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Module: Knowledge, Reasoning, and Planning
Part 2

Logical Agents
R&N: Chapter 7
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Illustrative example: Wumpus World

Performance measure
– gold +1000, 
– death -1000 
(falling into a pit or being eaten by the wumpus)
– -1 per step, -10 for using the arrow

Environment
– Rooms / squares connected by doors. 
– Squares adjacent to wumpus are smelly
– Squares adjacent to pit are breezy
– Glitter iff gold is in the same square
– Shooting kills wumpus if you are facing it
– Shooting uses up the only arrow
– Grabbing picks up gold if in same square
– Releasing drops the gold in same square
– Randomly generated at start of game. Wumpus only senses current room.

Sensors: Stench, Breeze, Glitter, Bump, Scream   [perceptual inputs]
Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

(Somewhat whimsical!)
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Wumpus world characterization

Fully Observable    No – only local perception

Deterministic Yes – outcomes exactly specified

Static Yes – Wumpus and Pits do not move

Discrete Yes

Single-agent? Yes – Wumpus is essentially a “natural feature.”
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Exploring a wumpus world

Stench, Breeze, Glitter, Bump, Scream

None, none, none, none, none

The knowledge base of the agent 
consists of the rules of the 
Wumpus world plus the percept
“nothing” in [1,1]

Boolean percept
feature values:
<0, 0, 0, 0, 0>
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Stench, Breeze, Glitter, Bump, Scream

None, none, none, none, none
T=0 The KB of the agent consists of 
the rules of the Wumpus world plus
the percept “nothing” in [1,1].
By inference, the agent’s knowledge 
base also has the information that
[1,2] and [2,1] are okay.
Added as propositions.

World “known” to agent
at time = 0.
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Further exploration

Stench, Breeze, Glitter, Bump, Scream

@ T = 1 What follows?
Pit(2,2) or Pit(3,1)

None, none, none, none, none

V

A – agent
V – visited
B - breeze

A/B P?

P?

None, breeze, none, none, none

Where next?

T = 0
T = 1
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S

Where is Wumpus?

Wumpus cannot be in (1,1) or  in (2,2) (Why?)è Wumpus in (1,3)
Not breeze in (1,2) è no pit in (2,2); but we know there is 
pit in (2,2) or (3,1) è pit in (3,1)

P?

P?
1       2      3       4

1

2

3

4

Stench, none, none, none, none

P

W

PS

T=3

Stench, Breeze, Glitter, Bump, Scream
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P

W

P

We reasoned about the possible states 
the Wumpus world can be in, given our 
percepts and our knowledge of the rules 
of the Wumpus world. 
I.e., the content of KB at T=3.

Essence of logical reasoning: 
Given all we know, Pit_in_(3,1) holds.

(“The world cannot be different.”)

What follows is what holds true in all those worlds that 
satisfy what is known at that time T=3 about the 
particular Wumpus world we are in. 

Models(KB)        Models(P_in_(3,1))

Example property: P_in_(3,1)
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Formally: Entailment

Situation after detecting nothing in [1,1], 
moving right, breeze in [2,1]. I.e. T=1.

Consider possible models for KB with respect to 
the cells (1,2),  (2,2) and (3,1), with respect to 
the existence or non existence of  pits 

3 Boolean choices Þ
8 possible interpretations 
(enumerate all the models or
“possible worlds” wrt Pit location)

Knowledge Base (KB) in the Wumpus World à
Rules of the wumpus world + new percepts

T = 1
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KB = Wumpus-world rules + observations  (T=1)

Is KB consistent with all
8 possible worlds? Worlds

that violate KB
(are inconsistent
with what we
know)

Q: Why does world             violate KB?               
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Entailment in Wumpus World

KB = Wumpus-world rules + observations
α1 = "[1,2] has no pit", KB ╞ α1

– In every model in which KB is true, α1 is True (proved by 
“model checking”)

Models of the KB and α1 

So, KB defines
all worlds that
we hold possible.
Queries: we want to know the properties of those worlds.
That’s how the semantics of logical entailment is defined.

Note: \alpha_1
holds in more 
models than KB.
That’s OK, but we 
don’t care about
those worlds.
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Wumpus models
KB = wumpus-world rules + observations
α2 = "[2,2] has no pit", this is only True in some 
of the models for which KB is True, therefore  KB ╞ α2

Model Checking
Models of α2 

A model of KB where   does NOT hold!  α2
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Entailment via
“Model Checking”

Inference by Model checking –
We enumerate all the KB models and check if α1 and α2 are 
True in all the models (which implies that we can only use it 
when we have a finite number of models).

