CS 4700: Foundations of Artificial Intelligence

Bart Selman
selman@cs.cornell.edu

Module: Knowledge, Reasoning, and Planning Part 2

Logical Agents
R\&N: Chapter 7

Illustrative example: Wumpus World

Performance measure

- gold +1000,
- death -1000
(falling into a pit or being eaten by the wumpus) ${ }^{4}$
- -1 per step, $\mathbf{- 1 0}$ for using the arrow

Environment

- Rooms / squares connected by doors.
- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Randomly generated at start of game. Wumpus only senses current room. Sensors: Stench, Breeze, Glitter, Bump, Scream [perceptual inputs] Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus world characterization

Fully Observable No - only local perception

Deterministic \quad Yes - outcomes exactly specified

Static Yes - Wumpus and Pits do not move

Discrete Yes

Single-agent? Yes - Wumpus is essentially a "natural feature."

Exploring a wumpus world

The knowledge base of the agent consists of the rules of the Wumpus world plus the percept "nothing" in [1,1]

None, none, none, none, none

> Boolean percept feature values:
> $<0,0,0,0,0>$

Stench, Breeze, Glitter, Bump, Scream

World "known" to agent at time $=0$.

None, none, none, none, none

Stench, Breeze, Glitter, Bump, Scream

$T=0$ The KB of the agent consists of the rules of the Wumpus world plus the percept "nothing" in [1,1].
By inference, the agent's knowledge base also has the information that [1,2] and [2,1] are okay.
Added as propositions.

Further exploration

$$
\mathrm{T}=0
$$

None, none, none, none, none

None, breeze, none, none, none
A- agent
V - visited
B - breeze
A- agent
V - visited
B - breeze
A- agent
V - visited
B - breeze

Stench, Breeze, Glitter, Bump, Scream
(a) T=1 What follows?
$\operatorname{Pit}(\mathbf{2 , 2})$ or $\operatorname{Pit}(\mathbf{3 , 1})$
$T=3$

Stench, none, none, none, none
Stench, Breeze, Glitter, Bump, Scream

Where is Wumpus?

Wumpus cannot be in $(1,1)$ or in $(2,2)($ Why? $) \rightarrow$ Wumpus in $(1,3)$ Not breeze in $(1,2) \rightarrow$ no pit in $(2,2)$; but we know there is pit in $(2,2)$ or $(3,1) \rightarrow$ pit in $(3,1)$

We reasoned about the possible states

 the Wumpus world can be in, given our percepts and our knowledge of the rules of the Wumpus world. I.e., the content of $K B$ at $T=3$.

What follows is what holds true in all those worlds that satisfy what is known at that time $T=3$ about the particular Wumpus world we are in.

Example property: P_in_(3,1)

$$
\operatorname{Models}(\mathrm{KB}) \subseteq \operatorname{Models}\left(\mathbf{P}_{-} \mathrm{in} _(\mathbf{3 , 1})\right)
$$

Essence of logical reasoning:
Given all we know, Pit_in_(3,1) holds.
("The world cannot be different.")

Formally: Entailment

Knowledge Base (KB) in the Wumpus World \rightarrow Rules of the wumpus world + new percepts

Situation after detecting nothing in [1,1], moving right, breeze in $[2,1]$. I.e. $\mathbf{T}=1$.

$$
\mathrm{T}=1
$$ the existence or non existence of pits

3 Boolean choices \Rightarrow

8 possible interpretations (enumerate all the models or "possible worlds" wrt Pit location)

Is KB consistent with all

8 possible worlds?

$K B=$ Wumpus-world rules + observations $(T=1)$

Q : Why does world $\square \square$ violate KB ?

Entailment in Wumpus World

 all worlds that we hold possible.Queries: we want to know the properties of those worlds. That's how the semantics of logical entailment is defined.

