CS 4700:
Foundations of Artificial Intelligence

Bart Selman

Logical Agents ---
Intro Knowledge Representation
& Boolean Satisfiability (SAT) encodings

R&N: Chapter 7

A Model-Based Agent

o1+ |

~ | What the workd
How the world evolves

. N What it will be like
What my actions do if | do action A

, What action |

Knowledge and Reasoning

Knowledge and Reasoning:
humans are very good at acquiring new information by
combining raw knowledge, experience with reasoning.
Al-slogan: “Knowledge is power” (or “Data is power”?)

Examples:

Medical diagnosis --- physician diagnosing a patient
infers what disease, based on the knowledge he/she
acquired as a student, textbooks, prior cases

Common sense knowledge / reasoning ---
common everyday assumptions / inferences. e.g.,

(1) “lecture starts at four” infer pm not am;
(2) when traveling, I assume there is some way to get
from the airport to the hotel. 3

Logical agents:
Agents with some representation of the
complex knowledge about the world / its environment,
and uses inference to derive new information from that
knowledge combined with new inputs (e.g. via perception).

Key issues:
1- Representation of knowledge
What form? Meaning / semantics?

2- Reasoning and inference processes
Efficiency.

Knowledge-base Agents

Key 1ssues:
— Representation of knowledge = knowledge base

— Reasoning processes = inference/reasoning

Knowledge base = set of sentences in a formal languageg
representing facts about the world (*)

(*) called Knowledge Representation (KR) language

Knowledge Representation language candidate:
logical language (propositional / first-order)
combined with a logical inference mechanism

Why not use natural language (e.g. English)?

We want clear syntax & semantics (well-defined
meaning), and, mechanism to infer new information.
Soln.: Use a formal language.

More Concrete: Propositional Logic

Syntax: build sentences from atomic propositions, using
connectives A, V, 0, =, &,

(and / or / not / implies / equivalence (biconditional))

Eg: (wP)V(QAR)) =S

Note: You have seen propositional logic in other courses.
Make sure you review!

Semantics

P Q -P PAQ [PvQ | P=Q | P=Q
False | False | True False | False | True True
False | True True False | True True False
True False | False | False | True False | False
True True False | True True True True

Note: = somewhat counterintuitive.
What’s the truth value of “5 is even implies Sam is smart”?

True!

1PVAQ

True
True

False

True

Boolean Satistiability (SAT

Propositional Satisfiability problem

Satifiability (SAT): Given a formula in propositional calculus, is there a model

(i.e., a satisfying interpretation, an assignment to its variables) making it true?

We consider clausal form, e.g.:
(av —bv —Cc)AND (bv —c)AND(avc)

2” possible assignments

Note: Any propositional logic expression can be
rewritten in clausal form.

SAT: prototypical hard combinatorial search and reasoning problem.
Problem is NP-Complete. (Cook 1971)
Surprising “power” of SAT for encoding computational problems
Modern SAT Solvers use this language. 10

SAT Encodings

We’ll use clausal form to encode our task specific
knowledge in such way that a satistfying assignment to
the Boolean variables represents a solution the the task
under consideration.

A broad range of (Al) reasoning tasks can be encoded

this way. E.g., planning, scheduling, diagnosis, and
verification.

11

SAT Solvers

Modern Satisfiability (SAT) solvers operating on the clausal form
are surprisingly *much® more efficient than other logic-based approaches
(e.g., pure resolution that will be discussed later)

The SAT solvers treat the set of clauses as a set of constraints
(disjunctions) on Boolean variables. Current solvers are very
powerful. Can handle 1 Million+ variables and several
millions of clauses.

Systematic: Davis Putnam (DPLL) + series of improvements
Stochastic local search: WalkSAT (issue?)

12

Satisfiability
as an Encoding Language

13

. SAT Translation of
Variables
NxK vars

Ci,k node i has color k Graph COIOrmg
Total # colors: K. Total # nodes: N.

At least one of K colors per node i :

(C|,1 V CI,2 V C|’3 V..V CI,K)

At most one color per node i :
(“Cixv~Ci) forallk=/=K

Note: Translation from
“problem” into SAT.

. . . Reverse of usual
If node i and node j (=/=i) share an edge, (anslation to show

need to have different colors: NP-completeness.
(NCi,l \ NC')I) forall 1<=1<=K Works also for (easy)

polytime problems!

15

SAT Solvers in the Real World

NASA Deep Space One Spacecraft:
Remote Agent

 Remote Agent (remote intelligent self-
repair software) (RAX), developed at
NASA and JPL, was the first artificial-
intelligence control system to control
a spacecraft without human
supervision.

 Remote Agent successfully
demonstrated the ability to plan
onboard activities and correctly
diagnose and respond to faults in
spacecraft components through its
built-in REPL environment

NASA Deep Space One: Remote
Agent

e Autonomous diaghosis & repair “Remote
Agent”

e Compiled systems schematic to 7,000 var
SAT problem

~ m A-
5T W BT N
BSY w
T s L ek B T
- bR o FEA T Gy i
o Sy e el e
OXXO ORXD
RO O IR0 oL .
" () RL AT
i a1 e 3
MEA T
EAA

ot As cLus

, read |
5 R SN B ST
4 E]@ -

Paunch: October 15th, 1998 1 |
.- Experiment: May 17-21

1
H
H
H
I
I

o
o
skt

Deep Space One

e 3 failed electronics unit

— Remote Agent fixed by reactivating the unit.

e afailed sensor providing false information
— Remote Agent recognized as unreliable and therefore correctly ignored.

e an altitude control thruster (a small engine for controlling the
spacecraft's orientation) stuck in the "off" position

— Remote Agent detected and compensated for by switching to a mode that
did not rely on that thruster.

