Foundations of Artificial Intelligence

Instructor:
Prof. Selman
selman@cs.cornell.edu

Overview \& Introduction
(Readings R\&N: Chapter 1)

http://www.cs.cornell.edu/courses/cs4700/2017fa/

AI Methodology

Theoretical aspects

- Mathematical formalizations, properties, algorithms
Engineering aspects
- The act of building (useful) machines

Empirical science

- Experiments

What's involved in Intelligence?

A) Ability to interact with the real world to perceive, understand, and act speech recognition and understanding (natural language) image understanding (computer vision)
B) Reasoning and Planning
modeling the external world problem solving, planning, and decision making ability to deal with unexpected problems, uncertainties
C) Learning and Adaptation

Lots of data. Use to train statistical models.
We are continuously learning and adapting.
We want systems that adapt to us!

Al leverages from different disciplines

philosophy
e.g., foundational issues (can a machine think?), issues of knowledge and believe, mutual knowledge psychology and cognitive science
e.g., problem solving skills
neuro-science
e.g., brain architecture
computer science and engineering
e.g., complexity theory, algorithms, logic and inference, programming languages, and system building.
mathematics, statistics, and physics
e.g., statistical modeling, continuous mathematics, statistical physics, and complex systems.

Historical Perspective

Obtaining an understanding of the human mind is one of the final frontiers of modern science.

Founders:
George Boole, Gottlob Frege, and Alfred Tarski

- formalizing the laws of human thought

Alan Turing, John von Neumann, and Claude Shannon

- thinking as computation

John McCarthy (Stanford), Marvin Minsky (MIT),
Herbert Simon and Allen Newell (CMU)

- the start of the field of AI (1956)

History of AI:

The gestation of AI 1943-1956 (See Russell \& Norvig)

1943 McCulloch and Pitts

- McCulloch and Pitts' model of artificial neurons
- Minsky's 40-neuron network

1950 Turing's "Computing machinery and intelligence"
1950s Early AI programs, including Samuel's checkers program, Newell and Simon's Logic theorist
1956 Dartmouth meeting : Birth of "Artificial Intelligence"

- 2-month Dartmouth workshop; 10 attendees
- Name was chosen. AI

History of AI:

(1952-1969)
1957 Herb Simon (CMU):
Early enthusiasm, great expectations
It is not my aim to surprise or shock you - but the simplest way I can summarize is to say that there are now in the world machines that think, that learn, and that create. ();

1958 John McCarthy's LISP (symbol processing at core)

1965 J.A. Robinson invents the resolution principle, basis for automated theorem. General reasoning procedure.

Limited intelligent reasoning in microworlds
(such as the "blocks world" --- a toy robotics domain)

The Blocks World

gripper

(a) "Pick up a big red block."

(b) "Find a block which is taller than the one you are holding and put it into the box."

Requires:

--- Vision | - |
| :--- |

"A Microworld"

--- Manipulation --- Acting/Robotics

(c) "Will you please stack up both of the red blocks and either a green cube or a pyramid?"

Micro-world: The Blocks World

(a) "Pick up a big red block."

(b) "Find a block which is taller than the one you are holding and put it into the box."

How many different possible world states?

a) Tens?
b) Hundreds?
c) Thousands?
d) Millions?

Core issue in AI: Combinatorial explosion in possible ons? states of the world, possible futures, possible sentences, ons? possible training examples. Need clever methods, algorithms, and representations.

"Brainy, Yes, but Far From Handy" New York Times 09/01/14

Making dexterous hands with human-level touch and sensing still a real challenge. Link.

Stacking blocks may seem like an easy task for a human, but robots have long struggled with such fine control. HDT's Adroit manipulator uses force-sensing and vision to accomplish the delicate task.

Dynamic human touch for example, when a finger slides across a surface could distinguish ridges no higher than 13 nanometers, or about 0.0000005 of an inch. Individual molecules...

1) Weizenbaum's ELIZA ("fools" users)

Capturing general knowledge is hard.

