CS 4700:
Foundations of Artificial Intelligence

Bart Selman
selman@cs.cornell.edu

Module: Knowledge, Reasoning, and Planning

First-Order Logic and Inference
R&N: Chapters 8 and 9

First-Order Logic

Richer language. Closer match to ontology / conceptual structfire
objects / properties / relations / functions

Ex.:
objects: table, car, house, John...
relations: brother of, part of, has color...
properties: red, round, prime... [“unary relations”]
functions: father of, best fiend, one more than...

(). Contrast relation with function.

Syntax and Semantics

Study section 8.2 of R&N carefully.
Note: Semantics can be defined more formally.
See e.g. “A course in mathematical logic” Bell & Machovef.

R&N provide main ideas behind semantics.

Semantics give by interpretations (propositional
analogue: truth assignment)
Sentence (“formula”) evaluates to True or False under a
given interpretation. If True, interpretation is called
a model of the sentence.
We hope that models of KB are close to actual state of affairs Jworl
But often, we also have unexpected (non-standard) model§.
Relation between mathematical notion of interpretation / modgl
and actual physical world interesting philosophical issue.
We'll ignore it.

Each interpretation is defined over a gix

individuals / objects).

Constant symbols: A, B, C, John, chair-1, house-10...
In interpretation these symbols correspond to elements of
(two constants can define the same element in U).
(morning-star / evening-star)
Predicate symbols: Round, Brother, Part-of,...
Each predicate symbol correspond to a relation on U.
E.g., a binary predicate, corresponds to a binary relation.
If U equals { car, tires, steering wheel, house }.
tires, car|, and | steering wheel, car].

could be the intended interpretation of “part-of”

Language Ontological Commitment Epistemological Commitment
(What exists in the world) (What an agent believes about facts)

Propositional logic | facts true/false/unknown

First-order logic facts, objects, relations true/false/unknown

Temporal logic facts, objects, relations, imes | true/false/unknown

Probability theory | facts degree of belief 0...1

Fuzzy logic degree of truth degree of belief 0...1

Function symbols: Cosine, FatherOf, LeftLeqOf ...

Correspond to functions defined on U.

Relation to predicate symbols?

Again, “what’s meant by embodying knowledge about the wdrld?”’

Example:
1) On(A, Fl) = Clear(B)

One interpretation:
U is theset { A, B, C, Floor }.
1) mapping constant symbols to elements of U.
eg., AtoA, BtoB, CtoC
and F'l to Floor
Could we have mapped F'l to A??
2) mapping of relation symbol On to relation on U.
eg,On={[B, A], [A, Floor |, [C, Floor |}.
3) mapping of relation (property) Clear to a unary rel. onjU.

e.g., Clear={[B], [C] }.

1) On(A, Fl) = Clear(B)
2) (Clear(B) A Clear(C)) = On(A, Fl)
Yet others ... 3) Clear(B) V Clear(A)

4) Clear(B)

5) Clear(C)
B C
A C A B C A B
floor floor floor

Including completely different interpretations!

E.g., use integers for domain. (Lowenheim 1915)

10

Try to add sufficient axioms (facts) to rule out

unwanted models. E.g., add clear(A).

11

Terms —- a logical expressions that refers to
an object. Constant symbols are terms. Functions applied
to constant symbols. FatherOf(.John). Also, variables
are terms (later) and functions applied to variables or
other terms.
The interpretation is given by whatever the Constant or Functjon
maps to in U (vars later).
If no vars, called atomic terms.

12

Atomic sentences — A predicate symbol applied to atomic tprms
E.g. Married(FatherO f(Richard), MotherO f(John))
Evaluated to true if predicate symbol holds between the

objects referred to by the arguments.

Complex sentences — add logical connectives.
E.g. Older(John,30) = Older(Jane, 29)

13

Quantifiers

Universal Quantification V —

E.g.. Vo Cat(x) = Mammal(x)
Think of as:
(Cat(Spot) = Mammal(Spot
(Cat(Felix) = Mammal(Feli.

(Cat(John) = Mammal(John)) A

Intuition:

Expand over all object symbols.

Existential Quantification 4 —
E.g., dx Sister(x, Spot) N\ Cat(x)

Think of as:
(Sister(Spot, Spot) A Cat(Spo
(Sister(Rebecca, Spot) A Cat(Re) V

(Sister(Felix, Spot) N\ Cat(Felix)) V

Intuition: Expand over all object symbols.

