative deepening search l =0

Iterative deepening search l =1

Iterative deepening search l =2

Iterative deepening search l =3

Combine good memory requirements of depth-first with
the completeness of breadth-first when branching factor is
finite and is optimal when the path cost is a non-decreasing

function of the depth of the node.

Why would one do that?

Idea was a breakthrough in game playing. All game
tree search uses iterative deepening nowadays. What’s
the added advantage in games?

“Anytime” nature.

Iterative deepening search
Number of nodes generated in an iterative deepening search to depth
d with branching factor b:

NIDS = d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd

Nodes generated in a breadth-first search with branching factor b:

NBFS = b1 + b2 + … + bd-2 + bd-1 + bd

For b = 10, d = 5,

– NBFS= 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110
–
– NIDS = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456
–

Looks quite wasteful, is it?

Iterative deepening is the preferred uninformed search method
when there is a large search space and the depth of the solution

is not known.

J

“One search
depth d”

Properties of iterative deepening search

Complete? Yes
(b finite)

Time? d b1 + (d-1)b2 + … + bd = O(bd)

Space? O(bd)

Optimal? Yes, if step costs identical

Bidirectional Search
• Simultaneously:

– Search forward from start
– Search backward from the goal

Stop when the two searches meet.

• If branching factor = b in each direction,
with solution at depth d
è only O(2 bd/2)= O(2 bd/2)

• Checking a node for membership in the other search tree can be done in constant
time (hash table)

• Key limitations:
Space O(bd/2)
Also, how to search backwards can be an issue (e.g., in Chess)? What’s tricky?
Problem: lots of states satisfy the goal; don’t know which one is relevant.

Aside: The predecessor of a node should be easily computable (i.e., actions
are easily reversible).

Repeated statesFailure to detect repeated states can turn
linear problem into an exponential one!

Problems in which actions are reversible (e.g., routing problems or
sliding-blocks puzzle). Also, in eg Chess; uses hash tables to check
for repeated states. Huge tables 100M+ size but very useful.

See Tree-Search vs. Graph-Search in Fig. 3.7 R&N. But need to
be careful to maintain (path) optimality and completeness.

Summary: General, uninformed search

Original search ideas in AI where inspired by studies of human problem
solving in, eg, puzzles, math, and games, but a great many AI tasks now
require some form of search (e.g. find optimal agent strategy; active
learning; constraint reasoning; NP-complete problems require search).

Problem formulation usually requires abstracting away real-world details
to define a state space that can feasibly be explored.

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not much more time
than other uninformed algorithms.

Avoid repeating states / cycles.