Revival: Amazon's Chatbots
2) Difficulties in automated translation

See Babelfish

Syntax and dictionaries are not enough
Consider going from English to Russian back to English. Early effort...
"The spirit is willing but the flesh is weak."
"The vodka is good but the meat is rotten." Natural language processing (NLP) is hard. (Ambiguity! Context! Anaphora resolution.)

History of AI

A dose of reality, cont. (1965-1978)
3) Cars climbing up trees (at CMU)...

Road sides look like parallel lines. But, unfortunately, so do trees!
Computer vision is hard. (Ambiguity! Context! Noisy pixels.)
4) Limitations of perceptrons discovered Minsky and Papert (1969)

Can "only" represent linearly separable functions
Neural network research almost disappears
Machine learning is hard.
5) Intractability of inference. NP-Completeness (Cook 72)

Intractability of many problems attempted in AI.
Worst-case result....

History of AI

Knowledge based systems (1969-79)

Intelligence requires knowledge

Knowledge-based systems (lots of knowledge with limited but fast reasoning) (Feigenbaum)
versus
general "weak" methods (a few basic principles with general reasoning)
(Simon and Newell)

Some success: Expert Systems

- Mycin: diagnose blood infections (medical domain)
- R1 : configuring computer systems
- AT\&T phone switch configuration

Knowledge in rules of form:
If sympton_1 \& sympton_3 then disease_2
Surprising insight:
Modeling medical
expert easier than modeling language
/ vision / reasoning
of
3 year old.
(not foreseen)
(with certainty .8)

Expert Systems

Very expensive to code. (\$1M+)
Response: Try to learn knowledge from data.
Weak with uncertain inputs / noisy data / partial information
Response: Incorporate probabilistic reasoning
Brittle! (fail drastically outside domain)

Leads to 1980 -- 1995:

But IBM's Watson's knowledge modules have expert system flavor!
--- General foundations reconsidered
--- Foundations of machine learning established (e.g. computational learning theory; PAC learning; statistical learning)
--- Foundations of probabilistic formalisms: Bayesian reasoning; graphical models; mixed logical and probabilistic formalisms.

From 1995 onward:
--- Data revolution combined with statistical methods
--- Building actual systems
--- Human world expert performance matched (and exceeded) in certain domains

History of AI: 1995 - present

Several success stories with high impact ...

Machine Learning

In ' 95, TD-Gammon.

World-champion level play by Neural Network that learned from scratch by playing millions and millions of games against itself! (about 4 months of training. Temporal-Difference learning.)
(initial games hundreds of moves)
Has changed human play.
Remaining open question: Why does this NOT work for, e.g., chess??

Some further remarks on reinforcement learning
--- reinforcement learning strengthen behavior with positive reward weaken with negative reward (punishment)
--- 2 versions of same program playing against itself. give more detail on output: one possible architecture game state and who is on play is input Then, for each possible move: NN computes score/float y in range $<-1,+1>$.
--- After win (or loss), adjust weights in gradient descent direction to move score y for that move up (or down). for that move.

So, let's say network made move "A" in play state S at because move A received a score of 0.9 by the neural net for state S ..

Then, after playing out the game, the network lost. So, more likely than not, move A was quite possibly not the right move to make in state S .

Therefore, adjust weights on network a tiny bit to move down for move A , given game is in state S .

Score(state S) is a function of the state and the setting of the weights in the NN. Use basic calculus (gradient descent), to change the weights to lower (or raise) the score given the inputs representing state S .

The essence of NN is that it reduces a lot of AI/ML to gradient descent optimization, given some training set and a loss function. The loss function specifies what we want the NN to compute.

So, the NN is going to compute a complex function Given the input state and the setting of its weights.

Learning / behavior etc., all comes down to modifying the weights to have the NN output something as close as possible to the training example points of the behavior/function that needs to be learned.

In a game, for each possible move, you want to know the minimax value or a good approximation thereof ("probability" first player wins between -1.0 (certain
loss and +1.0 (certain win)).
Lots of AI/ML reduced to cleverly designed optimization problems.

"Robbin's Algebras are all Boolean"

A mathematical conjecture (Robbins conjecture) unsolved for 60 years!

First creative mathematical proof by computer.
Contrast with brute-force based proofs such as the 4 -color theorem.