Models of the KB and $\alpha 1$

Note: \alpha_1 holds in more models than KB. That's OK, but we don't care about those worlds.
$K B=$ Wumpus-world rules + observations
$\alpha_{1}=$ " $[1,2]$ has no pit", $K B=\alpha_{1}$

- In every model in which KB is true, α_{1} is True (proved by ${ }_{11}$ "model checking")
$K B=$ wumpus-world rules + observations
$\alpha 2=$ " $[2,2]$ has no pit", this is only True in some of the models for which KB is True, therefore KB $\neq \alpha 2$

Entailment via
 "Model Checking"

Inference by Model checking -

We enumerate all the KB models and check if α_{1} and α_{2} are True in all the models (which implies that we can only use it when we have a finite number of models).
I.e. using semantics directly.

Models $(\mathbf{K B}) \subseteq \operatorname{Models}(\alpha)$

$K B \models \alpha$

Example redux: More formal

None, none, none, none, none
Stench, Breeze, Glitter, Bump, Scream

None, breeze, none, none, none A-agent
V - visited
B - breeze

How do we actually encode background knowledge and percepts in formal language?

Wumpus World KB

Define propositions:
Let $P_{i, j}$ be true if there is a pit in [i, $\left.j\right]$.
Let $B_{i, j}$ be true if there is a breeze in $[i, j]$.

Sentence 1 (R1): $\neg \mathbf{P}_{1,1}$
Sentence 2 (R2): $\neg \mathbf{B}_{1,1}$
Sentence 3 (R3): $\quad \mathbf{B}_{2,1}$
[Given.]
[Observation $\mathrm{T}=0$.]
[Observation $\mathrm{T}=1$.
"Pits cause breezes in adjacent squares"
Sentence 4 (R4): $\quad \mathbf{B}_{1,1} \Leftrightarrow\left(\mathbf{P}_{1,2} \vee \mathbf{P}_{2,1}\right)$
Sentence 5 (R5): $\quad B_{2,1} \Leftrightarrow\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)$
etc.
Notes: (1) one such statement about Breeze for each square.
(2) similar statements about Wumpus, and stench and Gold and glitter. (Need more propositional letters.)

What about Time? What about Actions?

Is Time represented?
No!
Can include time in propositions:
Explicit time $\quad \mathbf{P}_{\mathbf{i}, \mathbf{j}, \mathbf{t}} \quad \mathbf{B}_{\mathbf{i}, \mathrm{j}, \mathrm{t}} \quad \mathbf{L}_{\mathrm{i}, \mathrm{j}, \mathrm{t}} \quad$ etc.
Many more props: $\mathbf{O}\left(\mathrm{TN}^{2}\right)\left(\mathrm{L}_{\mathrm{i}, \mathrm{j}, \mathrm{t}}\right.$ for agent at (i, j) at time t$)$
Now, we can also model actions, use props: Move(i, j, k, l,t)
E.g. Move(1, 1, 2, 1, 0)

What knowledge axiom(s) capture(s) the effect of an Agent move?

$$
\operatorname{Move}(\mathbf{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{t}) \Rightarrow(\neg \mathrm{L}(\mathrm{i}, \mathrm{j}, \mathrm{t}+1) \wedge \mathrm{L}(\mathrm{k}, \mathrm{l}, \mathrm{t}+1))
$$

Is this it?
What about $\mathrm{i}, \mathrm{j}, \mathrm{k}$, and l ?
What about Agent location at time t?

Improved: Move implies a change in the world state; a change in the world state, implies a move occurred!
$\operatorname{Move}(\mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{l}, \mathbf{t}) \Leftrightarrow(\mathbf{L}(\mathbf{i}, \mathbf{j}, \mathbf{t}) \wedge \neg \mathbf{L}(\mathbf{i}, \mathbf{j}, \mathbf{t}+\mathbf{1}) \wedge \mathbf{L}(\mathbf{k}, \mathbf{l}, \mathbf{t}+\mathbf{1}))$
For all tuples ($\mathbf{i}, \mathbf{j}, \mathrm{k}, \mathrm{l}$) that represent legitimate possible moves.
E.g. (1, 1, 2, 1) or (1, 1, 1, 2)

