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Introduction 

Search is a central topic in AI. 
 
Originated with Newell and Simon’s work on problem solving; 
Human Problem Solving (1972). 
 
Automated reasoning is a natural search task. 
 
More recently: Given that almost all AI formalisms 
(planning, learning, etc) are NP-Complete or worse, 
some form of search (or optimization) is generally  
unavoidable (i.e., no smarter algorithm available). 
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Problem solving agents are goal-directed agents: 
 
1.   Goal Formulation: Set of one or more (desirable) 

world states (e.g. checkmate in chess). 
2.  Problem formulation: What actions and states to 

consider given a goal and an initial state. 
3.  Search for solution: Given the problem, search for a 

solution --- a sequence of actions to achieve the goal 
starting from the initial state. 

4.   Execution of the solution 
 
 
 

Problem-solving agents 
 

Note: Formulation may feel somewhat “contrived,” but was meant 
to model very general (human) problem solving process. 

More details on “states” soon. 



Example: Path Finding problem Formulate goal: 
–  be in Bucharest 

(Romania) 
 
Formulate problem: 

–  action: drive between 
pair of connected cities 
(direct road) 

 
–  state: be in a city 
     (20 world states) 
 

Find solution: 
–  sequence of cities 

leading from start to 
goal state, e.g., Arad, 
Sibiu, Fagaras, 
Bucharest 

 
Execution 

–  drive from Arad to 
Bucharest according to 
the solution 

Initial 
State 

Goal 
State 

Environment: fully observable (map), 
deterministic, and the agent knows  effects 
of each action. Is this really the case? 

Note: Map is somewhat of a “toy” example. Our real 
interest: Exponentially large spaces, with e.g. 10^100 
or more states. Far beyond full search. Humans can 
often still handle those! (We need to define a distance 
measure.) One of the mysteries of cognition. 



Micro-world: The Blocks World 

T 
A B C 

D 

Initial State 

A 

C 
D 

Goal State 

gripper 

How many 
different possible 
world states? 

a) Tens? 
b) Hundreds? 
c) Thousands? 
d) Millions? 
e) Billions? 
f) Trillions? 



Size state space of blocks world example 
n = 8 objects, k = 9 locations to build towers, one gripper. (One location in box.) 
All objects distinguishable, order matter in towers. (Assume stackable 
in any order.) 
 
Blocks: Use r-combinations approach from Rosen (section 5.5; CS-2800). 
        - - - - - - - - - - - - - - - -   consider 16 = (n + k – 1) “spots” 
                                                Select k – 1 = 8 “dividers” to create locations,  
                                                (16 choose 8) ways to do this, e.g.,  
        |  | - - -   | -  |  | - - -   |  | - | Allocate n = 8 objs to remaining spots, 8! ways, e.g., 
        |  | 4 1 8 | 5 |  | 6 3 7 |  | 2 |                  assigns 8 objects to the 9 locations  
     a  b     c      d  e     f     g  h  i                based on dividers 
 
So, total number of states (ignoring gripper): (16 choose 8) * 8! = 518,918,400 
* 9 for location gripper: > 4.5 billion states even in this toy domain! 
Search spaces grow exponentially with domain. Still need to search them, e.g., to 
find a  sequence of states (via gripper moves) leading to a desired goal state. 
How do we represent states?  [predicates / features] 



Problem types 
1) Deterministic, fully observable  
Agent knows exactly which state it will be in; solution is a sequence of actions. 
 
2) Non-observable --- sensorless problem 

–  Agent may have no idea where it is (no sensors); it reasons in terms of 
belief states; solution is a sequence actions (effects of actions certain). 

3) Nondeterministic and/or partially observable: contingency problem  
–  Actions uncertain, percepts provide new information about current 

state (adversarial problem if uncertainty comes from other agents). 
–  Solution is a “strategy” to reach the goal. 
 

4) Unknown state space and uncertain action effects: exploration problem 
--    Solution is a “strategy” to reach the goal (end explore environment). 

 
           

In
cr

ea
si

ng
 c

om
pl

ex
ity

 



Example: Vacuum world state space graph 

states?  
actions?  
goal test?     
path cost?    

The agent is in one of 8 possible world states. 
Left, Right, Suck [simplified: left out No-op] 
No dirt at all locations (i.e., in one of bottom two states). 
1 per action 

Goal 
(reach one in 
this set of states) 

Start state 

Minimum path from Start to Goal state: 
Alternative, longer plan: 

3 actions 
4 actions 

Note: path with thousands of steps before reaching goal also exists. 



Example: The 8-puzzle 
“sliding tile puzzle” 

states?        the boards, i.e., locations of tiles  
actions?      move blank left, right, up, down  
goal test?    goal state (given; tiles in order) 
path cost?   1  per move 
 
Note: finding optimal solution of n-puzzle family is NP-hard! 
Also, from certain states you can’t reach the goal. 
Total number of states 9! = 362,880 (more interesting space; 
not all connected… only half can reach goal state) 

Aside: 
variations 
on goal state. 
eg empty square 
bottom right or 
in middle. 



15-puzzle Goal state 

Search space: 
16!/2 = 1.0461395 e+13,  
about 10 trillion. 
Too large to store in RAM 
(>= 100 TB). A challenge to search 
for a path from a given board to goal. 

