CS 4700: Foundations of Artificial Intelligence

1

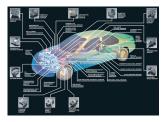
Prof. Bart Selman selman@cs.cornell.edu

Machine Learning: Decision Trees R&N 18.3

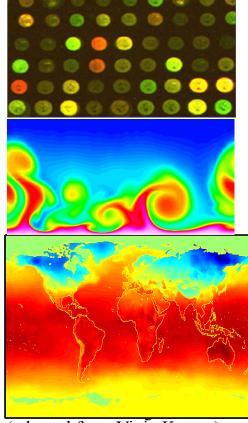
Big Data: Sensors Everywhere

Data collected and stored at enormous speeds (GB/hour)

Cars Cellphones Remote Controls Traffic lights, ATM machines Appliances Motion sensors Surveillance cameras etc etc



Big Data: Scientific Domains



(adapted from Vipin Kumar)

Data collected and stored at enormous speeds (GB/hour)

- remote sensors on a satellite
- telescopes scanning the skies
- microarrays generating gene expression data
- scientific simulations generating terabytes of data

Traditional statistical techniques infeasible to deal with the data TUSNAMI – they don't scale up!!!

→ Machine Learning Techniques

Machine Learning Tasks

Prediction Methods

Use some variables to predict unknown or future values of other variables.

Description Methods

- Find human-interpretable patterns that describe the data.

Machine Learning Tasks

Supervised learning:

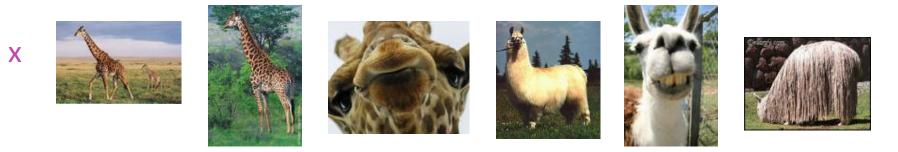
We are given a set of examples with the correct answer - classification and regression

Unsupervised learning: "just make sense of the data"

Example: Supervised Learning object recognition Classification

llama

Example: Supervised Learning object recognition Classification



f(x) giraffe giraffe giraffe llama llama llama Target Functior X= f(x)=?

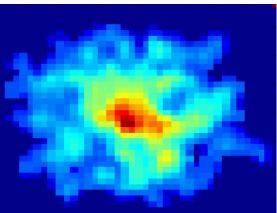
Classifying Galaxies

Courtesy: http://aps.umn.edu

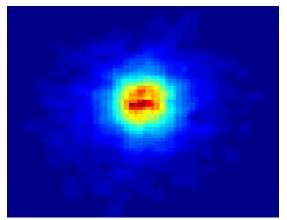
Attributes:

- Image features,
- Characteristics of light waves received, etc.

Late



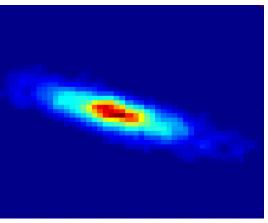
Early



Class:

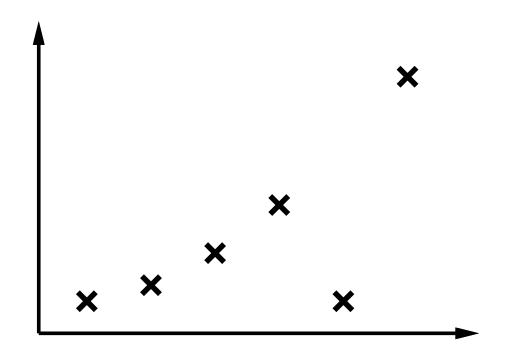
• Stages of Formation

Intermediate

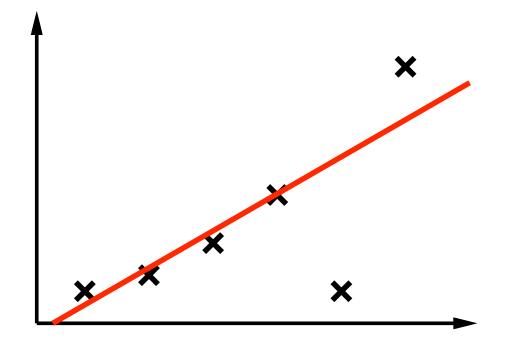


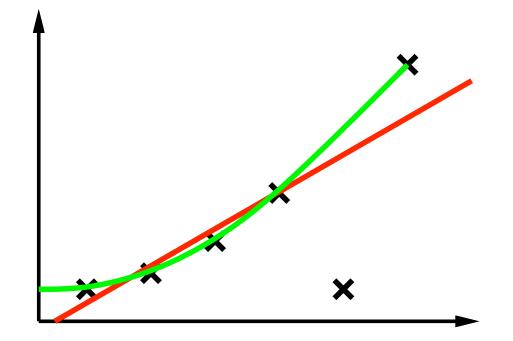
Data Size:

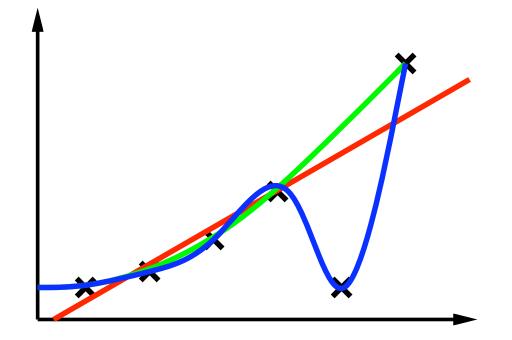
- 72 million stars, 20 million galaxies
- Object Catalog: 9 GB
- Image Database: 150 GB

