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Outline 

Adversarial Search  
Optimal decisions 
Minimax 
α-β pruning 
Case study: Deep Blue 
UCT and Go 
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Adversarial Reasoning: Games 

Mathematical Game Theory 
 
Branch of economics that views any multi-agent environment as 
a game, provided that the impact of each agent on the others is  
“significant”, regardless of whether the agents are cooperative or 
 competitive. 
 
First step: 

–  Deterministic 
–  Turn taking 
–  2-player 
–  Zero-sum game of perfect information (fully observable) 
       “my win is your loss” and vice versa; utility of final states 
       opposite for each player. My +10 is your -10. 
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Game Playing vs. Search    

  
Multi-agent game vs. single-agent search problem 
 
"Unpredictable" opponent need a strategy: specifies a move 
        for each possible opponent reply.  
        E.g with “huge” lookup table. 
 

 Time limits à unlikely to find optimal response, must 
approximate 

 
Rich history of game playing in AI, in particular in the area of chess. 
 
Both Turing and Shannon viewed chess as an important challenge for 
machine intelligence because playing chess appears to require some 
level of intelligence. 
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A Brief History of Computer Chess 

1912 

1950s 

1970s 

1997 

Today 
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Human-computer hybrid most exciting new level of play. Computers 
as smart assistants are becoming accepted. 
Area referred to as “Assisted Cognition.” 
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Why is Game-Playing a Challenge for AI? 

Competent game playing is a mark of some aspects of “intelligence” 

–  Requires planning, reasoning and learning 

Proxy for real-world decision making problems 

–  Easy to represent states & define rules 

–  Obtaining good performance is hard 

“Adversary” can be nature 

PSPACE-complete (or worse) 

–  Computationally equivalent to hardware debugging, formal verification, 
logistics planning 

–  PSPACE believed to be harder than NP. 
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Traditional Board Games 

Finite 

Two-player 

Zero-sum 

Deterministic 

Perfect Information 

Sequential 
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Key Idea: Look Ahead 

X’s turn 

O’s turn 

X 

3x3 Tic-Tac-Toe 
optimal play 

We start 3 moves per player in: 

Tic-tac-toe (or Noughts and 
crosses, Xs and Os)  

loss loss 
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Look-ahead based Tic-Tac-Toe 

X’s turn 

O’s turn 

X 

Tie Tie Tie Tie 



Bart Selman 
CS4700 

11 

Look-ahead based Tic-Tac-Toe 

X’s turn 

O’s turn 

Tie Tie Tie Tie 

Win for O Win for O 
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Look-ahead based Tic-Tac-Toe 

X’s turn 

O’s turn 

Tie Tie Tie Tie 

Win for O Win for O 
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Look-ahead based Tic-Tac-Toe 

X’s turn 

Tie Tie Tie Tie Win for O Win for O 

O’s turn 
Win for O Tie Win for O 
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Win for O Win for O Tie 

X’s turn 

Approach: Look first at bottom tree. Label bottom-most boards. 
     Then label boards one level up, according result of best possible move. 
     … and so on. Moving up layer by layer. 
Termed the Minimax Algorithm 

–  Implemented as a depth-first search 

Each board in game tree gets unique 
game tree value (utility; -1/0/+1) 
under optimal rational play. 
(Convince yourself.) 

E.g. 0 for top board. 

What if our opponent 
does not play optimally? 
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Aside: Game 
tree learning 

Can (in principle) store all board values in large table. 3^19 = 19,683 
for tic-tac-toe. 
 
Can use table to try to train classifier to predict “win”, “loss”, or “draw.” 
 
Issue: For real games, one can only look at tiny, tiny fragment of  
table. 
 
Reinforcement learning builds on this idea. 

See eg Irvine Machine Learning archive. 
archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame 
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Look-ahead based Chess 

X’s turn 

O’s turn 

X 

White’s turn 

Black’s 
turn 

But there’s a catch… 
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How big is this tree? 

Approx. 10^120 > Number of atoms in the observable universe (10^80) 

We can really only search a tiny, miniscule  faction of this tree! 

Around 60 x 10^9 nodes for 5 minute move. Approx. 1 / 10^70 fraction. 

