
CS 4700: 
Foundations of  Artificial Intelligence 

Bart Selman 
selman@cs.cornell.edu 

 
Module:  

Informed Search  
 

Readings R&N - Chapter 3: 3.5 and 3.6 



Search 

Search strategies determined by choice of node (in queue) to 
expand 

 
Uninformed search: 

–  Distance to goal not taken into account 
 

Informed search : 
–  Information about cost to goal taken into account 

Aside: “Cleverness” about what option to explore next, 
almost seems a hallmark of intelligence. E.g., a sense of 
what might be a good move in chess or what step to try 
next in a mathematical proof. We don’t do blind search… 

 



A breadth-first search tree.  

Start state 

Goal 

Perfect “heuristics,” eliminates search. 

Approximate heuristics, significantly reduces search. 
Best (provably) use of search heuristic info: Best-first / A* search. 

Basic idea: State evaluation 
function can effectively guide 
search. 
 
Also in multi-agent settings. 
(Chess: board eval.) 
 
Reinforcement learning: 
Learn the state eval function. 
 



Outline 

•  Best-first search 
•  Greedy best-first search 
•  A* search 
•  Heuristics 



How to take information into account? Best-first search. 
Idea : use an evaluation function for each node 

–  Estimate of “desirability” of node 
–  Expand most desirable unexpanded node first (“best-first search”) 
–  Heuristic Functions : 

•   f:  States  à   Numbers  
•   f(n): expresses the quality of the state n 

–  Allows us to express problem-specific knowledge,  
–  Can be imported in a generic way in the algorithms. 

–  Use uniform-cost search. See Figure 3.14 but use f(n) instead of 
path cost g(n). 

–  Queuing based on f(n): 
     Order the nodes in fringe in decreasing order of desirability 

 
      Special cases: 

•  greedy best-first search 
•  A* search 

 

 



Romanian path finding problem 

Searching for good path from Arad to Bucharest, 
what is a reasonable “desirability measure” to expand nodes  
on the fringe? 

Straight-line 
dist. to Bucharest 
 
 
 
 
 
 
 
 
 
 
 
 

Base eg on GPS info. 
No map needed. 

253 329 

374 



Greedy best-first search 

Evaluation function at node n,  f(n) = h(n) (heuristic) 
  = estimate of cost from n to goal 

 
e.g., hSLD(n) = straight-line distance from n to Bucharest 
 
Greedy best-first search expands the node that  
appears to have shortest path to goal.  
 
Idea: those nodes may lead to solution quickly. 
 

Similar to depth-first search: It prefers to follow a single  
path to goal (guided by the heuristic), backing up  when it  
hits a dead-end. 



Greedy best-first search example 
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Greedy best-first search example 



Greedy best-first search example 

Is it optimal? 

Also, consider going from  
Iasi to Fagaras – what can happen? 

So, Arad --- Sibiu --- Fagaras --- Bucharest 
140+99+211 = 450 

What are we ignoring? 



Properties of greedy best-first search 
Complete? No – can get stuck in loops, e.g.,  
       Iasi à Neamt à Iasi à Neamt… 
 
But, complete in finite space with repeated state elimination. 
 
Time?   O(bm) (imagine nodes all have same distance estimate to goal) 
     but a good heuristic can give dramatic improvement à Becomes more 

similar to depth-first search, with reduced branching. 
 
Space? O(bm) -- keeps all nodes in memory 
 
Optimal?   
 

How can we fix this? 
 

 b: maximum branching factor 
of the search tree 
d: depth of the least-cost 
solution 
m: maximum depth of the state 
space (may be ∞) 

 

No! 



A* search 

Idea: avoid expanding paths that are already expensive 
 

Evaluation function f(n) = g(n) + h(n) 
 

–  g(n) = cost so far to reach n  
–  h(n) = estimated cost from n to goal 
–  f(n) = estimated total cost of path through n to goal 

 

Note: Greedy best-first search expands the node that 
appears to have shortest path to goal. But what about cost 
of getting to that node? Take it into account! 

Aside: do we still have “looping problem”? 
Iasi to Fagaras: 
Iasi à Neamt à Iasi à Neamt… 
 

No! We’ll eventually 
get out of it. g(n) 
keeps going up.  



A* search example Using: f(n) = g(n) + h(n) 
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A* search example Using: f(n) = g(n) + h(n) 



A* search example Using: f(n) = g(n) + h(n) 



A* search example 

Bucharest appears  on the fringe 
 but not selected for expansion  

since its cost (450) 
is higher than that of Pitesti (417). 