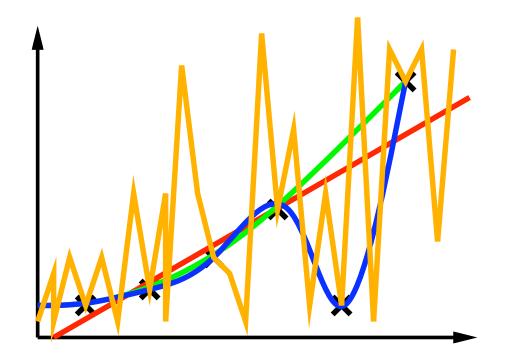


9



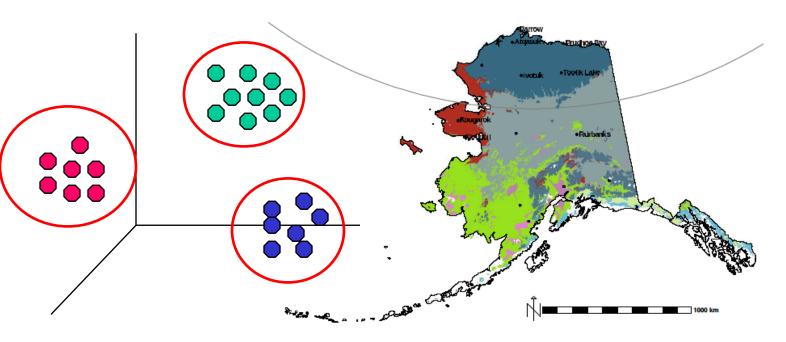






Unsupervised Learning: Clustering

10 Alaska Ecoregions (2000–2009)



Each ecoregion is a different random color. Blue filled circles mark locations most representative of mean conditions of each region.

Ecoregion Analysis of Alaska using clustering

"Representativeness-based Sampling Network Design for the State of Alaska." Hoffman, Forrest M., Jitendra Kumar, Richard T. Mills, and William W. Hargrove. 2013. Landscape Ecology 14

Machine Learning

In classification – inputs belong two or more classes.

- Goal: the learner must produce a model that assigns unseen inputs to one (or multi-label classification) or more of these classes. Typically supervised learning.
 - Example –
 - Spam filtering is an example of classification, where the inputs are email (or other) messages and the classes are "spam" and "not spam".
- In regression, also typically supervised, the outputs are continuous rather than discrete.
- In clustering, a set of inputs is to be divided into groups. Typically done in an unsupervised way (i.e., no labels, the groups are not known beforehand).

Supervised learning: Big Picture

Goal: To learn an unknown *target function* **f**

Input: a *training set* of *labeled examples* (x_j, y_j) where $y_j = f(x_j)$

- E.g., x_j is an image, $f(x_j)$ is the label "giraffe"
- E.g., x_j is a seismic signal, $f(x_j)$ is the label "explosion"

Output: *hypothesis* h that is "close" to f, i.e., predicts well on unseen examples ("*test set*")

Many possible hypothesis families for h

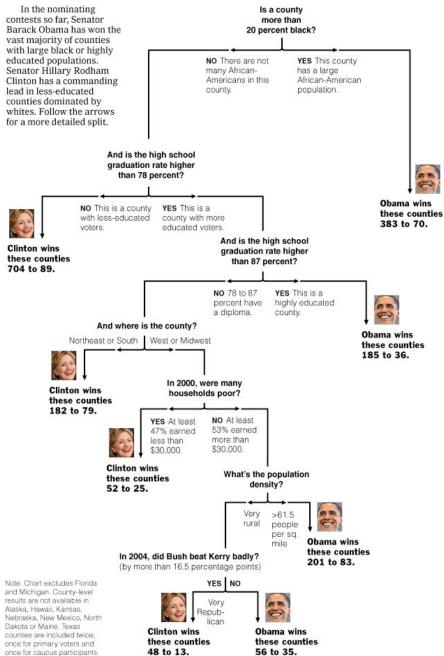
 Linear models, logistic regression, neural networks, support vector machines, decision trees, examples (nearest-neighbor), grammars, kernelized separators, etc etc

Today: Decision Trees! Big Picture of Supervised Learning

Learning can be seen as fitting a function to the data. We can consider different target functions and therefore different hypothesis spaces. Examples: Propositional if-then rules A learning problem **Decision** Trees is realizable if its hypothesis space First-order if-then rules contains the true function. First-order logic theory Linear functions Polynomials of degree at most k Neural networks Tradeoff between expressiveness of a hypothesis space and the Java programs complexity of finding simple, consistent hypotheses Turing machine within the space. Etc

Can we learn how counties vote?