The Robbins problem was to determine whether one particular set of rules is powerful enough to capture all of the laws of Boolean algebra.

Mathematically:
Can the equation $\operatorname{not}(\operatorname{not}(\mathbf{P}))=P$ be derived from the following three equations?
[1] $(\mathbf{P}$ or $\mathbf{Q})=(\mathbf{Q}$ or $\mathbf{P})$
[2] (\mathbf{P} or \mathbf{Q}) or $\mathbf{R}=\mathbf{P}$ or (\mathbf{Q} or R),
[3] $\operatorname{not}(\operatorname{not}(P$ or $Q) \operatorname{or} \operatorname{not}(P \operatorname{or} \operatorname{not}(Q)))=P$.
[An Argonne lab program] has come up with a major mathematical proof that would have been called creative if a human had thought of it. New York Times, December, 1996
http://www-unix.mcs.anl.gov/~mccune/papers/robbins/

As Eas

$T_{\text {he phrase it est }}^{\text {repeatedly in }}$ French mathematiciar French mathematiciar
phrase is common in spelling out derails th spelling out details
matical techniques. matical techniques.
words. What Laplaci intense mathematical Oddly enough, Laj see how a particular

New: 2014 ---

Erdos Discrepancy Conjecture resolved

8865	$\overline{\overline{3 p}+p}+\overline{3 p}+2 p+\overline{3 p}=\overline{\overline{3 p}+p}+2 p$
8866	$\overline{\overline{3 p+p}+\overline{3 p}}=p$
8870	$\overline{\overline{\overline{3 p}+p}+\overline{3 p}+q}+\overline{p+q}=q$
8871	$\overline{\overline{3 p}+p}+2 p=2 p$

Note: Same order of search complexity as performed by Deep Blue per move. Quantative threshold for creativity?

Erdos Discrepacy Conjecture

A recently resolved math challenging problem using automated reasoning.

A conjecture about properties of infinite sequences of +1 s and -1 s .

Let's cover some details.

Example
Consider a sequence of 1 s and -1 s , e.g.: $\quad \backslash$ sigma $x_{-} i$

-1,	1,	1,	-1,	1,	1,	-1,	1,	-1	\ldots	
1	2	3	4	5	6	7	8	9	\ldots	
	2		4		6		8		\ldots	
		3			6			9	\ldots	

and look at the sum of sequences and subsequences:

$$
\begin{aligned}
& -1+1=0 \quad\left(x _i\right) \quad \text { and "skip by } 1 "\left(x _2 i\right) \text { and "skip by } 2 \text { " (} x_{-} 3 i \text {) } \\
& -1+1+1=1 \\
& -1+1+1+-1=0 \\
& 1+-1=0 \\
& 1+-1+1= \\
& 1+-1+1+1=2 \\
& -1+1+1+-1+1+1=2 \\
& \mathbf{- 1}+\mathbf{1}+\mathbf{1 + - 1}+\mathbf{1}+\mathbf{1 + - 1} \\
& -1+1+1+\mathbf{- 1}+\mathbf{1}+\mathbf{1 + - 1 + 1 = 2} \\
& -1+1+1+-1+\underset{\text { etc. }}{1}+1+-1+1+-1=1 \\
& \text { What happens } \\
& \text { to partial sums? }
\end{aligned}
$$

How would you tackle the problem as a Computer Scientist?
What is the size of the search space? How long would your algorithm take?

Discovered in 2015: there exists a sequence of $1160+1 \mathrm{~s}$ and -1 s such that sums of all subsequences never <-2 or $>+2$.

Result was obtained with a general reasoning program (a Boolean Satisfiability or SAT solver). Surprisingly, the approach far outperformed specialized search methods written for the problem, including ones based on other known types of sequences. (A PolyMath project started in January 2010.)

Aside: A Taste of Problem Size

Consider a real world Boolean Satisfiability (SAT) problem, from software \& hardware verification.