15

Equality = —
E.g. father(John) = Henry

True iff refer to same object of U in interpretation.
(identity relation)

16

See Chapter 8 of R&N for more discussion and fine details.

E.g. can’t just switch quantifiers around.

Compare VedyLoves(x,y) vs.
Compare doVyLoves(x,y)

17

Reflex Agent

Directly connects percepts to actions:

Vs, b,u,c,t Percept(|s,b, Glitter,u,c|,t) = Action(Grab,{)
Or, more indirectly:

Vs, b,u,c,t Percept(|s,b, Glitter,u,c|,t) = AtGold(t)

vVt AtGold(t) = Action(Grab,t)

Why more flexible? Limitations of reflex approach?

18

Finite domains === “essentially
propositional.” Also called:
Propositional schema.

Example: N-Queens, first-order

e 1) no row with two queens
Vi,j.k (1 <i,7,k < N) (Queen(i,) N Queen(i, k)) =
(7 =F)
e 2) no column with two queens
Vi,j.k (1 <i,7,k < N) (Queen(j,1) A Queen(k,i)) =
G=h

19

e 3) no diagonal with two queens
Vi,7, k0 (1 <4,5,k,l < N) [(Queen(z,7) N Queen(k,l)
Ale ftdiagonal(z, 3, k,)] = ((z =7) AN (k =1))

similarly for right diagonal.

20

Vi, 5.k, (1 <4,7,k,l <N)
le ftdiagonal(z, 7, k, 1)

Similarly, for rightdiagonal
Complete?

< [(i =)

(kD)

21

e 4) at least one queen per row
Vid; (1<1i,5<N) Queen(i,y)

22

Also discussed earlier. Here some additional
axiom details. R&N Section 10.4.2.

Situation Calculus

One approach: have time argument
We can be more concise, since we're only interested
in when and how things change.

Focus on “situations”. (“snapshots”)

(John McCarthy 1963).
(Changing) World is represented by a series of situations.

23

/ /8 8
\ \ww w\ / !
o 7]/~
/| 8 /8 -
O]] ~_
/ /8 /8 -
f]
o /]
/| 8 /8
E NN,

24

E.g.:
At(Agent, |1,1],Sy) N At(Agent, [1,2],S7)

“talking” about change / actions:
Result(Forward, Sy) = S1
Result(Turn(Right), S1) = S2
Result(Forward, Sy) = S3

Is Result a relation or a function?
What about Forward?

Result(action, situation) > situation
(unique outcome)

25

Effect Axioms

Portable(Gold)
Vs AtGold(s) = Present(Gold, s)
Vr,s (Present(x,s) N\ Portable(x)) = Holding(x, Result(Grdp, s)

Va,s —Holding(x, Result(Release, s))

Does this work?

26

Again, as discussed in propositional case.

Frame Axioms

Need also to state what doesn’t change!

Ya,r,s Holding(x,s) N (a # Release))
= Holding(z, Result(a,x))

Va,r,s (—Holding(xz,s) N (a # grab))
= —Holding(x, Result(a,x))

27

More compactly:

Va,x,s Holding(x, Results(a,s)) <
(a = Grab A Present(x,s) N\ Portable(x))
V(Holding(x,s) \ a # Release)]

successor-state axioms: need to list all the ways

in wich any predicate can become true / false.

28

R&N 8.4.2.

Another example: Electronic Circuits

ci

\
2e ! 4 ,)E * }B ol
3e A2>

E '_'D o2

Further illustration of FOL formulation.

29

Formalization

one-bit full adder: two inputs and a carry / one output and cafry
four gates: AND, OR, XOR and NOT.

Goal: analyze design to see if it matches specification.

Consider: circuits (gates and gate types), terminals, and signalp.
formalization — keep task in mind.
e.g., for fault diagnosis: might want to specify “wires”

could be broken... (e.g., Wire(z,y))

30

Always define first and
carefully.

Vocabulary

pick: functions / predicates / constants.
constant symbols: X;, X, etc.
type gate: Type(X;) = XOR, note XOR new constant.
Alt.: Type(X1, XOR). Q. Advantage function?
terminals: Out(1, X1), In(1,X1), In(2, X4).

31

connectivity: Connected(Out(1, Xy), In(1, X3)).
Note: we don’t have to name the terminals explicity.
the semantics of the function will assign some unique
“object” to it.
(Skolemization can bring back name.)
signal values: function Signal(x), e.g., Signal(In(1, Xy)).
signal values: On and Off.