 

~35 moves per 
position 

~80 
levels 
deep 
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What’s the work-around? Don’t search to the very end 

–  Go down 10-12 levels (still deeper than most humans) 

–  But now what? 

–  Compute an estimate of the position’s value 

•  This heuristic function is typically designed by a domain expert 

Consider a game tree 
with leaf utilities (final 
boards) +1 / 0 / -1 (or +inf / 0 –inf). 
What are the utilities of 
intermediate boards in the 
game tree? +1 / 0 / -1 

(or +inf / 0 / -inf) 
The board heuristics is trying to estimate these values from a quick 
calculation on the board. Eg, considering material won/loss on chess 
board or regions captures in GO. Heuristic value of e.g. +0.9, suggests 
true value may be +1. 
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What is a problem for the board heuristics (or evaluation functions) 
at the beginning of the game? 

(Consider a heuristics that looks at lost and captured pieces.) 

What will the heuristic values be near the top? 

Close to 0! Not much has happened yet…. 

Other issue: children of any node are mostly quite similar.  
Gives almost identical heuristic board values. Little or no 
information about the right move. 

Solution: Look ahead. I.e., build search tree several levels 
deep (hopefully 10 or more levels). Boards at bottom of 
tree more diverse. Use minimax search to determine value 
of starting board, assuming optimal play for both players. 
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IBM knew this when they “acquired” the Deep Thought team. 
They could predict what it would take to beat Kasparov. 

Intriguing 
aside: 
What is the 
formal 
computational 
complexity of 
chess? Use 
Big-O notation. 
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Will deeper search give stronger play?  Always? And why? 

Very counterintuitive: there are “artificial games” where searching 
deeper leads to worse play! (Nau and Pearl 1980) Not in natural games! 
Game tree anomaly. 

Heuristic board eval value is sometimes informally 
referred to as the “chance of winning” from that position. 
 
That’s a bit odd, because in a deterministic game with 
perfect information and optimal play, there is no “chance”  
at all! Each board has a fixed utility: 
-1, 0, or +1 (a loss, draw, or a win).  (result from game theory) 
 
Still, “chance of winning” is an informally useful notion. But, 
remember, no clear semantics to heuristic values. 

What if board eval gives true board utility? How much 
search is needed to make a move? 
We’ll see that using machine learning and “self play,” 
we can get close for backgammon. 
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Limitations? 

Two important factors for success: 

–  Deep look ahead 

–  Good heuristic function 

Are there games where this is not feasible?  
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Limitations? 

Two important factors for success: 

–  Deep look ahead 

–  Good heuristic function 

Are there games where this is not feasible?  

Looking 14 levels 
ahead in Chess ≈ 
Looking 4 levels 

ahead in Go 
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Limitations? 

Two important factors for success: 

–  Deep look ahead 

–  Good heuristic function 

Are there games where this is not feasible?  

Looking 14 levels 
ahead in Chess ≈ 
Looking 4 levels 

ahead in Go 
 

Moves have 
extremely delayed 

effects 
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Limitations? 

Two important factors for success: 

–  Deep look ahead 

–  Good heuristic function 

Are there games where this is not feasible?  

Looking 14 levels 
ahead in Chess ≈ 
Looking 4 levels 

ahead in Go 
 

Moves have 
extremely delayed 

effects 
 

Minimax players for GO were very weak until 2007…but then 
play at master level. Now, AlphaGo world champion. 
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Limitations? 

Two important factors for success: 

–  Deep look ahead 

–  Good heuristic function 

Are there games where this is not feasible?  

Looking 14 levels 
ahead in Chess ≈ 
Looking 4 levels 

ahead in Go 
 

Moves have 
extremely delayed 

effects 
 

New sampling based search method: 
Upper Confidence bounds applied to Trees (UCT) 
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Well… Why not use a strategy / knowledge, 
as humans do? 

Consider for Tic-Tac-Toe: 

Sounds reasonable… right? 

Oops!! 
Consider 
Black uses 
the strategy… 

Rule 3 Rule 4 

Rule 2 
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So, although one can capture strategic knowledge of many games 
in high-level rules (at least to some extent), in practice any 
interesting game will revolve precisely around the exceptions to 
those rules! 
 