The instance bmc-ibm-6.cnf, IBM LSU 1997:

10 pages later:

```
185-90
185-10
177169161153145137129121 113 10597
    89817365574941
    33251791-1850
186-1870
186-188 0
```

```
I.e., (x_177 or x_169 or x_161 or x_153 ...
x_33 or x_25 or x_17 or x_9 or x_1 or (not x_185))
```

clauses / constraints are getting more interesting...
Note $x_{-} 1$...

4000 pages later:

$$
\begin{aligned}
& 10236-100500 \\
& 10236-100510 \\
& 10236-102350 \\
& 10008100091001010011100121001310014 \\
& 10015100161001710018100191002010021 \\
& 10022100231002410025100261002710028 \\
& 10029100301003110032100331003410035 \\
& 10036100371008610087100881008910090 \\
& 10091100921009310094100951009610097 \\
& 10098100991010010101101021010310104 \\
& 10105101061010710108-55-5453-52-5150 \\
& 100471004810049100501005110235-102360 \\
& 10237-100080 \\
& 10237-100090 \\
& 10237-100100
\end{aligned}
$$

Finally, 15,000 pages later:

$$
\begin{aligned}
& -72600 \\
& \text { 7-260 } 0 \\
& 107210700 \\
& -15-14-13-12-11-100 \\
& -15-14-13-12-11100 \\
& -15-14-13-1211-100 \\
& -15-14-13-1211100 \\
& -7-6-5-4-3-20 \\
& -7-6-5-4-320 \\
& -7-6-5-43-20 \\
& -7-6-5-4320 \\
& 1850
\end{aligned}
$$

Search space of truth assignments:

$$
2^{50000} \approx 3.160699437 \cdot 10^{15051}
$$

Current reasoning engines can solve this instance in a few seconds! (no satisfying assignment exists + proof)

Reminder: Consider a sequence of 1 s and -1 s , e.g.:

| -1, | 1, | 1, | -1, | 1, | 1, | -1, | 1, | -1 | \ldots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | \ldots |
| | 2 | | 4 | | 6 | | 8 | | \ldots |
| | | 3 | | | 6 | | | 9 | \ldots |

and look at the sum of sequences and subsequences:
$-1+1=0 \quad$ and "skip by 1 "
$\begin{array}{ll}-1+1+1=1 & 1+-1=0 \\ -1+1+1+-1=0 & 1+-1+1=1 \\ -1+1+1+-1+1=1 & 1+-1+1+1=2 \\ \text { etc. }\end{array}$
$-1+\mathbf{1}+\mathbf{1}+\mathbf{- 1}+\mathbf{1}+\mathbf{1}=\mathbf{2} \quad$ etc.
$-1+1+1+\mathbf{- 1}+\mathbf{1}+\mathbf{1 + - 1}=1$
$-1+1+1+\mathbf{- 1}+1+1+-1+1=2$
$-1+1+1+-1+\underset{\text { etc. }}{1+1+-1+1+-1=1}$
and "skip by 2 "

$$
\begin{aligned}
& 1+1=2 \\
& 1+1+-1=1 \\
& \text { etc. }
\end{aligned}
$$

Back to sequences of $+\mathbf{1 / - 1 s}$
Logic / SAT encoding has variables for the sequence $\mathbf{X} _1, \mathbf{X} _2, \ldots, \mathbf{X} _\mathbf{N}$ (we interpret True for +1 and False for -1)
but also e.g.
Proposition: "sum_of_first_2_terms_of_skip_by_2_subseq_=_2" (for any given setting of $\mathbf{X} _1 \ldots X_{-} N$ this is either True or False)
and statements of the form:
IF ((sum_of_first_2_terms_of_skip_by_3_subseq_=_2 == True)
AND (X_9 == False))

THEN
Why? SAT form?
(sum_of_first_3_terms_of_skip_by_3_subseq_=_1 == True)

Encoding: 37,418 variables and 161,460 clauses / constraints.
Sequence found in about 1 hour (MacBook Air). Perhaps SAT solver was "lucky" in finding the sequence?

Remarkably, SAT solver also shows that each sequence of 1161 or longer leads to +3 (or -3) somewhere. (Erdos discrepancy conjecture)
(Again, think of the size of the search space!)