Still, some remaining subtleties when representing time and actions. What happens to propositions at time $t+1$ compared to at time t, that are *not* involved in any action?
E.g. $P(1,3,3)$ is derived at some point. What about $\mathrm{P}(1,3,4)$, True or False?
R\&N suggests having \mathbf{P} as an "atemporal var" since it cannot change over time. Nevertheless, we have many other vars that can change over time, called "fluents".
Values of propositions not involved in any action should not change! "The Frame Problem" / Frame Axioms R\&N 7.7.1

Successor-State Axioms

Axiom schema:
F is a fluent (prop. that can change over time)

For example:

$$
\begin{aligned}
L_{1,1}^{t+1}= & \left(L_{1,1}^{t} \wedge\left(\neg \text { Forward }^{t} \vee \text { Bump }^{t+1}\right)\right) \\
& \vee\left(L_{1,2}^{t} \wedge\left(\text { South }^{t} \wedge \text { Forward }^{t}\right)\right) \\
& \vee\left(L_{2,1}^{t} \wedge\left(\text { West }^{t} \wedge \text { Forward }^{t}\right)\right)
\end{aligned}
$$

i.e. L_1,1 was "as before" with [no movement action or bump into wall] or resulted from some action (movement into $L_{-} 1,1$).

Actions and inputs up to time 6 Note: includes turns!

Some example inferences Section 7.7.1 R\&N
\neg Stench $^{0} \wedge \neg$ Breeze $^{0} \wedge \neg$ Glitter $^{0} \wedge \neg$ Bump $^{0} \wedge \neg$ Scream $^{0} ;$ Forward 0 \neg Stench $^{1} \wedge$ Breeze $^{1} \wedge \neg$ Glitter $^{1} \wedge \neg$ Bump $^{1} \wedge \neg$ Scream 1; TurnRight ${ }^{1}$ \neg Stench $^{2} \wedge$ Breeze $^{2} \wedge \neg$ Glitter $^{2} \wedge \neg$ Bump $^{2} \wedge \neg$ Scream $^{2} ;$ TurnRight ${ }^{2}$ \neg Stench $^{3} \wedge$ Breeze $^{3} \wedge \neg$ Glitter $^{3} \wedge \neg$ Bump $^{3} \wedge \neg$ Scream $^{3} ;$ Forward 3 \neg Stench $^{4} \wedge \neg$ Breeze $^{4} \wedge \neg$ Glitter $^{4} \wedge \neg$ Bump $^{4} \wedge \neg$ Scream 4; TurnRight ${ }^{4}$ \neg Stench $^{5} \wedge \neg$ Breeze $^{5} \wedge \neg$ Glitter $^{5} \wedge \neg$ Bump $^{5} \wedge \neg$ Scream $^{5} ;$ Forward 5 Stench ${ }^{6} \wedge \neg$ Breeze $^{6} \wedge \neg$ Glitter $^{6} \wedge \neg$ Bump $^{6} \wedge \neg$ Scream 6

$$
\operatorname{AsK}\left(K B, P_{3,1}\right)=\text { true } \quad \operatorname{AsK}\left(K B, W_{1,3}\right)=\text { true }
$$

Define "OK": $O K_{x, y}^{t} \Leftrightarrow \neg P_{x, y} \wedge \neg\left(W_{x, y} \wedge\right.$ WumpusAlive $\left.{ }^{t}\right)$

Alternative formulation: Situation Calculus

No explicit time. Actions are what changes the world from "situation" to "situation". More elegant, but still need frame axioms to capture what stays the same. Inherent with many representation formalisms: "physical" persistance does not come for free! (and probably shouldn't)

Inference by enumeration / "model checking" Style I

The goal of logical inference is to decide whether $K B=\alpha$, for some α. For example, given the rules of the Wumpus World, is \mathbf{P}_{22} entailed? Relevant propositional symbols:

$\mathrm{R} 1: \neg \mathrm{P}_{1,1}$	
$\mathrm{R} 2: \neg \mathrm{B}_{1,1}$	
$\mathrm{R} 3: \mathrm{B}_{2,1}$	Models(KB)
$\subseteq \operatorname{Models}\left(\mathbf{P}_{22}\right)$	

"Pits cause breezes in adjacent squares"
R4: $\mathrm{B}_{1,1} \Leftrightarrow \quad\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)$
R5: $\mathrm{B}_{2,1} \Leftrightarrow \quad\left(\mathrm{P}_{1,1} \vee \mathrm{P}_{2,2} \vee \mathrm{P}_{3,1}\right)$
Inference by enumeration. We have 7 relevant symbols
Therefore $2^{7}=128$ interpretations.
Need to check if $\mathbf{P}_{\mathbf{2 2}}$ is true in all of the KB models (interpretations that satisfy KB sentences).
Q.: KB has many more symbols. Why can we restrict ourselves to these symbols here? But, be careful, typically we can't!!

All equivalent
 Prop. / FO Logic

1) $\mathrm{KB} \vDash \alpha$
entailment

Proof techniques

$\mathrm{M}(\mathrm{KB}) \subseteq \mathrm{M}(\alpha) \quad$ by defn. / semantic proofs / truth tables "model checking" (style I, R\&N 7.4.4) Done.

$\mathrm{KB} \vdash \alpha$

soundness and completeness
logical deduction / symbol pushing proof by inference rules (style II)
e.g. modus ponens ($\mathrm{R} \& N$ 7.5.1)
$(\mathrm{KB} \wedge \neg \alpha)$ is inconsistent Proof by contradiction use CNF / clausal form
Resolution (style III, R\&N 7.5) SAT solvers (style IV, R\&N 7.6) most effective

Aside

Standard syntax and semantics for propositional logic. (CS-2800; see 7.4.1 and 7.4.2.)

Syntax:

Sentence	\rightarrow AtomicSentence \mid ComplexSentence
AtomicSentence	\rightarrow Irue \mid False $\|P\| Q\|R\| \ldots$
ComplexSentence	$\rightarrow($ Sentence $) \mid[$ Sentence $]$
	\neg Sentence
	Sentence \wedge Sentence
	Sentence \vee Sentence
	Sentence \Rightarrow Sentence
	Sentence \Leftrightarrow Sentence

OPERATOR PRECEDENCE $: ~ \neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$

Semantics
Note: Truth value of a sentence is built from its parts "compositional semantics"

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Logical equivalences

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \quad \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \quad \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \quad \text { implication elimination } \quad(*) \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \quad \text { de Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \quad \text { de Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \quad \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

(*) key to go to clausal (Conjunctive Normal Form) Implication for "humans"; clauses for machines. de Morgan laws also very useful in going to clausal form.

KB at $T=1$:

Style II: Proof by inference rules Modus Ponens (MP)

> R4: $\mathbf{B}_{1,1} \Leftrightarrow\left(\mathbf{P}_{1,2} \vee \mathbf{P}_{2,1}\right)$
> R5: $\mathbf{B}_{2,1} \Leftrightarrow\left(\mathbf{P}_{1,1} \vee \mathbf{P}_{2,2} \vee \mathbf{P}_{3,1}\right)$

How can we show that $K R \vDash \neg \mathrm{P}_{1,2}$?

$$
\begin{aligned}
& \text { Wumpus world } \\
& \text { at } \mathrm{T}=1
\end{aligned}
$$

Note: In formal proof, every step needs to be justified.

So, we used R2 and R4.

Length of Proofs

Why bother with inference rules? We could always use a truth table to check the validity of a conclusion from a set of premises.