Decision Tree: The Obama-Clinton Divide



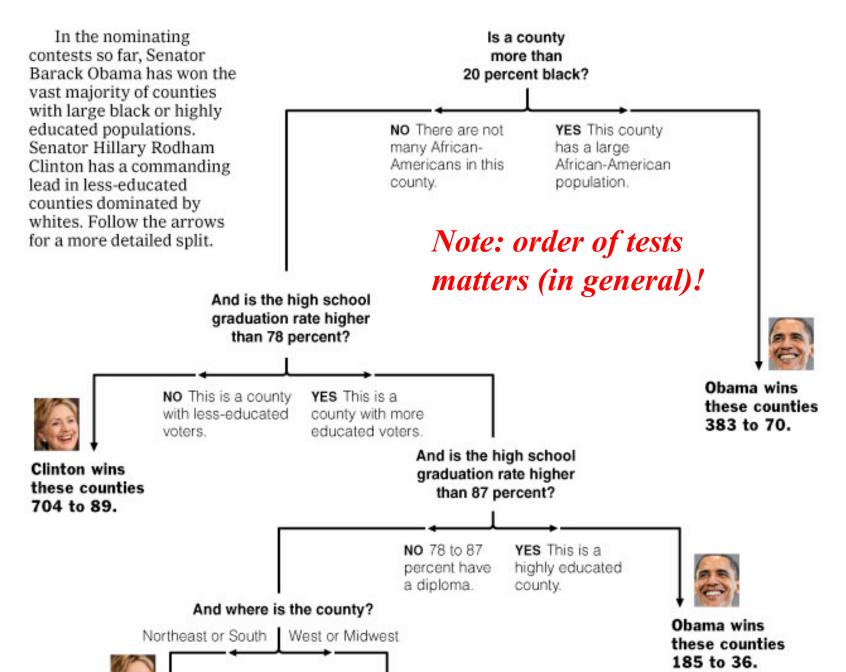
New York Times April 16, 2008

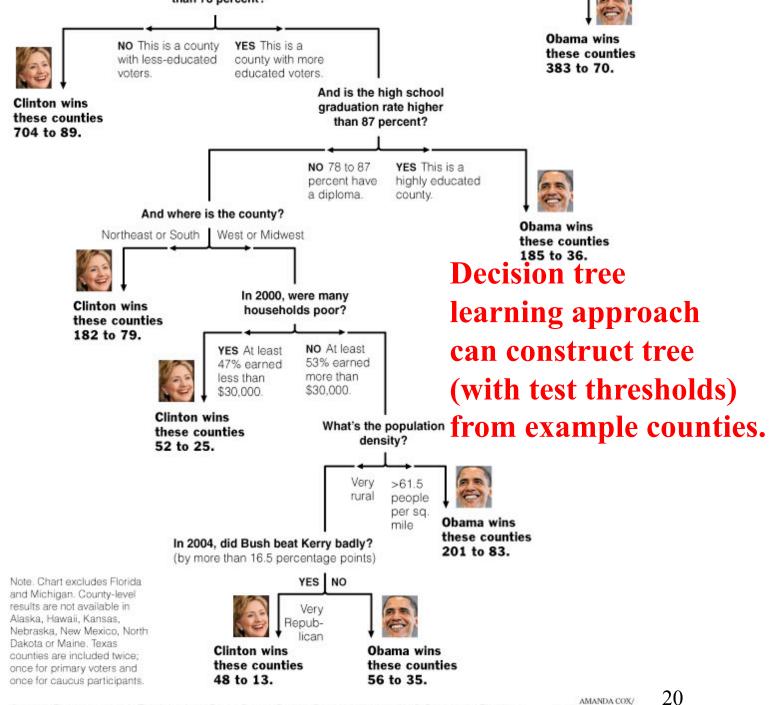
Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Sources: Election results via The Associated Press; Census Bureau; Dave Leip's Atlas of U.S. Presidential Elections

AMANDA COX/ THE NEW YORK TIMES

Decision Tree: The Obama-Clinton Divide





Sources: Election results via The Associated Press; Census Bureau; Dave Leip's Atlas of U.S. Presidential Elections

Decision Tree Learning

Decision Tree Learning

Task:

- Given: collection of examples (x, f(x))
- Return: a function h (*hypothesis*) that approximates f
- -h is a decision tree

Input: an object or situation described by a set of attributes (or features) **Output:** a "decision" – the predicts output value for the input.

The input attributes and the outputs can be discrete or continuous.

We will focus on decision trees for Boolean classification: each example is classified as positive or negative.

Decision Tree

What is a decision tree?

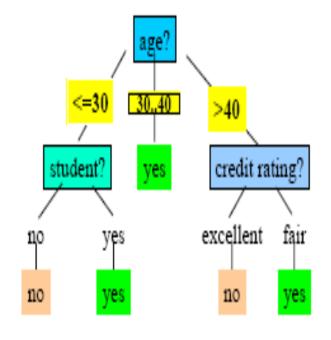
A tree with two types of nodes:

Decision nodes Leaf nodes

Decision node: Specifies a choice or test of some attribute with 2 or more alternatives; → every decision node is part of a path to a leaf node

Leaf node: Indicates classification of an example

 Decision Tree example (is a customer going to buy a computer or not):



Big Tip Example

Food (3)	Chat (2)	Fast (2)	Price (3)	Bar (2)	BigTip	
great	yes	yes	normal	no	yes	
great great	no	yes	normal	no	yes	Etc.
mediocre	yes	no	high	no	no	LIC.
great	yes	yes	normal	yes	yes	

Instance Space X: Set of all possible objects described by attributes (often called features).

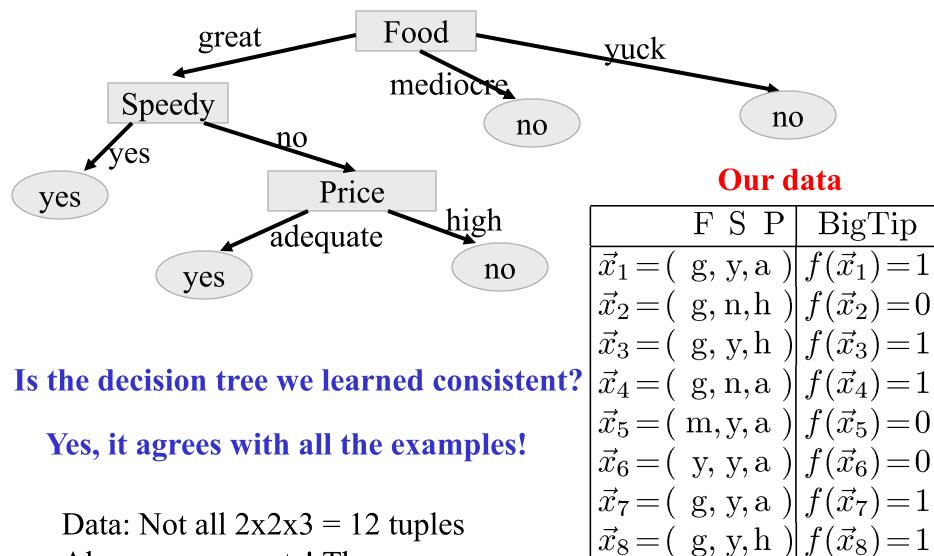
Target Function f: Mapping from Attributes to Target Feature (often called label) (f is unknown)

Hypothesis Space H: Set of all classification rules h_i we allow.
Training Data D: Set of instances labeled with Target Feature

Decision Tree Example: "BigTip"

 $\vec{x}_9 = (m, y, a) | f(\vec{x}_9) = 0$

 $|\vec{x}_{10} = (g, y, a)|f(\vec{x}_{10}) = 1$



Also, some repeats! These are literally "observations."

Learning decision trees: Another example (waiting at a restaurant)

Problem: decide whether to wait for a table at a restaurant. What attributes would you use?