Encoding: 37,462 variables and 161,644 clauses / constraints.
Proof of non-existence of discrepancy 2 sequence found in about 10 hour (MacBook Air).

Proof: 13 gigabytes and independently verified (50 line proof checking program). Proof is around a billion small inference steps.

Machine understands and can verify result easily (milliseconds); Humans: probably never. Still, we can be certain of the result because of the verifier.

Observations

1) Result different from earlier "computer math" results, such as the proof of the $\mathbf{4}$ color theorem, because here we don't need to trust the theorem prover. Final proof ("certificate") can be checked easily by anyone.
2) It's not a brute force search. Earlier SAT solvers cannot find the proof. Specialized programs cannot find the proof.

Brute force proof is of order $\mathbf{2}^{\wedge} 1161=3.13 \times 10^{\wedge} 349$. Current solver finds complete proof with "only" around $1.2 \times 10 \wedge 10$ steps. Clever learning and reasoning enables a factor $10^{\wedge} 339$ reduction in proof size.
3) In part inspired by discrepancy 2 result, Terence Tao proved several months later the general Erdos conjecture (for any discrepancy). Deep and subtle math.
4) But, does not fully supersedes the 1161 result for the discrepancy 2. Future math may build further on these types of computational results. (I.e. true, verifiable facts but not human accessible.)

Deep Blue beats the World Chess Champion

I could feel human-level intelligence across the room
Gary Kasparov, World Chess Champion (human...)

Note: when training in self-play, be careful to randomize!

Deep Blue vs. Kasparov

Game 1: 5/3/97:
Kasparov wins

Game 2: 5/4/97:
Deep Blue wins
Game 3: 5/6/97:
Draw
Game 4: 5/7/97:
Game 3:
Why did Kasparov not Draw

Game 5: 5/10/97:
Draw
Game 6: 5/11/97:
Deep Blue wins

The value of IBM's stock increased by \$18 Billion!
We'll discuss Deep Blue's architecture, when we cover multi-agent search.

On Game 2

Game 2 - Deep Blue took an early lead. Kasparov resigned, but it turned out he could have forced a draw by perpetual check.

Interestingly, if Kasparov had been playing a human he would most likely not have resigned!

This was real chess. This was a game any human grandmaster would have been proud of.

Joel Benjamin

grandmaster, member Deep Blue team

Kasparov on Deep Blue
1996: Kasparov Beats Deep Blue
"I could feel --- I could smell --- a new kind of intelligence across the table." (CNN)

1997: Deep Blue Beats Kasparov
"Deep Blue hasn't proven anything." ©

Current strongest play: Computer-Human hybrid

May, '97 --- Deep Blue vs. Kasparov. First match won against world-champion. "intelligent creative" play. 200 million board positions per second!

Kasparov: ... still understood 99.9 of Deep Blue's moves.

Deep Blue considers 60 billion boards per move! Human?
Around 10 to 20 lines of play. Hmm...
Intriguing issue: How does human cognition deal with the search space explosion of chess?
Or how can humans compete with computers at all?? (What does human cognition do? Truly unknown...)

Concepts (briefly) (more details with multit-agent search)

--- Minimax search on game tree to get optimal move (large tree >=10^80 chess)
Size tree: b^d (b --- average branching; d --- depth) alpha-beta pruning: b^(d/2) [key technique]
--- Board evaluation or utility function when you can't search to the bottom
--- Board eval is linear weighted some of features; can be trained via learning. (Reinforcement learning / AlphaGo)
--- Chess complexity?
O(1) (formally speaking...)
--- 2017: AlphaGo beats world human Go champion

Robocup@ Cornell --- Raff D’Andrea 2000

RoboCup Japan open 2013

Kiva Systems \$700M
From Robocup to Warehouse Automation

2005 Autonomous Control: DARPA GRAND CHALLENGE

October 9, 2005
Stanley and the Stanford RacingTeam were awarded 2 million dollars for being the first team to complete the $\mathbf{1 3 2}$ mile DARPA Grand Challenge course (Mojave Desert). Stanley finished in just under 6 hours 54 minutes and averaged over 19 miles per hours on the course.