32

General Rules

how signals behave:

1) Vti,ta Connected(ty,ty) = Signal(ty) = Signal(ts)
2a) Vt Signal(t) = On V Signal(t) = Of f

2b) On # Of f

3) Vt1,ty Connected(ty,ty) < Connected(ts, t1)

33

how gates behave:
4) Vg Type(g) = OR =
Signal(Out(1,g)) = On < dn Signal(In(n,g) = On.
5) how AND?
6) Vg Type(g) = XOR =
(Signal(Out(1,g)) = On < (Signal(In(1, g) # Signal(In@2, g)
7) NOT, similarly.

34

few rules (7): good ontology
clear rules: good vocabulary

what remains”?

35

atomic facts — describing actual circuit under consideration.
types of gates:
Type(X1) = XOR, Type(Xs) = XOR, Type(A1) = AND,..
conectivity:
C'onnected(Out(1, X1), In(1,X5)).
C'onnected(In(1,Cy), In(1, X)),
C'onnected(Out(1, Xy), In(1, As))
C'onnected(In(1,CY), In(1,Ay)),

etc. -
28 P—1—p—

A2
D D

36

Lueries

Our theory captures full behavior.
Can now ask many different queries about behavior etc.
E.g.
diq, 19,13 Signal(In(1,C1)) = i1 A Signal(In(2,C1)) = iz A Signal (n3s, ¢
ASignal(Out(1,C1)) = Of f A Signal(Out(2,C1)) = On
A: (1=0nNipg=0nNizg=0ff)V
([1 =0nNipg=0ff Nig=0n)V
(I1 =0Off Nig =On Niz = On)

What is the advantage over direct simulation?

etc. Aside: previously KB F a The same here but we want a
bit more “detailed answer”. Inference will also give us
variable bindings if existential query is entailed.

37

Of course, formalization is somewhat facilitated by the
“closeness” between logical formalisms and digital circuitr
Starting with Shannon, allows for very powerful design

methods (but did not prevent Pentium bug...).

38

Done with prop. logic. Just check for
syntax and FOL form.

One more example: Graph Coloring

Graph: NN nodes, K colors.
e 1)V (1<:<N) dj (1<5<K) Color(z,)
Vi,7,l (1<i<N) (1<4,l<K)
[(Color(z,7) N Color(i,1)) = (7 =1)]

¢ 2)Vi.j (1<i,j<N)[(i#j) =
(Fdge(i,7) = [-3 k(1 <k < K)
((Color(i, k) N Color(j,k))])]

39

alternative:
e3)Ve,7 (1<2,7<N) [i#7)=
(Edge(1,7) = [V k(1 <k < K)
(—Color(i, k) V =Color(j,k))])]

Now actual graph given by, e.g..:

e 4) Fdge(1,3), Edge(2,4), Edge(5,6). .. etc.

40

reasoning: 3 & 4 gives e.g.:
V E(1 <k < K) (=Color(l,k)V —Color(3,k))
uses “unification” {i/1,j/3}with Modus Ponens.

For K = 5, we get:
(=Color(1,1) vV =Color(3,1)), (—=Color(1,2) V =~Color(3, 2
.. (=Color(1,5) Vv =Color(3,5))

in propositional form.

uses Universal Elimination, e.g., substitute {£k/1}, etc.

41

See R&N p. 443
FOL formalizations can be challenging
for “everyday” concepts.

Defining natural kinds is much more difficult.
e.g. a game, or a chaur.

difficulty with necessary and sufficient conditions.

problem with “strict definition” (Quine 1953)
“the Pope is a bachelor.”

Approaches?

Probabilistic representations (extending prop. logic /
FOL) can help!

42

Inference

Resolution / Unification

Chapter 9 R&N.

But for finite domains that are not too large,

better to “ground to” propositional and use
SAT solver.

43

Inference

We've considered various first-order formalizations.
But, how do we reason with them?” Derive new info?
A. Use resolution as in propositional case

From (a V p) A (-pV [3)
conclude o Vv [until you reach contradiction.

44

Resolution

I put in clausal form
all variables universally quantified
main trick: “Skolemization” to remove existantials.

idea: invent names for unkown objects known to exist
II use unification to match atomic sentences

III apply resolution rule to the clausal set combined
with negated goal. Attempt to generate empty clause.

45

Tricks

e unification: needed to match variables and terms

between clauses that look similar

See also R&N.

e normalization: put in clausal form
move quantifiers / A / V etc.
and Skolemization — remove 3 by giving
an arbitrary, but unique name to the object in question.

E.g. D for the dog owned by Jack.

46

UNIFY (P,Q) takes two atomic sentences P and Q and

returns a substitution that makes P and Q look the same.