But, resulting proof can be much shorter than truth table method.
Consider KB:
$p_{-} 1, p_{-} 1 \rightarrow p_{-} 2, p_{-} 2 \rightarrow p_{-} 3, \ldots, p_{-}(n-1) \rightarrow p _n$
To prove conclusion: p_n
Inference rules: n-1 MP steps Truth table: 2^{n}

Key open question: Is there always a short proof for any valid conclusion? Probably not. The NP vs. co-NP question. (The closely related: \mathbf{P} vs. NP question carries a $\$ 1 \mathrm{M}$ prize.)

First, we need a conversion to Conjunctive Normal Form (CNF) or Clausal Form.

Let's consider converting $R 4$ in clausal form:

$$
\mathbf{R 4}: \mathbf{B}_{1,1} \Leftrightarrow\left(\mathbf{P}_{1,2} \vee \mathbf{P}_{2,1}\right)
$$

We have:

$$
\left.\mathrm{B}_{1,1}\right)\left(\mathrm{P}_{1,2} \mathrm{C} \mathrm{P}_{2,1}\right)
$$

which gives (implication elimination):

$$
\left(: B_{1,1} C ̧ P_{1,2} C ̧ P_{2,1}\right)
$$

Also

$$
\left.\left(\mathbf{P}_{1,2} \vee \mathbf{P}_{2,1}\right)\right) \mathbf{B}_{1,1}
$$

which gives:

$$
\left(:\left(\mathrm{P}_{1,2} C ̧ \mathrm{P}_{2,1}\right) \quad \mathrm{C}, \mathrm{~B}_{1,1}\right)
$$

Thus,

$$
\left(: \mathrm{P}_{1,2} \nsubseteq: \mathrm{P}_{2,1}\right) \mathrm{CC}_{1,1}
$$

leaving,

$$
\begin{aligned}
& \left(: P_{1,2} C B_{1,1}\right) \\
& \left(: P_{2,1} C ̧ B_{1,1}\right)
\end{aligned}
$$

First, we need a conversion to Conjunctive Normal Form (CNF) or Clausal Form.

Let's consider converting $R 4$ in clausal form:

$$
\text { R4: } B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

We have:

$$
\mathrm{B}_{1,1} \Rightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)
$$

which gives (implication elimination):

$$
\left(\neg \mathbf{B}_{1,1} \vee \mathbf{P}_{1,2} \vee \mathbf{P}_{2,1}\right)
$$

Also

$$
\left(\mathbf{P}_{1,2} \vee \mathbf{P}_{2,1}\right) \Rightarrow \mathbf{B}_{1,1}
$$

which gives:

$$
\left(\neg\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \vee \mathrm{B}_{1,1}\right)
$$

Thus,

Style III: Resolution

Wumpus world
at $\mathrm{T}=1$

KB at $\mathrm{T}=1$:
R1: $\neg \mathrm{P}_{1,1}$
R2: $\neg \mathrm{B}_{1,1}$
R3: $\mathbf{B}_{2,1}$
R4: $\mathbf{B}_{1,1} \Leftrightarrow\left(\mathbf{P}_{1,2} \vee \mathbf{P}_{2,1}\right)$
R5: $\mathbf{B}_{2,1} \Leftrightarrow\left(\mathbf{P}_{1,1} \vee \mathbf{P}_{2,2} \vee \mathbf{P}_{3,1}\right)$
KB at $\mathrm{T}=1$ in clausal form:

$$
\begin{array}{ll}
\text { R1: } & \neg \mathbf{P}_{1,1} \\
\text { R2: } & \neg \mathbf{B}_{1,1} \\
\text { R3: } & \mathbf{B}_{2,1}
\end{array}
$$

$$
\begin{array}{ll}
\text { R4a: } & \neg \mathbf{B}_{1,1} \vee \mathbf{P}_{1,2} \vee \mathbf{P}_{2,1} \\
\text { R4b: } & \neg \mathrm{P}_{1,2} \vee \mathrm{~B}_{1,1} \\
\text { R4c: } & \neg \mathrm{P}_{2,1} \vee \mathrm{~B}_{1,1}
\end{array}
$$