Significant progress in
Satisfiability Methods

Software and hardware verification — Applications:
complete methods are critical - e.g. for
verifying the correctness of chip design, using
SAT encodings

Hardware and
Software Verification
Planning,

Protocol Design, etc.

Going from 50 variable in, 200 constraints
to 1,000,000+ variables and 5,000,000+ constraints
in the last 20 years

19

Progress in Last 25 years

* Significant progress since the 1990’s. How much?
* Problem size: We went from 100 variables, 200 constraints (early 90’s)
to 1,000,000+ variables and 5,000,000+ constraints in 20 years

* Search space: from 10730 to 10~300,000.
[Aside: “one can encode quite a bit in 1M variables.”]

* |s this just Moore’s Law? It helped, but not much...
— 2x faster computers does not mean can solve 2x larger instances

— search difficulty does *not* scale linearly with problem size!

In fact, for O(2”~n), 2x faster, how many more vars?
handles 1 more variable!!

Mainly algorithmic progress. Memory growth also key.

* Tools: 50+ competitive SAT solvers available (e.g. Minisat solver)

* See http://www.satcompetition.org/

Model Checking

21

Turing Award

2008 Turing Award Winners Announced

Posted by ScuttleMonkey on Monday February 04, @05:30PM
from the nobel-of-computing-awards dept.

The Association for Computing Machinery has announced the 2008 Turing
Award Winners. Edmund M. Clarke, Allen Emerson, and Joseph Sifakis @a
'
Z N

received the award for their work on an automated method for finding design
errors in computer hardware and software.

“Model Checking is a type of "formal verification” that analyzes the logic
underlying a design, much as a mathematician uses a proof to determine that
a theorem is correct. Far from hit or miss, Model Checking considers every possible state
of a hardware or software design and determines if it is consistent with the designer's
specifications. Clarke and Emerson originated the idea of Model Checking at Harvard in
1981. They developed a theoretical technique for determining whether an abstract model of
a hardware or software design satisfies a formal specification, given as a formula in
Temporal Logic, a notation for describing possible sequences of events. Moareover, when
the system fails the specification, it could identify a counterexample to show the source of

the problem. Numerous model checking systems have been implemented, such as Spin at
Bell Labs."

Source: Slashdot

A “real world” example

From “SATLIE":
http:/ /www.satlib.org/benchm.html

SAT-encoded bounded model checking instances
(contributed by Ofer Shtrichman)

In Bounded Model Checking (BMC) [BCCZ89],
a rather newly introduced problem in formal
methods, the task is to check whether a given
el M {typically a hard jesign) satist:

temporal property P in all paths with length less
or equal to some bound k. The BMC problem
can be efficiently reduced to a propositional
satisfiability problem, and in fact if the property
is in the form of an invariant {Invariants are the
most common type of properties, and many other
temporal properties can be reduced to their form.
It has the form of 'it is always true that ... '},
it has a structure which is similar to many Al 73
planning problems.

Bounded Model Checking instance:

The instance bme—-ibm-6.cenf, IBM LSU 1997:

p onf 51639 368352
—-170

~160 i.e. ((notx;) or x7)

:i i‘? a and ((not x;) or xg)
130 and ... etc.
120

~1-80

—9150

—9140

—9130

—9—-120

—9110

—9100

—9 160

—17 230

—17 220

10 pages later:

185 —90

185 -10

177 169 161 153 145 137 129 121 113 105 97
89 81 73 65 57 49 41

33251791 1850

186 —187 0

186 —188 0 \

(X477 Or X469 OF X461 OF X453 ...
or X7 Or Xy or X, or (not x,g5))

clauses / constraints are getting more interesting...

4000 pages later:

1!

a 59-cnf
clause...

10236 —10050 0

10236 —10051 0

10236 —10235 0

10008 10009 10010 10011 10012 10013 10014
10015 10016 10017 10018 10019 10020 10021
10022 10023 10024 10025 10026 10027 10023
10029 10030 10031 10032 10033 10034 10035
10036 10037 10086 10037 10083 10089 10090
10098 10099 10100 10101 10102 10103 10104
10105 10106 10107 10108 —55 —54 53 —52 —51 50
10047 10048 10049 10050 10051 10235 —10236 0

10237 —10008 0

10237 —10009 0

10237 —10010 0

26

Finally, 15,000 pages later:

—7 2600

7 —260 0

1072 1070 0

—15 —-14 —-13 -12 —-11 -100
—15—-14 -13-12-1110 0
—15 —-14 —-13 1211 —-10 0
—15—-14 -13 -121110 0
—7—6-5—-4-3-20
—7—6-5-4-320
—7—6-5-43-20
—7—6-5—-4320

185 0

Note that: 2°%%°0 =~ 3.160699437 - 10'°%°1

MiniSAT solver solves
this instance in less than one minute.