Issue has been studied for decades but research keeps coming back to 
game tree search (or most recently, game tree sampling). 
 
Currently only one exception: reinforcement learning for backgammon.  
         (discussed later) 
         A very strong board evaluation function was learned in self-play. 
         Represented as a neural net. 
         Almost no search remained. 
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Formal definition of a game:  
–  Initial state 
–  Successor function: returns list of (move, state) pairs 
–  Terminal test: determines when game over 

Terminal states: states where game ends 
–  Utility function (objective function or payoff function): 

gives numeric value for terminal states 

We will consider games with 2 players (Max and Min) 
  

Max moves first.  
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Game Tree Example: 
Tic-Tac-Toe 

Tree from 
Max’s  
perspective 
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Minimax Algorithm 

Minimax algorithm 
–  Perfect play for deterministic, 2-player game 
–  Max  tries to maximize its score   
–  Min  tries to minimize Max’s score (Min) 
–  Goal: Max to move to position with highest minimax value  

 à Identify best achievable payoff against best play 
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Minimax Algorithm   

Payoff for Max 
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Minimax Algorithm (cont’d) 

3 9 0 7 2 6 

Payoff for Max 
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Minimax Algorithm (cont’d) 

3 9 0 7 2 6 

3 0 2 

Payoff for Max 
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Minimax Algorithm 

3 9 0 7 2 6 

3 0 2 

3 

Payoff for Max 

What if  
payoff(Q) = 100 
payoff(R) = 200 
Starting DFS, left to right,  
do we need to know eval(H)? 

Do DFS. Real games: 
use iterative deepening. 
(gives “anytime” approach.) 

Prune! Prune! 

>= 3 

<= 0 

(DFS left to right) 

<= 2 alpha-beta 
pruning 
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Properties of minimax algorithm: 
 
Complete? Yes (if tree is finite) 
 
Optimal? Yes (against an optimal opponent) 
 
Time complexity? O(bm) 
 
Space complexity? O(bm) (depth-first exploration, if it generates all 

successors at once) 
 
 For chess, b ≈ 35, m ≈ 80 for "reasonable" games 

à exact solution completely infeasible 
 
 m – maximum depth of the tree; b – legal moves 

here 
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Minimax Algorithm   

Limitations 
–  Generally not feasible to traverse entire tree 
–  Time limitations 

Key Improvements 
–  Use evaluation function instead of utility (discussed earlier) 

•  Evaluation function provides estimate of utility at given position 

–  Alpha/beta pruning 
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Can we  improve search by reducing the size of the game tree 
to be examined?   

 
à Yes!  Using alpha-beta pruning 

α-β Pruning 

Principle 
–  If a move is determined worse than another move already 

examined, then there is no need for  further examination of the 
node. 

Analysis shows that will be able to search almost twice as deep. 
Really is what makes game tree search practically feasible. 
E.g. Deep Blue 14 plies using alpha-beta pruning.  
Otherwise only 7 or 8 (weak chess player). (plie = half move / one player) 
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α-β Pruning Example 
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Note: order 
children matters! 

What gives best pruning? 

Visit most promising (from min/max perspective) first. 
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Alpha-Beta Pruning 

Rules: 
–  α is the best (highest) found so far along the path for Max 
–  β is the best (lowest) found so far along the path for Min  
–  Search below a MIN node may be alpha-pruned if 
    its β <=  α  of some MAX ancestor 
–  Search below a MAX node may be beta-pruned if  its  
    α >=  β of some MIN ancestor. 
 
