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Big Data:
Sensors Everywhere

Data collected and stored at 
enormous speeds (GB/hour)

Cars
Cellphones
Remote Controls
Traffic lights,
ATM machines
Appliances
Motion sensors
Surveillance cameras
etc etc
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Big Data:
Scientific Domains

Data collected and stored at 
enormous speeds (GB/hour)

– remote sensors on a satellite

– telescopes scanning the skies

– microarrays generating gene 
expression data

– scientific simulations 
generating terabytes of data

Traditional statistical techniques infeasible to deal with 
the data TUSNAMI  – they don’t scale up!!!

à Machine Learning Techniques
(adapted from Vipin Kumar)
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Machine Learning   Tasks 

Prediction Methods
– Use some variables to predict unknown or future values of other 

variables.

Description Methods
– Find human-interpretable patterns that describe the data.
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Machine Learning  Tasks

Supervised learning: 
We are given a set of examples with the correct answer  -
classification and  regression

Unsupervised learning: “just make sense of the data”
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Example: Supervised Learning
object recognition

Classification

x

f(x)
Target
Function

giraffe giraffe giraffe llama llama llama

From:	  Stuart	  Russell
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Example: Supervised Learning
object recognition

Classification

x

giraffe giraffe giraffe llama llama llama

X= f(x)=?

From:	  Stuart	  Russell

f(x)
Target
Function
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Classifying Galaxies

Early

Intermediate

Late

Data  Size:  
• 72  million  stars,  20  million  galaxies
• Object  Catalog:  9  GB
• Image  Database:  150  GB

Class:  
• Stages  of  Formation

Attributes:
• Image  features,  
• Characteristics  of  light  
waves  received,  etc.

Courtesy: http://aps.umn.edu
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Supervised	  learning:	  curve	  fitting
Regression

9
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Supervised	  learning:	  curve	  fitting
Regression
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Supervised	  learning:	  curve	  fitting
Regression
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Supervised	  learning:	  curve	  fitting
Regression
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Supervised	  learning:	  curve	  fitting
Regression
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Unsupervised Learning:
Clustering 
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Ecoregion Analysis of Alaska using clustering
“Representativeness-based Sampling Network Design for the State of Alaska.” Hoffman, Forrest M., Jitendra Kumar, Richard T. 
Mills, and William W. Hargrove. 2013. Landscape Ecology
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Machine Learning  

In classification – inputs belong two or more classes. 
Goal: the learner must produce a model that assigns unseen inputs to one 

(or multi-label classification) or more of these classes. Typically 
supervised learning. 

– Example –
– Spam filtering is an example of classification, where the inputs are email (or other) 

messages and the classes are "spam" and "not spam".

In regression, also typically  supervised,  the outputs are continuous rather 
than discrete.

In clustering, a set of inputs is to be divided into groups. Typically done in 
an unsupervised way (i.e., no labels, the groups are not known 
beforehand).
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Supervised learning: Big Picture

Goal: To learn an unknown target function f
Input: a training set of labeled examples (xj,yj) where yj = 

f(xj)
• E.g., xj is an image, f(xj) is the label “giraffe”
• E.g., xj is a seismic signal, f(xj) is the label “explosion”

Output: hypothesis h that is “close” to f, i.e., predicts well on 
unseen examples (“test set”)

Many possible hypothesis families for h
– Linear models, logistic regression, neural networks, support vector 

machines, decision trees, examples (nearest-neighbor), grammars, 
kernelized separators, etc etc
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Big Picture of Supervised Learning   

Learning can be seen as fitting a function to the data. We can consider 
different  target functions and therefore different hypothesis spaces. 
Examples:
Propositional if-then rules
Decision Trees
First-order if-then rules 
First-order logic  theory
Linear functions
Polynomials of  degree at most k
Neural networks 
Java programs
Turing machine
Etc

Tradeoff between expressiveness of
a hypothesis space and the 

complexity of finding simple, consistent hypotheses
within the space.

A learning problem
is realizable if its hypothesis space 

contains the true function.

Today: Decision Trees!



New York Times
April 16, 2008

Can we learn 
how counties vote?

Decision Trees:
a sequence of tests.
Representation very natural for 
humans.
Style of many “How to” manuals 
and trouble-shooting
procedures.
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Note: order of tests
matters (in general)!
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Decision tree
learning approach
can construct tree
(with test thresholds)
from example counties.
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Decision Tree Learning
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Decision Tree Learning

Input: an object or situation described by a set of attributes (or features)
Output: a “decision” – the predicts output value for the input.