 
Important to understand for the proof 

of 
optimality of A*  

Using: f(n) = g(n) + h(n) 

What happens if  
h(Pitesti) = 150? 



A* search example Using: f(n) = g(n) + h(n) 

Claim: Optimal path found! 

1) Can it go wrong? 

2) What’s special about 
“straight distance” to goal? 

3) What if all our estimates 
to goal are 0? Eg h(n) = 0 
4) What if we overestimate? 

It underestimates true path 
distance!  

5) What if h(n) is true distance (h*(n))? 
     What is f(n)? 

Arad --- Sibiu --- Rimnicu --- Pitesti --- Bucharest 

Shortest dist. through n --- perfect heuristics --- no search 

Note: Greedy best first 
Arad --- Sibiu --- Fagaras 
--- Bucharest 

Uniform cost search 

Note: Bucharest 
twice in tree. 



A* properties    
Under some reasonable conditions for the heuristics, we have: 
Complete  

–  Yes, unless there are infinitely many nodes with f(n) < f(Goal) 
Time 

–  Sub-exponential grow when 
–  So, a good heuristics can bring exponential search down 
    significantly! 

Space 
–  Fringe nodes in memory. Often exponential. Solution: IDA* 

Optimal 
–  Yes (under admissible heuristics; discussed next) 
–  Also, optimal use of heuristics information! 

Widely used. E.g. Google maps.  
After almost 40 yrs, still new applications found. 
Also, optimal use of heuristic information.  

* *( ) ( ) (log ( ))h n h n O h n− ≤

Provably: Can’t do better! 



Heuristics: (1) Admissibility 

A heuristic h(n) is admissible if for every node n, 
 h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n. 

 
An admissible heuristic never overestimates the cost to reach the goal,  
      i.e., it is optimistic. (But no info of where the goal is if set to 0.) 
 
Example: hSLD(n) (never overestimates the actual road distance) 

Note: it follows that h(goal) = 0. 
 
 

Note: less optimistic heuristic push nodes to be expanded 
later. Can prune a lot more. 



Heuristics: (2) Consistency 

A heuristic is consistent (or monotone) if for every node n, every 
successor n' of n generated by any action a,  

   
 h(n) ≤ c(n,a,n') + h(n') 

 
(form of the triangle inequality) 
 
If h is consistent, we have 
 
f(n')  = g(n') + h(n')  
       = g(n) + c(n,a,n') + h(n')  
       ≥ g(n) + h(n)  
       = f(n) 
 
i.e.,   f(n) is non-decreasing along any path. 
 
 

à sequence of nodes expanded by A* 
is in nondecreasing order of f(n) 
 à the first goal selected for 
expansion must be an optimal goal. 

Note:  Monotonicity is a stronger condition than admissibility. 
Any consistent heuristic is also admissible. 
(Exercise 3.29) 

  

f(n') ≥  f(n) 



A*: Tree Search  vs. Graph Search 
TREE SEARCH (See Fig. 3.7; used in earlier examples):  
  
If h(n) is admissible, A* using  tree search is optimal. 
 
 
GRAPH SEARCH  (See Fig. 3.7) A modification of tree search that includes an 
“explored set” (or “closed list”; list of  expanded nodes to avoid re-visiting the same 
state); if the current node matches  a node on the closed list, it is discarded instead 
of being expanded. In order to guarantee optimality of A*, we need to make sure  
that the optimal path to any repeated state is always the first one followed: 
 
If h(n) is monotonic, A* using  graph search is optimal. 
(proof next) 
 
(see details page 95 R&N) 
 
 
 
 
 

Reminder: Bit of “sloppiness” in fig. 3.7. 
Need to be careful with nodes on frontier; 
allow repetitions or as in Fig. 3.14. 



Intuition: Contours of A* 

A* expands nodes in order of increasing f value. 
 
Gradually adds "f-contours" of nodes. 
Contour i has all nodes with f <= fi, where fi < fi+1 
 
Note: with uniform cost (h(n)=0) the bands will be circular around the start state. 

Optimality (intuition) 
1st solution found (goal node expanded) must 
be an optimal one since  goal nodes in 
subsequent contours will have higher f-cost 
and therefore higher g-cost (since h(goal)=0) 

Completeness (intuition) 
As we add bands of increasing f, we 
must eventually reach a band where f is 
equal to the cost of the path to a goal 
state. (assuming b finite and  step cost 
exceed some positive finite ε). 

A* expands all nodes 
with f(n)<C* 
Uniform-cost (h(n)=0) 
expands in circles. 