 
 
See also fig. 5.5 R&N. 
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More abstractly 

α is the value of the best 
(i.e., highest-value) choice 
found so far at any choice 
point along the path for 
max 
 
If v is worse than α, max 
will avoid it 
 

à prune that branch 
 
Define β similarly for min 
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Properties of α-β Prune 

Pruning does not affect final result 

Good move ordering improves effectiveness of pruning b(e.g., chess, 
try captures first, then threats, froward moves, then backward 
moves…) 

With "perfect ordering," time complexity = O(bm/2) 
à doubles depth of search that alpha-beta pruning can explore 

Example of the value of reasoning about which  
computations are relevant (a form of metareasoning) 
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A few quick approx. numbers for Chess: 
 
b = 35 
200M nodes / second ===> 5 mins = 60 B nodes in search tree 
(2 M nodes / sec. software only, fast PC ===> 600 M nodes in tree) 
 
35^7 = 64 B 
35^5 = 52 M 
 
So, basic minimax: around 7 plies deep. (5 plies) 
With, alpha-beta 35^(14/2) = 64 B. Therefore, 14 plies deep. (10 plies) 
 
 
 
 
 
 
 

Aside: 
4-ply ≈ human novice 
8-ply / 10-ply ≈ typical PC, human master 
14-ply ≈ Deep Blue, Kasparov (+ depth 25 for 
“selective extensions”) / 7 moves by each player. 
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Resource limits 
 
Can’t go to all the way to the “bottom:” 
 
      evaluation function  

    = estimated desirability of position 
 
 
cutoff test:  

e.g., depth limit  
(Use Iterative Deepening) 
 
 
“Unstable positions:” 
Search deeper. 
Selective extensions. 
E.g. exchange of several 
pieces in a row. 

à  add quiescence search:  
à  quiescent position: position where 
next move unlikely to cause  large 
change in players’ positions 

What is the problem with that?   

Horizon effect. 
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Evaluation Function  

–  Performed at search cutoff point 
–  Must have same terminal/goal states as utility function 
–  Tradeoff between accuracy and time → reasonable complexity 
–  Accurate 

•  Performance of game-playing system dependent on accuracy/
goodness of evaluation 

•  Evaluation of nonterminal states strongly correlated with actual 
chances of winning 
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Evaluation functions 
For chess, typically linear weighted sum of features 
 

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s) 
 

e.g., w1 = 1 with  
 f1(s) = (number of white pawns) –  (number of black pawns), etc. 

 Key challenge – find a good  evaluation features: 
       Not just material! (as used by novice) 

 Isolated pawns are bad. 
 How well protected is your king? 
 How much maneuverability to you have? 
 Do you control the center of the board? 
 Strategies change as the game proceeds 

Features are a form of chess knowledge. Hand-coded in eval function.  
          Knowledge tightly integrated in search. 
          Feature weights: can be automatically tuned (“learned”). 
Standard issue in machine learning:  
    Features, generally hand-coded; weights tuned automatically. 
 
 



When Chance is involved: 
Backgammon Board 

1 2 3 4 5 70 8 9 10 11 126

24 23 22 2025 19 18 17 16 15 14 1321
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Expectiminimax 

Generalization of minimax for games with chance nodes 
 
Examples: Backgammon, bridge 
 
Calculates expected value where probability is taken  
over all possible dice rolls/chance events 

 - Max and Min nodes determined as before 
 - Chance nodes evaluated as weighted average 

 
 



Game Tree for Backgammon 
MAX

DICE

MIN

DICE

MAX

TERMINAL

… … … 

… 

… 

… 

… … … 

… 
… 

… … 

… 
… 

… 

… 

… 

1/36
1,1

6,5 6,6

6,5 6,6

1/18
1,2

1/36
1,1

C 

1/18
1,2
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Expectiminimax 

Expectiminimax(n) = 

    Utility(n) for n, a terminal state 

for n, a Max node 

for n, a Min node 

for n, a chance node 

expectiminimax( )s∈s Succ(n) max
expectiminimax( )s∈s Succ(n) min

( ) ( )*expectiminimax( )s Succ n P s s∈Σ
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1.32.1

2

.1 .9.9 .1

1

1A 2A

4

3

2 3 3

1

4

4

40.921

20

.1 .9.9 .1

1

1A 2A

1

1

20

20 30 30

30

400 400

400

Expectiminimax 

Small chance at high payoff wins. 
But, not necessarily the best thing 
to do! 

.9 * 2 + .1 * 3 = 2.1 

2.1 40.9

33
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Summary 

--- game tree search 
--- minimax 
--- optimality under rational play 
--- alpha-beta pruning 
--- board evaluation function (utility) / weighted sum of features and 

tuning 
--- expectiminimax 