The input attributes and the outputs can be discrete or continuous.

We will focus on decision trees for Boolean classification: 
each example is classified as positive or negative.

Task:
– Given: collection of examples (x, f(x))
– Return: a function h (hypothesis) that approximates f
– h is a decision tree
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Decision Tree
What is a decision tree?

A tree with two types of nodes: 

Decision nodes
Leaf nodes

Decision node: Specifies a choice or  test of 
some attribute with 2 or more alternatives;
à every decision  node is  part of a path to a 
leaf node

Leaf node: Indicates classification of an 
example
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Big Tip Example
Food  

(3) 
Chat  
(2) 

Fast  
(2) 

Price 
(3) 

Bar  
(2) 

BigTip 

great   yes       yes        normal          no       yes            
great   no        yes        normal          no       yes            
mediocre    yes       no         high        no       no             
great   yes       yes        normal          yes      yes             
 

Instance Space X: Set of all possible objects described by attributes 
(often called features). 

Target Function f: Mapping from Attributes to Target Feature  
(often called label)  (f is unknown)

Hypothesis Space H: Set of all classification rules hi we allow.

Training Data D: Set of instances labeled with Target Feature

Etc.



Decision Tree Example: “BigTip”

Food

Price

Speedy no

yes no

no

yes

great
mediocre

yuck

yes no

adequate high

Is the decision tree we learned consistent?

Yes, it agrees with all the examples!

Our data

Data: Not all 2x2x3 = 12 tuples
Also, some repeats! These are
literally “observations.”
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Learning decision trees:
Another  example (waiting at a restaurant)

Problem: decide whether to wait for a table at a restaurant. What attributes
would you use?

Attributes used by R&N
1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $$, $$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Goal predicate: WillWait?

Aside:
What about using
restaurant name?

It could be great for 
generating a small 
tree …

But it doesn’t 
generalize!



27

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous)
E.g., situations where I will/won't wait for a table:

Classification of examples is positive (T) or negative (F)

12 examples
6 +
6 -
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Decision trees
One possible representation for hypotheses
E.g., here is a tree for deciding whether to wait:
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Decision trees can express any Boolean  function. 
Goal: Finding a decision tree that agrees with training set.

We could construct a decision tree that has one path to a leaf for each example, where the path 
tests sets each attribute value to the value of the example. 

Overall Goal: get a good  classification with a small number of tests.

Decision tree learning Algorithm 

Problem: This approach would just memorize example. 
How to deal with new examples? It doesn’t generalize!

We want a compact/smallest tree.
But finding the smallest tree consistent with the examples is NP-hard!

(But sometimes hard to avoid --- e.g. parity function, 1, if an even number 
of inputs, or majority function, 1, if more than half of the inputs are 1).

What is the problem with this from a learning point of view?
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Basic DT Learning Algorithm

Goal: find a small tree consistent with the training examples

Idea: (recursively) choose "most significant" attribute as root of (sub)tree;
Use  a top-down greedy search through the space of possible decision 
trees.
Greedy because there is no backtracking. It picks highest values first.

Variations of  known algorithms ID3, C4.5 (Quinlan -86, -93)

Top-down greedy construction
– Which attribute should be tested?

• Heuristics and Statistical testing with current data
– Repeat for descendants

(ID3 Iterative Dichotomiser 3) 

“most significant”
In what sense?



Big Tip Example 

Let’s build  our decision  tree 
starting with the  attribute Food,
(3 possible values: g, m, y).

1087431

2 5 6 9

10 examples:

6+

4-

Attributes:  
•Food with values g,m,y
•Speedy? with values y,n
•Price, with values a, h



Top-Down Induction of Decision Tree:
Big Tip Example 

10 examples: 

Food
y

g
m

How many + and - examples 
per subclass, starting with y?