Wumpus world
at $\mathrm{T}=1$

$$
\text { R5a: } \quad \neg \mathrm{B}_{2,1} \vee \mathrm{P}_{1,1} \vee \mathrm{P}_{2,2} \vee \mathrm{P}_{3,1}
$$

$$
\mathbf{R 5 b}: \quad \neg \mathrm{P}_{1,1} \vee \mathrm{~B}_{2,1}
$$

$$
\text { R5c: } \quad \neg \mathrm{P}_{2,2} \vee \mathrm{~B}_{2,1}
$$

$$
\text { R5d: } \quad \neg \mathrm{P}_{3,1} \vee \mathrm{~B}_{2,1}
$$

How can we show that $K R \vDash \neg \mathrm{P}_{1,2}$?
Proof by contradiction:
Need to show that ($\mathrm{KB} \wedge \mathrm{P}_{1,2}$) is inconsistent (unsatisfiable).

Resolution rule:

$$
\begin{aligned}
& (\alpha \vee \mathbf{p}) \text { and }(\beta \vee \neg \mathbf{p}) \\
& \text { gives resolvent (logically valid conclusion): }
\end{aligned}
$$

$(\alpha \vee \beta)$

If we can reach the empty clause, then $K B$ is inconsistent. (And, vice versa.)
$K B$ at $T=1$ in clausal form:

$$
\begin{array}{ll}
\text { R1: } & \neg \mathbf{P}_{1,1} \\
\text { R2: } & \neg \mathbf{B}_{1,1} \\
\text { R3: } & \mathbf{B}_{2,1} \\
\text { R4a: } & \neg \mathbf{B}_{1,1} \vee \mathbf{P}_{1,2} \vee \mathbf{P}_{2,1} \\
\text { R4b: } & \neg \mathrm{P}_{1,2} \vee \mathrm{~B}_{1,1} \\
\text { R4c: } & \neg \mathrm{P}_{2,1} \vee \mathrm{~B}_{1,1} \\
& \\
\text { R5a: } & \neg \mathrm{B}_{2,1} \vee \mathrm{P}_{1,1} \vee \mathrm{P}_{2,2} \vee \mathrm{P}_{3,1} \\
\text { R5b: } & \neg \mathrm{P}_{1,1} \vee \mathrm{~B}_{2,1} \\
\text { R5c: } & \neg \mathrm{P}_{2,2} \vee \mathrm{~B}_{2,1} \\
\text { R5d: } & \neg \mathrm{P}_{3,1} \vee \mathrm{~B}_{2,1}
\end{array}
$$

Wumpus world at $T=1$

Show that $\left(\mathrm{KB} \wedge \mathrm{P}_{1,2}\right)$ is inconsistent. (unsatisfiable)

R 4 b with $\mathrm{P}_{1,2}$ resolves to $\mathrm{B}_{1,1}$, which with R2, resolves to the empty clause, \square.
So, we can conclude $\mathrm{KB} \vDash \neg \mathrm{P}_{1,2}$.
(make sure you use "what you want to prove.")

KB at $\mathrm{T}=1$ in clausal form:

```
R1: \(\neg \mathrm{P}_{1,1}\)
    R2: \(\neg \mathrm{B}_{1,1}\)
    R3: \(\quad \mathbf{B}_{2,1}\)
    R4a: \(\neg \mathbf{B}_{1,1} \vee \mathbf{P}_{1,2} \vee \mathbf{P}_{2,1}\)
    R4b: \(\neg \mathrm{P}_{1,2} \vee \mathrm{~B}_{1,1}\)
    R4c: \(\quad \neg \mathrm{P}_{2,1} \vee \mathrm{~B}_{1,1}\)
    R5a: \(\quad \neg \mathrm{B}_{2,1} \vee \mathrm{P}_{1,1} \vee \mathrm{P}_{2,2} \vee \mathrm{P}_{3,1}\)
    R5b: \(\quad \neg \mathrm{P}_{1,1} \vee \mathrm{~B}_{2,1}\)
    R5c: \(\quad \neg \mathrm{P}_{2,2} \vee \mathrm{~B}_{2,1}\)
    R5d: \(\quad \neg \mathrm{P}_{3,1} \vee \mathrm{~B}_{2,1}\)
Another example resolution proof
```

Note that R5a resolved with R1, and
 then resolved with R 3 , gives $\left(\mathrm{P}_{2,2} \vee \mathrm{P}_{3,1}\right)$.