Attributes used by R&N

- 1. Alternate: is there an alternative restaurant nearby?
- 2. Bar: is there a comfortable bar area to wait in?
- 3. Fri/Sat: is today Friday or Saturday?
- 4. Hungry: are we hungry?
- 5. Patrons: number of people in the restaurant (None, Some, Full)
- 6. Price: price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- 8. Reservation: have we made a reservation?
- 9. Type: kind of restaurant (French, Italian, Thai, Burger)
- 10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Goal predicate: WillWait?

Aside: What about using restaurant name? It could be great for generating a small tree ... But it doesn't

generalize!

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous)

E.g.			Attributor									
U	Example	Attributes										Target
		Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
	X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
	X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
	X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
	X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
	X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
	X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
	X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
	X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
	X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
	X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
	X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
	X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

12 examples

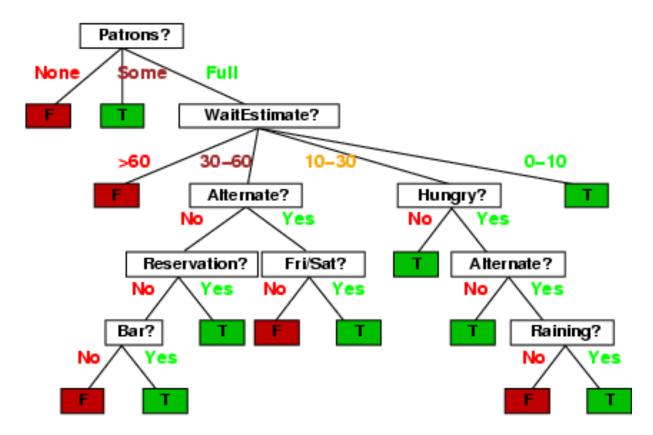
6 +

6 -

Classification of examples is positive (T) or negative (F)

Decision trees

One possible representation for hypotheses E.g., here is a tree for deciding whether to wait:



Decision tree learning Algorithm

Decision trees can express any Boolean function.

Goal: Finding a decision tree that agrees with training set.

We could construct a decision tree that has one path to a leaf for each example, where the path tests sets each attribute value to the value of the example.

What is the problem with this from a learning point of view?

Problem: This approach would just memorize example. How to deal with new examples? It doesn't generalize!

(But sometimes hard to avoid --- e.g. parity function, 1, if an even number of inputs, or majority function, 1, if more than half of the inputs are 1).

Overall Goal: get a good classification with a small number of tests.

We want a compact/smallest tree. But finding the smallest tree consistent with the examples is NP-hard!

"most significant" In what sense?

Basic DT Learning Algorithm

Goal: find a *small* **tree consistent with the training examples**

Idea: (recursively) choose "most significant" attribute as root of (sub)tree; Use a top-down greedy search through the space of possible decision trees.

Greedy because there is no backtracking. It picks highest values first.

Variations of known algorithms ID3, C4.5 (Quinlan -86, -93)

Top-down greedy construction

- Which attribute should be tested?

(ID3 Iterative Dichotomiser 3)