Rules for substitutions:
e Can replace a variable by a constant.
e Can replace a variable by a variable.

e Can replace a variable by a function expression, as long

as the function expression does not contain the variable.

Unifier: a substitution that makes two clauses resolvable.

vy — Civ9g — v3;04 — f(...)
47

Unification — Purpose

: V x (- Knows(John, x) V Hates(John,x
(z1ven: (() ()

Knows(John,r) — Hates(John, x)
Knows(John, Jim)

Derive
Hates(John, Jim)

Need unifier {x/.Jim} before resolution.

(simplest case)

48

—Knows(John,z)V Hates(John,x) and Knows(.John, Jim)

How do we resolve? First, match them.
Solution:
UNIFY (Knows(John,z),Knows(John, Jim)) = {x/Jim}
Glives
—~Knows(John, Jim) V Hates(John, Jim) and
Knows(John, Jim)

Conclude by resolution
Hates(John, Jim)

49

Unification (example)

general rule:
Knows(John,x) — Hates(John, x)

facts:
Knows(John, Jim)
Knows(y, Leo)
Knows(y, Mother(y))
Knows(x, Jane)

“matching facts to general rules”

Can substitute in because original clause universally quantified:0

UNIFY (Knows(John, x),Knows(John, Jim)) = {x/Jim}
UNIFY (Knows(John,x),Knows(y, Leo)) = {x/Leo,y/John}
),

UNIFY (Knows(John, x),Knows(y, Mother(y))) =
{y/John,x/Mother(John)};

UNIFY (K nows(John,x),Knows(x, Jane)) = fail

51

e Last one fails because x can’t take on both the value John
and the value Jane. But intuitively we know that everyone
John knows he hates and everyone knows Jane so we should

be able to infer that John hates Jane.

e This is why we require, if possible, that every variable has a

separate name. Knows(John,x) and Knows(y,Jane) works.

52

Most General Unifier

In cases where there is mor

the one that makes
about the bindings.

UNIFY (Knows(John,z), Knows(y, z))
= {y/John,z/z}
or {y/John,z/z,z/Freda}
or {y/John,x/John,z/John}

or

53

Normal form: Clausal

54

See also, R&N.
e Eliminate implication
p = q becomes —p V ¢
e Move — inwards
e.2., =(pV q) becomes (—p A —q)
—dx . p becomes Vi —p
-V . p becomes ...
e Standarize variables
rename variables to avoid conflicts.
e Move quantifiers left
e.g., pV Va g becomes Y& (pV q)

e Skolemize (remove existentials)
e.g. Yu Person(x) = dy Heart(y) N Has(x,y)
consider:
V& Person(x) = Heart(H) AN Has(x, H)
problem??
V& Person(x) = Heart(F(x)) N Has(x, F(x))

e Distribute A over V
(a Ab)V ¢ becomes (aVec)A(bVc)

e Flatten nested conjunctions and disjunctions
e.g. (aVb)Vcbecomes (aVbVc)

Example
Natural language
input.

Every dog owner is an animal lover. (From dog to more general.

Jack owns a dog.

No animal lover kills an animal. (General statement.)

Either Jack or Curiosity killed the cat, who is named Tuna.

Did Curiosity kill the cat? The query

YES!

What “hidden” background knowledge is being used?
57

Original Sentences (Plus Background Knowledge)

Jack owns a dog.
Every dog owner is an animal lover.
No animal lover kills an animal.

Either Jack or Curiosity killed the cat, who is named Tuna.

Did Curiosity kill the cat?

9. Lat(Luna) Cats are animals.

N . ST Not stated explicitly! This is
6. Vo Cat(r) — Animal(z) an example of background

Query: KB |== Kills(Curiosity, Tuna) ?? knowledge key to Natural
Executable semantic parsing. Language Understandilg%.
Persi Liang, Stanford. NLU needs to resolve “the cat” to Curiosity!

>~ &

Ut

N9

Clausal Form

D is a “fake name” for the dog.

. Dog(D)

dz : Dog(x) N Owns(Jack,)
Owns(Jack, D) -
Ve (dy Dog(y) N Owns(x,y)) — Animal Lover(x)
—Dog(S(x)) V =Owns(x, S(x)) V Animal Lover(x)
Vo Animal Lover(x) -y Animal(y) — —Kills(x,y))
—Animal Lover(w) V —mAnimal(y) V = Kills(w, y)
Kills(Jack, Tuna) V Kills(Curiosity, T'una)
Kills(Jack, Tuna) V Kills(Curiosity, Tuna)
Cat(Tuna)
Cat(Tuna)

—|C(Lt(z) \/ Animal(z) Ve Cat(x) — Animal(x)
Negation of query!