Almost there \ldots to show $\mathrm{KB} \vDash\left(\mathrm{P}_{2,2} \vee \mathrm{P}_{3,1}\right)$, we need to show $\mathrm{KB} \wedge\left(\neg\left(\mathrm{P}_{2,2} \vee \mathrm{P}_{3,1}\right)\right)$ is inconsistent. (Why? Semantically?) So, show $\mathrm{KB} \wedge \neg \mathrm{P}_{2,2} \wedge \neg \mathrm{P}_{3,1}$ is inconsistent. This follows from $\left(\mathrm{P}_{2,2} \vee \mathrm{P}_{3,1}\right)$; because in two more resolution steps, we get the empty clause (a contradiction).

Consider KB:
$p_{-} 1, p_{-} 1 \rightarrow p_{-} 2, p_{-} 2 \rightarrow p_{-} 3, \ldots, p_{-}(n-1) \rightarrow p _n$
To prove conclusion: p_n
Resolution. Assert ($\left.\neg \mathbf{p} _\mathbf{n}\right)$
with ($\left.\neg \mathbf{p} _(\mathbf{n}-1) \vee \mathbf{p}_{-} \mathbf{n}\right)$ gives ($\neg \mathbf{p}_{-}(\mathbf{n}-1)$)
with ($\neg \mathbf{p} _(\mathbf{n}-2) \vee \mathbf{p}$ _($\left.\mathbf{n}-1\right)$ gives ($\neg \mathbf{p}$ _($\mathbf{n - 2}$))
with ($\neg \mathbf{p}_{-}$1) $\vee \mathbf{p}_{-}$2) gives ($\neg \mathbf{p}_{-}$1) with (p_1) gives empty clause (contradiction). QED
Note how resolution mimics Modus Ponens steps.
Inference rules: n resolution steps Truth table: 2^{n}

What is hard for resolution?

Length of Proofs

Consider:

Given a fixed pos. int. \mathbf{N}

Think of: $P(i, j)$ for "object i in location j "
Pigeon hole problem...
Provable requires exponential number of resolution steps to reach empty clause (Haken 1985). Method "can't count."

Instead of using resolution to show that

Style IV: SAT Solvers

$$
\mathrm{KB} \wedge \neg \alpha \quad \text { is inconsistent }
$$

modern Satisfiability (SAT) solvers operating on the clausal form are *much* more effin SAT SOLVERS CAN The SAT solvers trea BE VIEWED AS DOING A constraints (disjunctions) on Boo SPECIAL Current solvers are ve FORM OF RESOLUTION illion+ variables and several millions of clauses.

Systematic: Davis Putnam (DPLL) + series of improvements Stochastic local search: WalkSAT (issue?)

See R\&N 7.6. "Ironically," we are back to semantic model checking, but way more clever than basic truth assignment enumeration (exponentially faster)!

DPLL improvements

Backtracking + ...

1) Component analysis (disjoint sets of constraints? Problem decomposition?)
2) Clever variable and value ordering (e.g. degree heuristics)
3) Intelligent backtracking and clause learning (conflict learning)
4) Random restarts (heavy tails in search spaces...)
5) Clever data structures

1+ Million Boolean vars \& 10+ Million clause/constraints are feasible nowadays. (e.g. Minisat solver)

Has changed the world of verification (hardware/software) over the last decade (incl. Turing award for Clarke). Widely used in industry, Intel, Microsoft, IBM etc.

ENDS LOGIC PART

1) $\mathrm{KB} \vDash \alpha$