I.e. using semantics directly.

Models(KB)        Models(  )
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Example redux: More formal

Stench, Breeze, Glitter, Bump, Scream
None, none, none, none, none

V

A – agent
V – visited
B - breeze

A/B P?

P?

None, breeze, none, none, none

How do we actually encode background
knowledge and percepts in formal language?
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Wumpus World KB
Define propositions:
Let Pi,j be true if there is a pit in [i, j].
Let Bi,j be true if there is a breeze in [i, j].

Sentence 1 (R1): ¬ P1,1        

Sentence 2 (R2):    ¬ B1,1
Sentence 3 (R3): B2,1

"Pits cause breezes in adjacent squares”
Sentence 4 (R4): B1,1  Û (P1,2 Ú P2,1)
Sentence 5 (R5): B2,1  Û (P1,1 Ú P2,2 Ú P3,1)
etc.

Notes: (1) one such statement about Breeze for each square.
(2) similar statements about Wumpus, and stench

and Gold and glitter. (Need more propositional
letters.)

[Given.]
[Observation T = 0.]
[Observation T = 1.]
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What about Time? What about Actions?
Is Time represented? 

No!
Can include time in propositions:

Explicit time    Pi,j,t Bi,j,t Li,j,t etc.
Many more props: O(TN2) (Li,j,t for agent at (i,j) at time t)

Now, we can also model actions, use props: Move(i, j, k, l ,t)
E.g.  Move(1, 1, 2, 1, 0)

What knowledge axiom(s) capture(s) the effect of an Agent 
move?

Is this it? 
What about i, j, k, and l?
What about Agent location at time t?
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Improved:

For all tuples (i, j, k, l) that represent legitimate possible moves.
E.g.  (1, 1, 2, 1)  or (1, 1, 1, 2)

Still, some remaining subtleties when representing time and
actions. What happens to propositions at time t+1 compared to at
time t, that are *not* involved in any action?
E.g. P(1, 3, 3) is derived at some point. 

What about P(1, 3, 4), True or False? 
R&N suggests having P as an “atemporal var” since it cannot change over     
time. Nevertheless, we have many other vars that can change over time, 
called “fluents”.

Values of propositions not involved in any action should not 
change! “The Frame Problem” / Frame Axioms  R&N 7.7.1

Move implies a change in the world state;
a change in the world state, implies a move occurred!
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Successor-State Axioms

Axiom schema:
F is a fluent (prop. that can change over time)

For example:

i.e. L_1,1 was “as before” with [no movement action or bump into wall]
or resulted from some action (movement into L_1,1).
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Some example inferences
Section 7.7.1 R&N

Actions and inputs up to time 6
Note: includes turns!

Define “OK”:

In milliseconds, with modern SAT solver.
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Alternative formulation: Situation Calculus
R&N 10.4.2

No explicit time. Actions are what changes the world
from “situation” to “situation”. More elegant, but 
still need frame axioms to capture what stays the same.
Inherent with many representation formalisms: “physical”
persistance does not come for free! (and probably shouldn’t)
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Inference by enumeration / “model checking”
Style I

The goal of logical inference is to decide whether KB╞ α, for some a.
For example, given  the rules of the Wumpus World, is P22
entailed? Relevant propositional symbols:

R1: ¬ P1,1
R2: ¬B1,1
R3: B2,1

"Pits cause breezes in adjacent squares"
R4: B1,1  Û (P1,2 Ú P2,1)
R5: B2,1  Û (P1,1 Ú P2,2 Ú P3,1)

Inference by enumeration. We have 7 relevant symbols 
Therefore 27  = 128 interpretations. 
Need to check if P22 is true in all of the KB models
(interpretations that satisfy KB sentences).

Q.: KB has many more symbols. Why can we restrict ourselves
to these symbols here? But, be careful, typically we can’t!!

Models(KB)        Models( P22 )
?
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All equivalent
Prop. / FO Logic

deduction thm. R&N 7.5

by defn. / semantic proofs / truth tables
“model checking” /enumeration
(style I, R&N 7.4.4)

soundness and completeness
logical deduction / symbol pushing
proof by inference rules (style II)
e.g. modus ponens (R&N 7.5.1)

entailment

Proof by contradiction
use CNF / clausal form
Resolution   (style III, R&N 7.5)
SAT solvers (style IV, R&N 7.6)

most effective



23

Proof techniques

by defn. / semantic proofs / truth tables
“model checking” 
(style I, R&N 7.4.4)  Done.

soundness and completeness
logical deduction / symbol pushing
proof by inference rules (style II)
e.g. modus ponens (R&N 7.5.1)

Proof by contradiction
use CNF / clausal form
Resolution   (style III, R&N 7.5)
SAT solvers (style IV, R&N 7.6)

most effective
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Aside

Standard syntax and semantics for propositional
logic. (CS-2800; see 7.4.1 and 7.4.2.)