- Heuristics and Statistical testing with current data
- Repeat for descendants

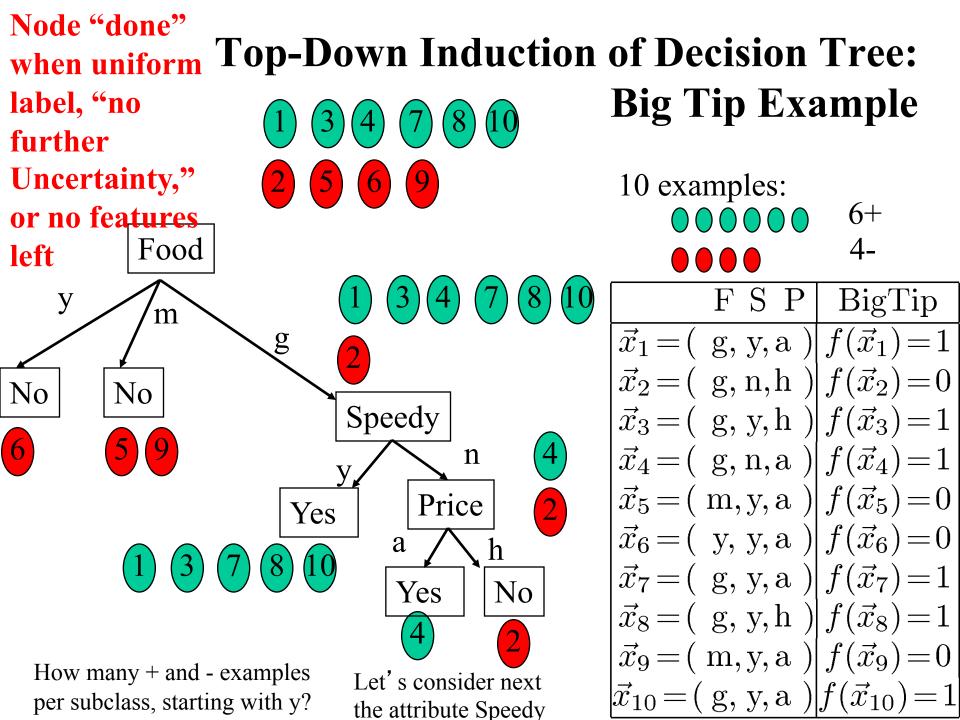
Big Tip Example

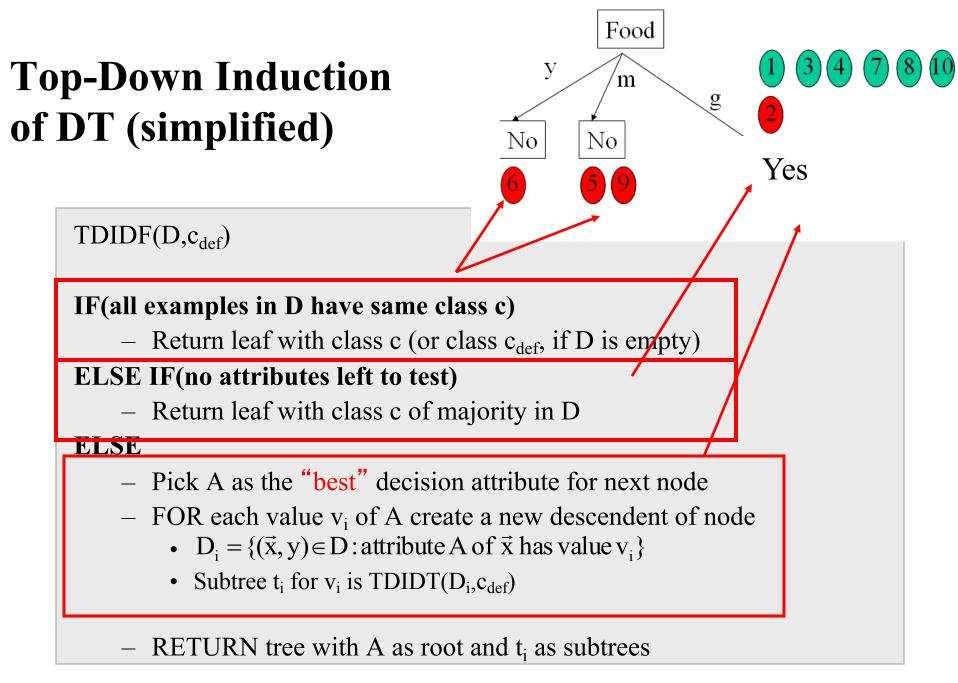
10 examples:

Attributes:

- •Food with values g,m,y
- •Speedy? with values y,n
- •Price, with values a, h

Let's build our decision tree starting with the attribute Food, (3 possible values: g, m, y).





Training Data:
$$D = \{(\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)\}$$

Picking the Best Attribute to Split

Ockham's Razor:

All other things being equal, choose the simplest explanation
Decision Tree Induction:

Find the smallest tree that classifies the training data correctly
Problem

Finding the smallest tree is computationally hard ⁽²⁾
Approach

- Use heuristic search (greedy search)

Key Heuristics:

- Pick attribute that *maximizes information (Information Gain)*
 - i.e. "most informative"
- Other statistical tests

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous)

E.g.		Attributes										Target
C	Example											
		Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
	X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
	X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
	X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
	X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
	X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
	X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
	X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
	X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
	X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
	X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
	X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
	X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

12 examples

6 +

6 -

Classification of examples is positive (T) or negative (F)

Choosing an attribute: Information Gain

Goal: trees with short paths to leaf nodes

Is this a good attribute Whi to split on?

Which one should we pick?

A perfect attribute would ideally divide the examples into sub-sets that are all positive or all negative... i.e. maximum information gain.

Information Gain

Most useful in classification

- how to measure the 'worth' of an attribute *information gain*
- how well attribute separates examples according to their classification

Next

- precise definition for gain

 \rightarrow measure from Information Theory

Shannon and Weaver 49

One of the most successful and impactful mathematical theories known.

Information

"Information" answers questions. Entropy is a measure of *unpredictability* of *information content*.

The more clueless I am about a question, the more information the **answer** to the question contains.

Example – fair coin \rightarrow prior <0.5,0.5> $E[-log_2(P(x))]$

By definition Information of the prior (or entropy of the prior) $I(P1,P2) = -P1 \log_2(P1) -P2 \log_2(P2) =$ $I(0.5,0.5) = -0.5 \log_2(0.5) - 0.5 \log_2(0.5) = 1$

Scale: 1 bit = answer to Boolean question with prior <0.5, 0.5>

Does a biased coin have more or less information? Why?

 \log_2

Information (or Entropy)

Information in an answer given possible answers $v_1, v_2, \dots v_n$:

 $I(P(v_1), ..., P(v_n)) = \sum_{i=1}^n -P(v_i) \ log_2(P(v_i))$

 $-v_1, \ldots, v_n$ possible answers $-P(v_i)$ probability of answer v_i

(Also called entropy of the prior.)

Example – biased coin \rightarrow prior <1/100,99/100>

 $I(1/100,99/100) = -1/100 \log_2(1/100) -99/100 \log_2(99/100)$ = 0.08 bits (so not much information gained from "answer.")

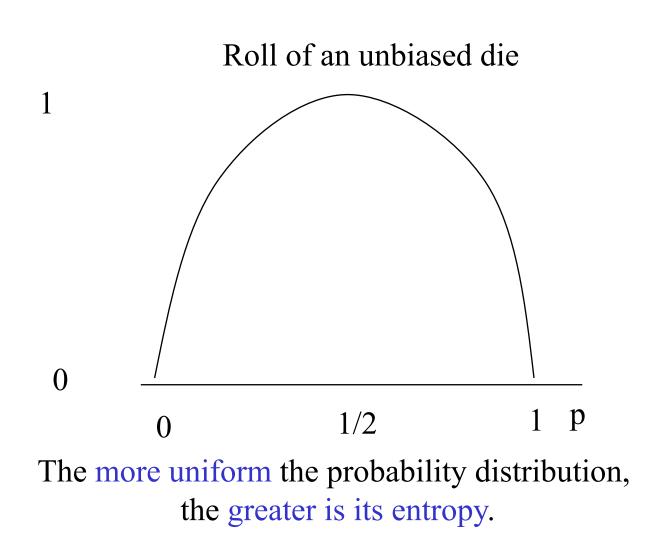
Example – fully biased coin \rightarrow prior <1,0>

 $I(1,0) = -1 \log_2(1) - 0 \log_2(0) = 0$ bits

 $0 \log_2(0) = 0$

i.e., no uncertainty left in source!

Shape of Entropy Function



$$I(P(v_1), ..., P(v_n)) = \sum_{i=1}^n -P(v_i) \ log_2(P(v_i))$$

Information or Entropy

Information or Entropy measures the "randomness" of an arbitrary collection of examples.

We don't have exact probabilities but our training **data provides an estimate of the probabilities of positive vs. negative examples given a set of values for the attributes.**

For a collection S, entropy is given as:

$$I(\frac{p}{p+n}, \frac{n}{p+n}) = -\frac{p}{p+n} \log_2(\frac{p}{p+n}) - \frac{n}{p+n} \log_2(\frac{n}{p+n})$$

For a collection S having positive and negative examples

- p # positive examples;
- n # negative examples

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous) E.g., situations where I will/won't wait for a table:

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	ltalian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

12 examples 6 + 6 -

What's the entropy of this collection of examples?