380 

400 

420 



A* Search: Optimality 

Theorem: 
    A* used with a consistent heuristic ensures optimality with 
    graph search. 



Proof:  
(1)   If h(n) is consistent, then the values of f(n) along any path are 
       non-decreasing. See consistent heuristics slide. 
 
(2) Whenever A* selects a node n for expansion, the optimal path 
      to that node has been found. Why? 
      Assume not. Then, the optimal path, P, must have some not yet 
      expanded nodes. (*) Thus, on P, there must be an unexpanded  
      node n’ on the current frontier (because of graph separation; 
      fig. 3.9; frontier separates explored region from unexplored 
      region). But, because f is nondecreasing along any path, n’ 
      would have a lower f-cost than n and would have been selected 
      first for expansion before n. Contradiction. 
From (1) and (2), it follows that the sequence of nodes expanded by A* 
using Graph-Search is in non-decreasing order of f(n). Thus, the first 
goal node selected must have the optimal path, because f(n) is the true 
path cost for goal nodes (h(Goal) = 0), and all later goal nodes have paths 
that are are at least as expensive.  QED 
 
(*) requires a bit of thought. Must argue that there cannot be a shorter 
path going only through expanded nodes (by contradiction). 



Note: Termination / Completeness 

Termination is guaranteed when the number of nodes  
  with                  is finite. 
 
 
Non-termination can only happen when 
 

–  There is a node with an infinite branching factor, or 

–  There is a path with a finite cost but an infinite 
number of nodes along it.  

 
•  Can be avoided by assuming that the cost of each action is 

larger than a positive constant d 

f (n) ≤ f *



A* Optimal in Another Way 

It has also been shown that A* makes optimal use of the heuristics in 
the sense that there is no search algorithm that could expand 
fewer nodes using the heuristic information (and still find the 
optimal / least cost solution. 

 
So, A* is “the best we can get.” 
 
Note: We’re assuming a search based approach with states/nodes, 

actions on them leading to other states/nodes, start and goal 
states/nodes. 



 
Example: The shortest route from  Hannover to Munich 
 
1)   Dijkstra’s alg., i.e., A* with h(n)=0 (Uniform cost search) 
2)  A* search 

 
 

Example thanks to Meinolf Sellmann 

Example: Contrasting A* with Uniform Cost 
(Dijkstra’s algorithm) 
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Note: route via Frankfurt longer than current one. 
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Shortest Paths in Germany 

We just solved a shortest path problem by means of the algorithm from Dijkstra. 
 
If we denote the cost to reach a state n by g(n), then Dijkstra chooses the state n from 

the fringe that has minimal cost g(n). (I.e., uniform cost search.) 
 
The algorithm can be implemented to run in time O(n log n + m) where n is the 

number of nodes, and m is the number of edges in the graph.  (As noted before, in 
most settings n (number of world states) and m (number of possible transitions 
between world states) grow exponentially with problem size. E.g. (N^2-1)-puzzle.) 

 
Approach is rather wasteful. Moves in circles around start city. Let’s try A* with non-

zero heuristics (i.e., straight distance). 
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Heuristics 



8-Puzzle  
Slide the tiles horizontally or vertically into the empty space until the  
configuration matches the goal configuration 
 
What’s the branching factor? 
(slide “empty space”) 
 

 
 

About 3, depending on location of empty 
tile: 
     middle à 4; corner à  2; edge à 3 
 

The average solution cost for a randomly generated 8-puzzle instance à about 22 steps 
So, search space to depth 22 is about 322  3.1  1010 states.  
à Reduced to by a factor of about 170,000 by keeping track of repeated states  
          (9!/2 = 181,440 distinct states) note: 2 sets of disjoint states. See exercise 3.4 
 
But: 15-puzzle à 1013 distinct states!  We’d better find  a good heuristic  

to speed up search! Can you suggest one? 

Note:  “Clever” heuristics now allow us to solve the 15-puzzle in 
a few milliseconds! 
 



Admissible heuristics      E.g., for the 8-puzzle: 
 
     h1(n) = number of misplaced tiles 
     h2(n) = total Manhattan distance 
     (i.e., no. of steps from desired location of each tile) 
 

 
    h1(Start) = ?  
    h2(Start) = ?  
 
 
  Why are heuristics admissible?  
  Which is better? 
  How can we get the optimal heuristics? (Given H_opt(Start) = 26. How would we find  

the next board on the optimal path to the goal?) 

Note: each empty-square-move = 1 step tile move. 