6+
4-

1087431

2 5 6 9

6 

1087431

2

5 9

No No

Let’s consider next 
the attribute Speedy

Speedy
y n

108731

4

2Yes Price
a h

4 2
Yes No

Node “done” 
when uniform 
label, “no
further
Uncertainty,” 
or no features 
left
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Top-Down Induction 
of DT (simplified)

TDIDF(D,cdef)

IF(all examples in D have same class c)
– Return leaf with class c (or class cdef, if D is empty)

ELSE IF(no attributes left to test)
– Return leaf with class c of majority in D

ELSE
– Pick A as the “best” decision attribute for next node
– FOR each value vi of A create a new descendent of node

•
• Subtree ti for vi is TDIDT(Di,cdef)

– RETURN tree with A as root and ti as subtrees

} v valuehas x ofA  attribute :D  y),x{(D ii
!!

Î=

)}y,x(,),y,x{(D nn11
!!

…=Training Data:

Yes
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Picking the Best Attribute to Split 

Ockham’s Razor:
– All other things being equal, choose the simplest explanation

Decision Tree Induction:
– Find the smallest tree that classifies the training data correctly

Problem
– Finding the smallest tree is computationally hard L!

Approach
– Use heuristic search (greedy search)

Key Heuristics:
– Pick attribute that maximizes information (Information Gain)

i.e. “most informative”
– Other statistical tests
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Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous)
E.g., situations where I will/won't wait for a table:

Classification of examples is positive (T) or negative (F)

12 examples
6 +
6 -
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Choosing an attribute:
Information Gain

Which one should we pick?

A perfect attribute would ideally divide the 
examples into sub-sets that are all positive or all negative…
i.e. maximum information gain.

Is this a good attribute
to split on?

Goal: trees with short paths to leaf nodes 
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Information Gain

Most useful in classification
– how to measure the ‘worth’ of an attribute information gain
– how well attribute separates examples according to their 

classification
Next

– precise definition for gain

Shannon and Weaver 49

à measure from Information Theory

One of the most successful and impactful
mathematical theories known.
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Information

“Information” answers questions. Entropy is a measure of unpredictability
of information content.

The more clueless I am about a question, the more information
the answer to the question contains. 

Example – fair coin à prior <0.5,0.5>

By definition Information of the prior (or entropy of the prior):
I(P1,P2) =  - P1 log2(P1) –P2 log2(P2) = 
I(0.5,0.5) = -0.5 log2(0.5) – 0.5 log2(0.5) = 1

We need 1 bit to convey the outcome of the flip of a fair coin.

Does a biased coin have more or less information? Why? 

Scale: 1 bit = answer to Boolean question with prior <0.5, 0.5>

log2
E[-log2(P(x))]
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Information
(or Entropy)

Information in an answer  given possible answers v1, v2, … vn:

Example – biased coin à prior <1/100,99/100>

I(1/100,99/100) = -1/100 log2(1/100) –99/100 log2(99/100) 
= 0.08 bits (so not much information gained from “answer.”)

Example – fully biased coin à prior <1,0>

I(1,0) = -1 log2(1) – 0 log2(0) = 0 bits

0 log2(0)  =0
i.e., no uncertainty left in source!

(Also called entropy of the prior.)
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Shape of Entropy Function

Roll of an unbiased die

The more uniform the probability distribution, 
the greater is its entropy.

0

1

0 1/2 1 p
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Information or 
Entropy

Information or Entropy measures the “randomness” of an arbitrary collection of 
examples.

We don’t have exact probabilities but our training data provides an estimate of the 
probabilities of positive vs. negative examples given a set of values for the 
attributes.
For a collection S,  entropy is given as:

For a collection S having positive and negative examples

p - # positive examples;
n - # negative examples
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Attribute-based representations
Examples described by attribute values (Boolean, discrete, continuous)
E.g., situations where I will/won't wait for a table:

Classification of examples is positive (T) or negative (F)

12 examples
6 +
6 -

p = n = 6; I(0.5,0.5) = -0.5 log2(0.5) –0.5 log2(0.5) = 1

So, we need 1 bit of info to classify a randomly picked example,
assuming no other information is given about the example. (Makes sense!)

What’s the entropy
of this collection of 
examples?
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Choosing an attribute:
Information Gain

Intuition: Pick the attribute that reduces the entropy (the uncertainty) the 
most.

So we measure the information gain after testing a given attribute A:

Remainder(A) à gives us the remaining uncertainty
after getting info on attribute A.
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Choosing an attribute:
Information Gain

Remainder(A) 

à gives us the amount information we still need after testing on A.

Assume A divides the training set E into E1, E2, … Ev, corresponding to 
the different v distinct values of A.

Each subset Ei has pi positive examples and ni negative examples.