Classification of examples is positive (T) or negative (F)

$$p = n = 6$$
; $I(0.5, 0.5) = -0.5 \log 2(0.5) - 0.5 \log 2(0.5) = 1$

So, we need 1 bit of info to classify a randomly picked example, assuming no other information is given about the example. (Makes sense!)

Choosing an attribute: Information Gain

Intuition: Pick the attribute that reduces the entropy (the uncertainty) the most.

So we measure the information gain after testing a given attribute A:

$$Gain(A) = I(\frac{p}{p+n}, \frac{n}{p+n}) - Remainder(A)$$

Remainder(A) \rightarrow gives us the remaining uncertainty after getting info on attribute A.

Choosing an attribute: Information Gain

Remainder(A)

\rightarrow gives us the amount information we still need after testing on A.

Assume A divides the training set E into $E_1, E_2, \dots E_v$, corresponding to the different v distinct values of A.

Each subset E_i has p_i positive examples and n_i negative examples.

So for total information content, we need to weigh the contributions of the different subclasses induced by A

Weight (relative size) of each subclass

Remainder(A) =
$$\sum_{i=1}^{v} \frac{p_i + n_i}{p_i + n} I(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

Choosing an attribute: Information Gain

Measures the expected reduction in entropy. The higher the Information Gain (IG), or just Gain, with respect to an attribute A, the more is the expected reduction in entropy.

$$Gain(S,A) = Entropy(S) - \sum_{v \in Values(A)} \left| \frac{|S_v|}{|S|} Entropy(S_v) \right|$$

where Values(A) is the set of all possible values for attribute A, S_v is the subset of S for which attribute A has value v.

Interpretations of gain

Gain(S,A)

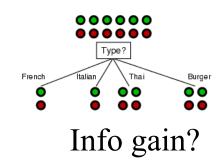
- expected reduction in entropy caused by knowing A
- information provided about the target function value given the value of A
- number of bits saved in the coding a member of S knowing the value of A

Used in ID3 (Iterative Dichotomiser 3) Ross Quinlan

Information gain

For the training set, p = n = 6, I(6/12, 6/12) = 1 bit

Consider the attributes *Type* and *Patrons*:



Patrons?

Full

Some

0000

None

• •

$$IG(Type) = 1 - \left[\frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4})\right] = 0 \text{ bits}$$

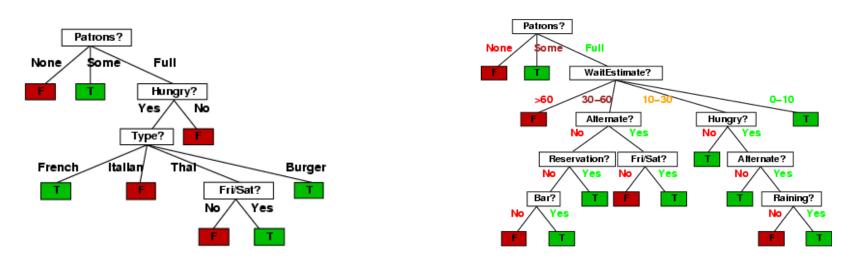
$$IG(Patrons) = 1 - [\frac{2}{12}I(0,1) + \frac{4}{12}I(1,0) + \frac{6}{12}I(\frac{2}{6},\frac{4}{6})] = 0.541$$
 bits

Patrons has the highest IG of all attributes and so is chosen by the DTL algorithm as the root.

Example contd.

Decision tree learned from the 12 examples:

"personal R&N Tree"



Substantially simpler than "true" tree ---but a more complex hypothesis isn't justified from just the data.

Expressiveness of Decision Trees

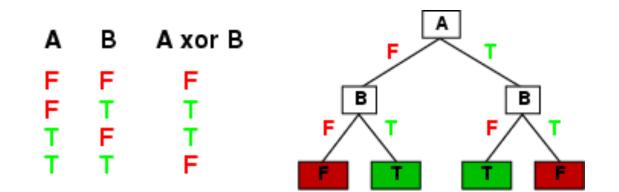
Any particular decision tree hypothesis for WillWait goal predicate can be seen as a disjunction of a conjunction of tests, i.e., an assertion of the form:

 $\forall s \text{ WillWait}(s) \Leftrightarrow (P1(s) \lor P2(s) \lor ... \lor Pn(s))$

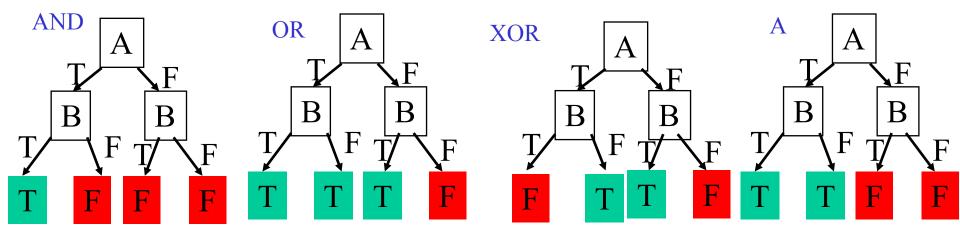
Where each condition Pi(s) is a **conjunction of tests** corresponding to the path from the root of the tree to a leaf with a positive outcome.