Sebastian Thrun:
 Google's driverless car (2011)

Cornell team stuck :
 due to malfunctioning GPS.

http://www.youtube.com/watch?v=bp9KBrH8H04

cornell darpa grand challenge

A* algorithm
Covered in search and

The red line represents the ideal path picked by our A.I., and the turquoise path represents the actual path traveled by our vehicle. The differences arise because 1) we did not start our vehicle on the ideal path, and 2) our vehicle must, without exceeding its performance limits, avoid small obstacles such as boulders.

Cornell: $4^{\text {th }}!$

$1^{\text {st }}$ autonomous driverless car collision. Rear-ended by MIT car!

2007 Darpa Urban Challenge
 The Urban Challenge will pit driverless vehicles against one another on

 city streets. Robots will have to handle traffic, intersections, rules of the road and other robots. The challenge is a high-stakes competition that plays out on a world stage. The prize is $\$ 2 \mathrm{M}$, but the payoff for driver safety is much greater. This competition will be held November 3, 2007.The Urban Challenge is third in a series of autonomous vehicle competitions designed to catalyze robotic technology development. On October 8, 2005, Carnegie Mellon's "Sandstorm" and "H1ghlander" crossed the finish line of DARPA Grand Challenge after successfully completing a 132 -mile course through the Nevada desert, coming in second and third place respectively.

http://www.tartanracing.org/blog/index.html\#26

Watson:
 Question-Answering system, 2011

Watson defeats the two greatest Jeopardy! champions
http://www.youtube.com/watch?v=dr7IxQeXr7g

WATSON

Neural Networks --- Deep Learning, 2012.

New York Times: "Scientists See Promise in Deep-Learning Programs," Saturday, Nov. 24, 2012.
http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html?hpw

Multi-layer neural networks, a resurgence!
a) Winner one of the most recent learning competitions
b) Automatic (unsupervised) learning of "cat" and "human face" from 10 million of Google images; $\mathbf{1 6 , 0 0 0}$ cores $\mathbf{3}$ days; multilayer neural network (Stanford \& Google).
c) Speech recognition and real-time translation (Microsoft Research, China).

Aside: see web site for great survey article "A Few Useful Things to Know About Machine Learning" by Domingos, CACM, 2012. ML as Optimization (i.e. minimize a loss function)

Start at min. 3:00. Deep Neural Nets in speech recognition.

Other promising ongoing efforts

1) Intelligent autonomous assistants, e.g., iPhone's Siri (still a long way to go ()) Integrated, autonomous agents. Google Glass will be the next step. Location / context aware; rich sensing, vision and speech understanding and generation.
2) Fully self-driving car (Google; assisted driving Mercedes and BMW --- the cost of a car is becoming software and sensors Incredibly more lines of code in a Mercedes than in a Boeing 747.)
3) Google translate. Reaches around 70\% of human translator performance. Almost fully a purely statistical approach.

Not clear yet how far one can go without a real understanding of the semantics (meaning). But with Big Data, statistical methods already went much further than many researchers had considered possible only 10 years ago.

Course Administration \checkmark

What is Artificial Intelligence?
v

Course Themes, Goals, and Syllabus

Setting expectations for this course

Are you going to build real systems and robots?
NO...

Goal:

Introduce the conceptual framework and computational techniques that serve as a foundation for the field of artificial intelligence (AI).

Syllabus

- Structure of intelligent agents and environments.
- Problem solving by search: principles of search, uninformed ("blind") search, informed ("heuristic") search, and local search.
- Constraint satisfaction problems: definition, search and inference, and study of structure.
- Adversarial search: games, optimal strategies, imperfect, real-time decisions.
- Logical agents: propositional and first order logic, knowledge bases and inference.
- Uncertainty and probabilistic reasoning: probability concepts, Bayesian networks, probabilistic reasoning over time, and decision making.
- Learning: inductive learning, concept formation, decision tree learning, statistical approaches, neural networks, reinforcement learning.

So far, we discussed

Artificial Intelligence and characteristics of intelligent systems.

Brief history of AI

Major recent AI achievements

Reading: Chapter 1 Russell \& Norvig