So for total information content, we need to weigh the contributions of the 
different subclasses induced by A

Weight (relative size) of each subclass
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Choosing an attribute:
Information Gain

Measures the expected reduction in entropy. The higher the Information Gain (IG), 
or just Gain, with respect to an attribute A , the more is the expected reduction in 
entropy.

where Values(A) is the set of all possible values for attribute A,
Sv is the subset of S for which attribute A has value v.

Weight of each subclass
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Interpretations of gain

Gain(S,A)
– expected reduction in entropy caused by knowing A
– information provided about the target function value given the 

value of A
– number of bits saved in the coding a member of S knowing the 

value of A

Used in ID3 (Iterative Dichotomiser 3) Ross Quinlan
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Information gain

For the training set, p = n = 6, I(6/12, 6/12) = 1 bit

Consider the attributes Type and Patrons:

Patrons has the highest IG of all attributes and so is chosen by the 
DTL algorithm as the root.

Info gain?

0.541 bits
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Example contd.

Decision tree learned from the 12 examples:

Substantially simpler than “true” tree ---
but a more complex hypothesis isn’t justified
from just the data.

“personal  R&N Tree”
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Expressiveness of Decision Trees

Any particular decision tree hypothesis for WillWait goal predicate can  be 
seen as a disjunction of a conjunction of tests, i.e., an assertion of the form:

"s  WillWait(s) « (P1(s) Ú P2(s) Ú … Ú Pn(s))

Where each condition Pi(s) is a conjunction of tests corresponding 
to the path from the root of the tree to a leaf with a positive outcome.
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Expressiveness

Decision trees can express any Boolean  function of the input attributes.
E.g., for Boolean functions, truth table row → path to leaf:
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Expressiveness:
Boolean Function with 2 attributes à DTs        

A

B B

F FT F

T F

T FTF

A

B B

T FTF

T F

T FTF

A

B B

T FT T

T F

T FTF

A

B B

T TF T

T F

T FTF

A

B B

F FT T

T F

T FTF

A

B B

F TF T

T F

T FTF

A

B B

F TF F

T F

T FTF

A

B B

T TF F

T F

T FTF

AND OR XOR A

NAND NOR XNOR NOT A

222
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Expressiveness:
2 attribute à DTs        

A

B F

T F

T F

T F

A

B B

T FTF

T F

T FTF

A

B

T F

T
T F

FT

A

B T

F T

T F

T F

A

FT
T F

A

B B

F TF T

T F

T FTF

A

B

F T

F
T F

FT

A

TF
T F

AND OR XOR

NAND NOR

A

XNOR NOT A

222
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A

B B

F FF T

T F

T FTF

A

B B

T FT F

T F

T FTF

A

B B

T FF F

T F

T FTF

A

B B

T TT F

T F

T FTF

A

B B

F TF T

T F

T FTF

A

B B

T TT T

T F

T FTF

A

B B

F TT T

T F

T FTF

A

B B

F FF F

T F

T FTF

A AND-NOT B NOT A AND B B

A OR NOT B NOR A OR B

TRUE

FALSE
NOT B

Expressiveness:
2 attribute à DTs        222
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A

B F

F T

T F

T F

A

B

T F

F
T F

FT

A

B T

T F

T F

T F

T

A

B

F T

T
T F

FT

F

A AND-NOT B NOT A AND B B

A OR NOT B NOR A OR B

TRUE

FALSE
NOT B

Expressiveness:
2 attribute à DTs        222

B

FT
T F

B

TF
T F
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Number of Distinct Decision Trees

How many distinct decision trees with 10 Boolean attributes?
= number of Boolean functions with 10 propositional symbols

Input features Output

0 0 0 0 0 0 0 0 0 0 0/1
0 0 0 0 0 0 0 0 0 1 0/1
0 0 0 0 0 0 0 0 1 0 0/1
0 0 0 0 0 0 0 1 0 0 0/1
…
1 1 1 1 1 1 1 1 1 1 0/1

How many entries does this table have?

210

So how many Boolean functions
with 10 Boolean attributes are there,

given that each entry can be 0/1?

= 2210
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes?
= number of Boolean functions

= number of distinct truth tables with 2n rows 

With 6 Boolean attributes, there are 18,446,744,073,709,551,616 
possible trees!

= 22n

Googles calculator could not handle 10 attributes J!