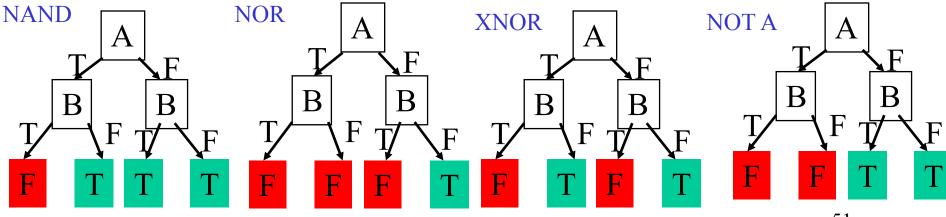
Expressiveness

Decision trees can express any Boolean function of the input attributes. E.g., for Boolean functions, truth table row \rightarrow path to leaf:



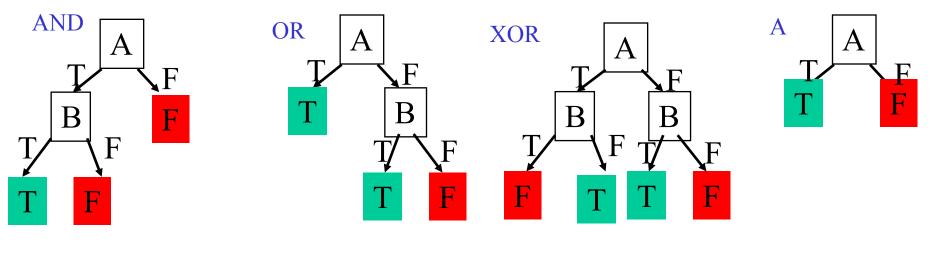
Expressiveness: Boolean Function with 2 attributes $\rightarrow 2^{2^2}$ **DTs**

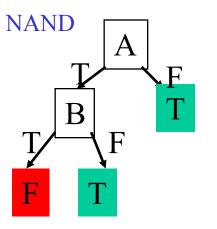


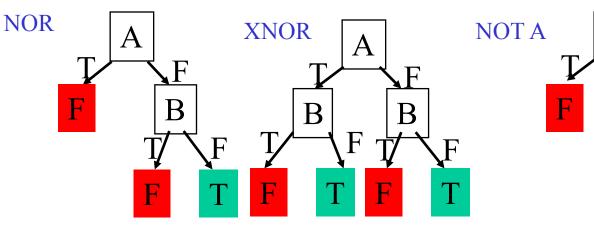


51

Expressiveness: 2 attribute $\rightarrow 2^{2^2}$ DTs



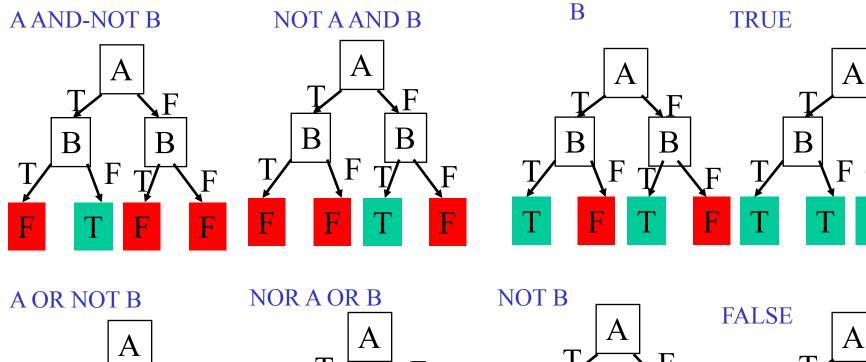


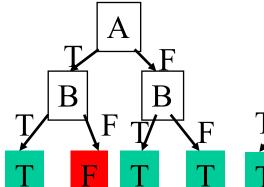


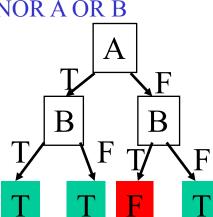
A

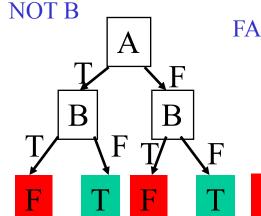
F

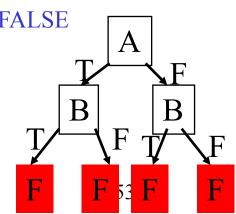
Expressiveness: 2 attribute $\rightarrow 2^{2^2}$ **DTs**











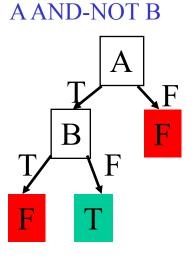
F

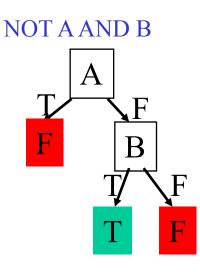
Β

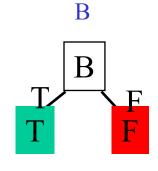
F

Т

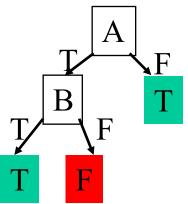
Expressiveness: 2 attribute $\rightarrow 2^{2^2}$ DTs

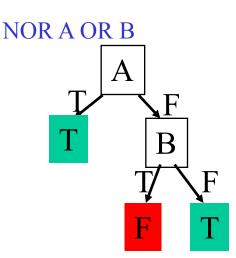


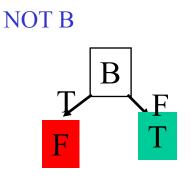




TRUE







Number of Distinct Decision Trees

How many distinct decision trees with 10 Boolean attributes? = number of Boolean functions with 10 propositional symbols

0/1

111111111

So how many Boolean functions with 10 Boolean attributes are there, given that each entry can be 0/1?

Hypothesis spaces

How many distinct decision trees with *n* Boolean attributes? = number of Boolean functions

- = number of distinct truth tables with 2^n rows = 2^{2^n}
- E.g. how many Boolean functions on 6 attributes? A lot...
- With 6 Boolean attributes, there are 18,446,744,073,709,551,616 possible trees!

Googles calculator could not handle 10 attributes ③!