Syntax:
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Semantics

Note: Truth value of a sentence is built from its 
parts “compositional semantics”
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Logical equivalences

(*)

(*)  key to go to clausal (Conjunctive Normal Form)
Implication for “humans”; clauses for machines.
de Morgan laws also very useful in going to clausal form.
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Style II: Proof by inference rules
Modus Ponens  (MP)

P?

P?

Wumpus world
at T = 1

V A/B

KB at T = 1:
R1: ¬P1,1

R2:  ¬B1,1

R3: B2,1

R4: B1,1  Û (P1,2 Ú P2,1)
R5: B2,1  Û (P1,1 Ú P2,2 Ú P3,1)

Note: In formal proof,
every step needs to be
justified.
So, we used R2 and R4.
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Length of Proofs
Why bother with inference rules? We could always use a truth table 
to check the validity of a conclusion from a set of premises.

But, resulting proof can be much shorter than truth table method.

Consider KB:
p_1,  p_1 ® p_2,  p_2 ® p_3, …, p_(n-1) ® p_n

To prove conclusion: p_n

Inference rules:                           Truth table:   n-1 MP steps 2n

Key open question: Is there always a short proof for any valid
conclusion? Probably not. The NP vs. co-NP question.
(The closely related: P vs. NP question carries a $1M prize.)
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Style III: Resolution

P?

P?

Wumpus world
at T = 1

V A/B

First, we need a conversion to Conjunctive
Normal Form (CNF) or Clausal Form.

Let’s consider converting R4 in clausal form:
R4:  B1,1  Û (P1,2 Ú P2,1)

We have:
B1,1 ) (P1,2 Ç P2,1)

which gives (implication elimination):
(: B1,1 Ç P

1,2
Ç P2,1)

Also
(P1,2 Ú P2,1) ) B1,1 

which gives:
(: (P1,2 Ç P2,1) Ç B1,1) 

Thus,
(: P1,2 Æ : P2,1) Ç B1,1

leaving,
(: P1,2 Ç B1,1 ) 
(: P2,1 Ç B1,1 ) 

(note: clauses in red)
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Another example
resolution proof
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Length of ProofsConsider KB:
p_1,  p_1 ® p_2,  p_2 ® p_3, …, p_(n-1) ® p_n

To prove conclusion: p_n

Inference rules:                           Truth table:   n resolution steps 2n

Resolution. Assert  (¬ p_n)
with (¬ p_(n-1) ∨ p_n) gives (¬ p_(n-1))
with (¬ p_(n-2) ∨ p_(n-1) gives (¬ p_(n-2))
…
with (¬ p_1) ∨ p_2) gives (¬ p_1)
with (p_1) gives empty clause (contradiction).
QED
Note how resolution mimics Modus Ponens steps.

So, efficient on these proofs!
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BUT…
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SAT SOLVERS CAN
BE VIEWED AS DOING A
SPECIAL
FORM OF RESOLUTION
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DPLL improvements

1) Component analysis (disjoint sets of constraints? Problem 
decomposition?)

2) Clever variable and value ordering (e.g. degree heuristics)
3) Intelligent backtracking and clause learning (conflict learning)
4) Random restarts (heavy tails in search spaces…)
5) Clever data structures

Backtracking + …

1+ Million Boolean vars & 10+ Million clause/constraints
are feasible nowadays. (e.g. Minisat solver)

Has changed the world of verification (hardware/software)
over the last decade (incl. Turing award for Clarke).
Widely used in industry, Intel, Microsoft, IBM etc.
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All equivalent
Prop. / FO Logic

deduction thm. R&N 7.5

by defn. / semantic proofs / truth tables
“model checking” /enumeration
(style I, R&N 7.4.4)

soundness and completeness
logical deduction / symbol pushing
proof by inference rules (style II)
e.g. modus ponens (R&N 7.5.1)

entailment

Proof by contradiction
use CNF / clausal form
Resolution   (style III, R&N 7.5)
SAT solvers (style IV, R&N 7.6)

most effective

ENDS LOGIC PART