8 

3+1+2+2+2+3+3+2 = 18 
True cost = 26 

Desired properties heuristics:  
(1) consistent (admissible) 
(2) As close to opt as we can get (sometimes go a bit over…) 
(3) Easy to compute! We want to explore many nodes. 



Comparing heuristics 

Effective Branching Factor, b* 
 

–  If A* generates N nodes to find the goal at depth d 
b* = branching factor such that a uniform tree of depth d contains 

N+1 nodes (we add one for the root node that wasn’t included in 
N) 

N+1 = 1 + b* + (b*)2 + … + (b*)d 

 
 E.g., if A* finds solution at depth  5 using 52 nodes, then the effective 
branching factor is 1.92. 

 
–  b* close to 1 is ideal  

•  because this means the heuristic guided the A* search is 
    closer to ideal (linear). 
•  If b* were 100, on average, the heuristic had to consider 100 

children for each node 
•  Compare heuristics based on their b* 



Comparison of heuristics 

h2 indeed significantly better than h1 
d – depth of goal node 



Dominating heuristics 
h2 is always better than h1 

–  Because for any node, n, h2(n) >= h1(n).   (Why?) 

We say h2 dominates h1  
 

It follows that h1 will expand at least as many nodes as h2. 
 
Because: 

Recall all nodes with f(n) < C* will be expanded. 
 

This means all nodes, h(n) + g(n) < C*, will be expanded. 
So, all nodes n where h(n) < C* - g(n) will be expanded 
 

All nodes h2 expands will also be expanded by h1 and because h1 
is smaller, others may be expanded as well 



Inventing admissible heuristics: 
Relaxed Problems  

Can we generate h(n) automatically? 
 

–  Simplify problem by reducing restrictions on actions 

A problem with fewer restrictions on the actions is called a  
    relaxed problem 
 



Examples of relaxed problems 

Original: A tile can move from square A to square B iff 
 (1) A is horizontally or vertically adjacent to B and (2) B is blank 

 
Relaxed versions: 

–  A tile can move from A to B if A is adjacent to B (“overlap”; Manhattan distance) 
–  A tile can move from A to B if B is blank (“teleport”) 
–  A tile can move from A to B (“teleport and overlap”) 

Key: Solutions to these relaxed problems can be computed without search  
         and therefore provide a heuristic that is easy/fast to compute. 
 This technique was used by ABSOLVER (1993) to invent heuristics for the 8-puzzle  
better than existing ones and it also found a useful heuristic for famous Rubik’s  
cube puzzle. 



Inventing admissible heuristics: 
Relaxed Problems  

The cost of an optimal solution to a relaxed problem is an admissible heuristic  
     for the original problem. Why? 
 

1) The optimal solution in the original problem is also a solution to the relaxed 
problem (satisfying in addition all  the relaxed constraints). So, the solution cost 
matches at most the original optimal solution. 

2) The relaxed problem has fewer constraints. So, there may be other, less 
expensive solutions, given a lower cost (admissible) relaxed solution. 
 

h(n) = max {h1(n), h2(n), …, hm(n)} 

If component heuristics are admissible so is the composite. 

What if we have multiple heuristics available? I.e., h_1(n), h_2(n), … 



Inventing admissible heuristics:  
Learning 

Also automatically learning admissible heuristics 
using machine learning techniques, e.g., inductive 
learning and reinforcement learning. 
 
Generally, you try to learn a “state-evaluation” function 
or “board evaluation” function. (How desirable is state in 
terms of getting to the goal?) Key: What “features / 
properties” of state are most useful? 
  
More later… 



Summary 

Uninformed search:  
(1) Breadth-first search (2) Uniform-cost search 
(3) Depth-first search (4) Depth-limited search  
(5) Iterative deepening search (6) Bidirectional search 
 
Informed search: 
(1)   Greedy Best-First  
(2)   A*   
 
 
 



Summary, cont. 
Heuristics allow us to scale up solutions dramatically! 
 
Can now search combinatorial (exponential size) spaces with  
        easily 10^15 states and even up to 10^100 or more states. 
       Especially, in modern heuristics search planners (eg FF).  
 
        Before informed search, considered totally infeasible. 
 
Still many variations and subtleties: 
     There are conferences and journals dedicated solely to search. 
 
Lots of variants of A*. Research in A* has increased  
dramatically since A* is the key algorithm used by map engines. 
 
Also used in path planning algorithms (autonomous vehicles), and general 
(robotics) planning, problem solving, and even NLP parsing. 