Evaluation Methodology General for Machine Learning

Evaluation Methodology

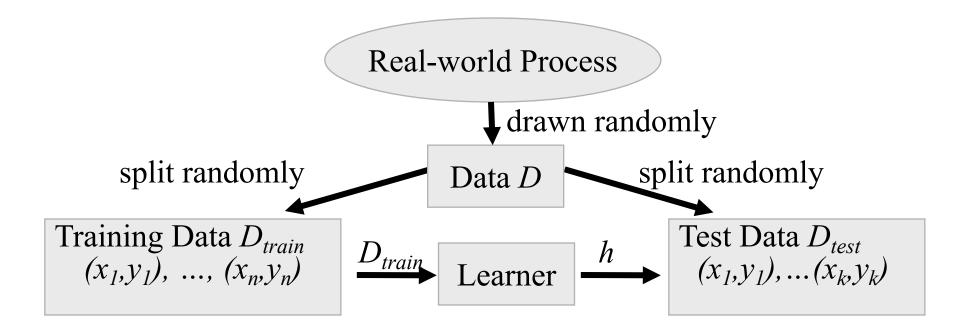
How to evaluate the quality of a learning algorithm, i.e.,: **How good are the hypotheses produce by the learning algorithm? How good are they at classifying unseen examples?**

Standard methodology ("Holdout Cross-Validation"):

- 1. Collect a large set of examples.
- 2. Randomly divide collection into two disjoint sets: training set and test set.
- 3. Apply learning algorithm to training set generating hypothesis *h*
- 4. Measure performance of *h* w.r.t. test set (a form of cross-validation)
 - \rightarrow measures generalization to unseen data

Important: keep the training and test sets disjoint! "No peeking"! Note: The first two questions about any learning result: Can you describe your training and your test set? What's your error on the test set?

Test/Training Split



Also validation set for meta-parametres.

Measuring Prediction Performance

Definition: The training error $Err_{D_{train}}(h)$ on training data $D_{train} = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n))$ of a hypothesis h is $Err_{D_{train}}(h) = \frac{1}{n} \sum_{i=1}^{n} \Delta(h(\vec{x}_i), y_i).$

Definition: The test error $Err_{D_{test}}(h)$ on test data $D_{test} = ((\vec{x}_1, y_1), ..., (\vec{x}_k, y_k))$ of a hypothesis h is $Err_{D_{test}}(h) = \frac{1}{k} \sum_{i=1}^{k} \Delta(h(\vec{x}_i), y_i).$

Definition: The prediction/generalization/true error $Err_P(h)$ of a hypothesis h for a learning task P(X,Y) is

$$Err_P(h) = \sum_{\vec{x} \in X, y \in Y} \Delta(h(\vec{x}), y) P(X = \vec{x}, Y = y).$$

Definition: The zero/one-loss function $\Delta(a, b)$ returns 1 if $a \neq b$ and 0 otherwise.

Performance Measures

Error Rate

- Fraction (or percentage) of false predictions

Accuracy

- Fraction (or percentage) of correct predictions

Precision/Recall

Example: binary classification problems (classes pos/neg)

- Precision: Fraction (or percentage) of correct predictions among all examples predicted to be positive
- Recall: Fraction (or percentage) of correct predictions among all real positive examples

(Can be generalized to multi-class case.)

Extensions of the Decision Tree Learning Algorithm

Noisy data Overfitting and Model Selection Cross Validation Missing Data (R&N, Section 18.3.6) Using gain ratios (R&N, Section 18.3.6) Real-valued data (R&N, Section 18.3.6) Generation of rules and pruning DT Ensembles Regression DT

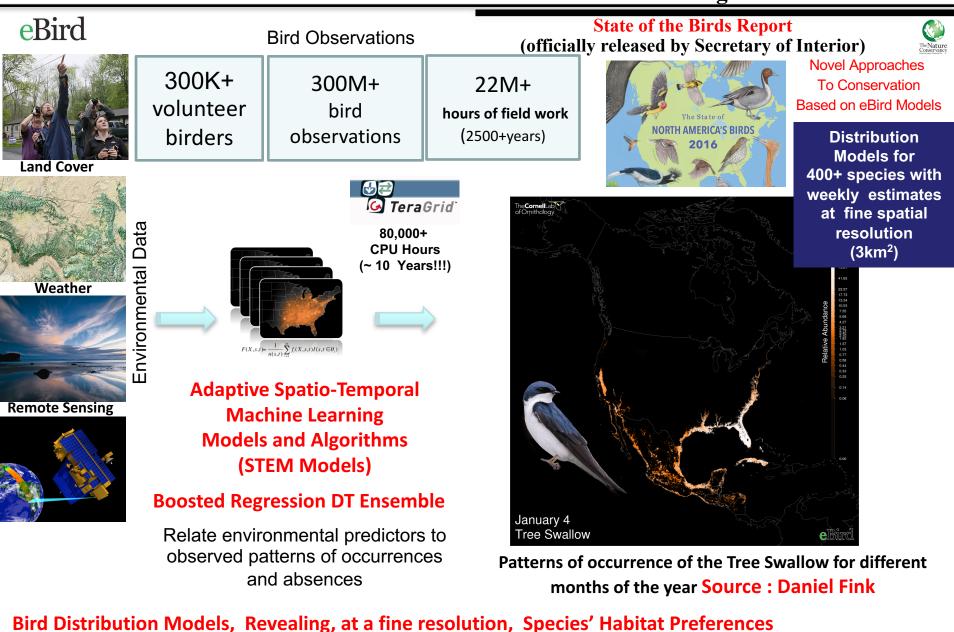
How well does it work?

Many case studies have shown that decision trees are at least as accurate as human experts.

- A study for diagnosing breast cancer had humans correctly classifying the examples 65% of the time, and the decision tree classified 72% correct.
- British Petroleum designed a decision tree for gas-oil separation for offshore oil platforms that replaced an earlier rule-based expert system.
- Cessna designed an airplane flight controller using 90,000 examples and 20 attributes per example.

Bird Distributions

Machine Learning and Citizen Science



Summary: When to use Decision Trees

Instances presented as attribute-value pairs Method of approximating discrete-valued functions Target function has discrete values: classification problems

Robust to noisy data:

Training data may contain

- errors

– missing attribute values

Typical bias: prefer smaller trees (Ockham's razor)

Widely used, practical and easy to interpret results

Inducing decision trees is one of the most widely used learning methods in practice

Can outperform human experts in many problems

Strengths include

- Fast
- simple to implement
- human readable
- can convert result to a set of easily interpretable rules
- empirically valid in many commercial products
- handles noisy data

Weaknesses include:

- "Univariate" splits/partitioning using only one attribute at a time so limits types of possible trees
- large decision trees may be hard to understand
- requires fixed-length feature vectors
- non-incremental (i.e., batch method)

Can be a legal requirement! Why?