Missing? 8. 7 Kills(Curiosity, Tuna) Proof by contradiction

. for resolution. 59
Translation to clausal form automatic.

Proof by Resolution with Refutation

Dog(D)

Dog(y) N Owns(x,y) = AnimalLover(x)

AnimalLover(x) A Animal(y) N Kills(x,y) = False

Owns(x,D) = AnimalLover(x) Owns(Jack,D)

W

AnimalLover(Jack)

Kills(Jack,Tuna} Vv Kills(Curiosity,Tuna)

Kills(Curiosity,Tuna) = False

i.e

- [Kills(Curiosity, Tuna)

Warning: Non-standard notation!!

Kills(Jack,Tuna)

{}

Cat(Tuna)

Cat(x) = Animal(x)

{x/Tuna}

NG

Animal(Tuna)

{y/Tuna}

AnimalLover(x) AKills(x,Tuna) = False

{x/JaV

Kills(Jack,Tuna) = False

False

60

First-order resolution proof (more carefully)

1. Dog(D)
3. =Dog(S(x)) V =Owns(x, S(x)) V Animal Lover(x)

9. = Owns(x, D)V AnimalLover(x) using S(x)/D
2. Owns(Jack, D)

10. AnimalLover(Jack) wusing x/Jack

6. Cat(Tuna)
7. =Cat(z)V Animal(z)

11. Animal (Tuna) using z/Tuna

61

11. Animal (Tuna)

4. = Animal Lover(w) V —mAnimal(y) V = Kills(w, y)

12. =~ AnimalLover(w) V — Kills(w, Tuna) using y/Tuna
10. AnimalLover(Jack)

13. = Kills(Jack, Tuna) using w/Jack
5. Kills(Jack, Tuna) V Kills(Curiosity, Tuna)

14. Kills(Curiosity, Tuna) 15 lines; trivial with

8. 7 Kills(Curiosity, Tuna) modern solvers.
Can do 1+ billion lines!

15 O (contradiction reached)

62
S0, KB |[== Kills(Curiosity, Tuna)

Jack owns a dog.

Every dog owner is an animal lover.

No animal lover kills an animal.

Either Jack or Curiosity killed the cat, who is named Tuna.

Did Curiosity kill the cat?

So, we answered a natural language query using

(1) Natural language parsing (almost there)
(2) Background knowledge (much work remaining)
(3) Reasoning (works fine now)

We will see much progress in this kind of natural
language question answering in next decade.

Eg executable semantic parsing. 63
Persi Liang, Stanford.

Completeness

F.O. Resolution with unification applied to clausal form,
is refutation complete.
Interesting proof! Based on building an “artificial” domain

of interpretation, called the Herbrand universe.

64

Schubert Steamroller

Wolves, foxes, birds, caterpillars, and snaills are

animals, and there are some of each of them.

Also there are some grains, and grains are plants.

Every animal either likes to eat all plants or
all animals much smaller than itself that like

to eat some plants.

Caterpillars and snails are much smaller than birds,
which are much smaller than foxes, which are much

smaller than wolves.

Wolves do not like to eat foxes or grains, while

birds like to eat caterpillars but not snails.

Caterpillars and snails like to eat some plants.

66

Some logical forms:

Vo (Wolf(x) = animal(x))

Vo Yy ((Caterpillar(z) A Bird(y)) = Smaller(z,y).
dr bird(x)

67

To prove:

There 1s an animal that likes to eat

a grain-eating animal.

Requires alm
Significant challenge for e

68

Certain sets of first-order statements can overwhelm general
resolution solvers, e.g. about infinite sets (natural numbers).

As a consequence, many practical Knowledge Represenation
formalisms in Al use a restricted form
and specialized inference.

Can often understand them in terms of standard

first-order logic! (clear syntax & semantics)
Or, better yet, for finite domains, fall back to SAT solvers.

69

Concludes propositional and first-order
logic for knowledge representation and
reasoning.

Next “Big Picture Slide”

70

ication
Robbin’s Conj. Object recogniti

4-color thm.

Reasoning/
Search
Intensive

Knowledge

Intensive

Semantic Web

Sentiment analysis
Deep Blue

<

Al Knowledge-

Computer Vision

atson

Siri

Intensive

Data-
Inference
Triangle

_ Google Transl.

71