E.g. how many Boolean functions on 6 attributes? A lot…
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Evaluation Methodology
General for Machine Learning
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Evaluation Methodology

Standard methodology (“Holdout Cross-Validation”):
1. Collect a large set of examples.
2. Randomly divide collection into two disjoint sets:  training set and test set.
3. Apply learning algorithm to training set generating hypothesis h
4. Measure performance of h w.r.t. test set (a form of cross-validation)
à measures generalization to unseen data 

Important: keep the training and test sets disjoint! “No peeking”!
Note: The first two questions about any learning result: Can you describe
your training and your test set? What’s your error on the test set?

How to evaluate the quality of a learning algorithm, i.e.,:
How good are  the hypotheses produce by the learning algorithm? 
How good are they at classifying unseen examples?
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Test/Training Split

Real-world Process

(x1,y1), …, (xn,yn) Learner (x1,y1),…(xk,yk)
Training Data Dtrain Test Data Dtest

split randomly split randomly

hDtrain

Data D

drawn randomly

Also validation set for meta-parametres.  
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Measuring Prediction Performance
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Performance Measures

Error Rate
– Fraction (or percentage) of false predictions

Accuracy
– Fraction (or percentage) of correct predictions

Precision/Recall
Example: binary classification problems (classes pos/neg)
– Precision: Fraction (or percentage) of correct predictions among all 

examples predicted to be positive
– Recall: Fraction (or percentage) of correct predictions among all 

real positive examples
(Can be generalized  to multi-class case.)
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Extensions of the 
Decision Tree Learning Algorithm

Noisy data 
Overfitting and Model Selection
Cross Validation
Missing Data (R&N, Section 18.3.6)
Using gain ratios (R&N, Section 18.3.6)
Real-valued data (R&N, Section 18.3.6)
Generation of rules and pruning
DT Ensembles 
Regression DT
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How well does it work?

Many case studies have shown that decision trees are at least as accurate 
as human experts. 

– A study for diagnosing breast cancer had humans correctly 
classifying the examples 65% of the time, and the decision 
tree classified 72% correct.

– British Petroleum designed a decision tree for gas-oil 
separation for offshore oil platforms that  replaced an 
earlier  rule-based expert system.

– Cessna designed an airplane flight controller using 90,000 
examples and 20 attributes per example.



Bird Distributions 
Machine Learning and Citizen Science

Adaptive	  Spatio-‐Temporal	  	  	  
Machine	  Learning	  

Models	  and	  Algorithms
(STEM	  Models)

Relate  environmental predictors  to  
observed  patterns  of  occurrences  

and  absences

Land	  Cover

Weather

Remote	  Sensing

En
vi
ro
nm
en
ta
l  D
at
a

Patterns	  of	  occurrence	  of	  the	  Tree	  Swallow	  for	  different	  
months	  of	  the	  year	  Source	  :	  Daniel	  Fink

80,000+  
CPU  Hours

(~  10    Years!!!)

Bird  Observations
State of the Birds Report

(officially released by Secretary of Interior) 

Bird	  Distribution	  Models,	  	  Revealing,	  at	  a	  fine	  resolution,	  	  Species’	  Habitat	  Preferences

Novel  Approaches  
To  Conservation

Based  on  eBird Models
300K+
volunteer	  
birders

300M+
bird	  

observations

22M+
hours	  of	  field	  work	  
(2500+years) Distribution  

Models  for    
400+  species  with  
weekly    estimates  
at    fine  spatial  
resolution
(3km2)

Boosted	  Regression	  DT	  Ensemble	  
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Summary:
When to use Decision Trees

Instances presented as attribute-value pairs
Method of approximating discrete-valued functions

Target function has discrete values: classification problems

Robust to noisy data:
Training data may contain 
– errors
– missing attribute values

Typical bias: prefer smaller trees (Ockham's razor )

Widely used, practical and easy to interpret results
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Inducing decision trees is one of the most widely used learning methods in 
practice 

Can outperform human experts in many problems 
Strengths include

– Fast
– simple to implement
– human readable
– can convert result to a set of easily interpretable rules
– empirically valid in many commercial products
– handles noisy data

Weaknesses include:
– "Univariate" splits/partitioning using only one attribute at a time so limits 

types of possible trees
– large decision trees may be hard to understand
– requires fixed-length feature vectors
– non-incremental (i.e., batch method)

Can be a legal requirement! Why?