Korf, R., and Schultze, P. 2005. Large-scale parallel breadth-first search. In 
Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-05). 
See Fifteen Puzzle Optimal Solver. With effective search: opt. solutions in seconds! 
Average: milliseconds. 

Longest minimum path: 80 moves.  Just 17 boards, e.g, 

Average minimum soln. length: 53. 

People can find solns. But not necessarily 
minimum length. See solve it! (Gives strategy.) 

Korf: 
Disk errors 
become a  
problem. 
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Where are the 10 trillion states? 

minimum distance from goal state (# moves) 
dist. # states 

etc. 

dist. # states 



17 boards farthest away from goal state (80 moves) 

Each require 80 moves to reach: 
Intriguing similarities. Each number 
has its own few locations.  

4 
1 

What is 
it about 
these 17 
boards 
out of 
over 10 
trillion? 

13 

<15,12,11>/ 
 <9,10,14>  

? 

? 
? 

Interesting machine learning task:  
Learn to recognize the hardest boards! 
(Extremal Combinatorics, e.g. LeBras, Gomes, and Selman AAAI-12) 



17 boards farthest away from goal state (80 moves) 

Most regular extreme case: 

Thanks to Jonathan GS 

Each quadrant 
reflected along 
diagonal. “move 
tiles furthest away” 

Goal state 



A few urls: 
 
Play the eight puzzle on-line 
Play the fifteen puzzle on-line 
 
Let’s consider the search for a solution. 



Searching for a solution 
to the 8-puzzle. 

A breadth-first search tree. (More detail soon.) 

Start state 

Goal 

Branching factor 1, 2, or 3 (max). So, approx. 2 --- # nodes roughly doubles at 
each level. Number states of explored nodes grows exponentially with depth. 

Aside: in this 
tree, immediate 
duplicates are 
removed. 



For 15-puzzle, hard initial states: 80 levels deep, requires 
exploring approx. 2^80 ≈ 10^24 states.  
 
If we block all duplicates, we get closer to 10 trillion (the number of 
distinct states: still a lot!).  
 
Really only barely feasible on compute cluster with lots of memory and 
compute time. (Raw numbers for 24 puzzle, truly infeasible.) 
 
Can we avoid generating all these boards? Do with much less search? 
(Key: bring average branching factor down.) 
 



Gedanken experiment: Assume that you knew for each state, the minimum 
number of moves to the final goal state. (Table too big, but assume there is 
some formula/algorithm based on the board pattern that gives this number 
for each board and quickly.) 
 
Using the minimum distance information, is there a clever way to find a  
minimum length sequence of moves leading from the start state to the goal  
state? What is the algorithmic strategy? 
 



A breadth-first search tree. (More detail soon.) 

Start state 

Goal 

Branching factor approx. 2.  So, with “distance oracle” we only need  
to explore approx. 2 * (min. solution length).               (Why 2 times?) 

d = 5 

d >= 5 

d >= 4 d >= 3 d = 3 

d >= 4 d = 4 

Hmm. How do I know? d = min dist. to goal 

Note: at least one 
neighbor with d = 4. 

d = 2 

d = 1 

d = 0 

Select 

Select 

d >= 1 

Select 

Select 

Select 



For 15-puzzle, hard initial states: 80 levels deep, requires exploring 
approx. 2^80 ≈ 10^24 states.  
 
But, with distance oracle, we only need to explore roughly 80 * 2 = 160 
states! (only linear in size of solution length) 
 
We may not have the exact distance function (“perfect heuristics”), but  
we can still “guide” the search using an approximate distance function. 
 
This is the key idea behind “heuristic search” or “knowledge-based search.”  
We use knowledge / heuristic information about the distance to the goal to 
guide our search process. We can go from exponential to polynomial or even  
linear complexity. More common: brings exponent down significantly.  
E.g. from 2^L to 2^(L/100). 
 
The measure we considered would be the “perfect” heuristic. Eliminates tree  
search! Find the right “path” to goal state immediately. 



A breadth-first search tree.  

Start state 

Goal 

Perfect “heuristics,” eliminates search. 
Approximate heuristics, significantly reduces search. 
Best (provably) use of search heuristic info: A* search (soon). 

Basic idea: State evaluation 
function can effectively guide 
search. 
 
Also in multi-agent settings. 
(Chess: board eval.) 
 
Reinforcement learning: 
Learn the state eval function. 
 

General question: Given a state space, 
how good a heuristics can we find? 



State evaluation functions 
or “heuristics” 

Provide guidance in terms of what action to take next. 
 
General principle: Consider all neighboring states, reachable via some 

action. Then select the action that leads to the state with the highest 
utility (evaluation value). This is a fully greedy approach. 

Aside: “Highest utility” was “shortest distance to the goal” in previous 
example. 

 
Because eval function is often only an estimate of the true state value, 

greedy search may not find the optimum path to the goal. 
 
By adding some search with certain guarantees on the approximation, we 

can still get optimal behavior (A* search) (i.e. finding the optimal path 
to the solution). Overall result: generally exponentially less search 
required. 



 
N-puzzle heuristics (“State evaluation function” wrt the goal to be reached): 
 
1)   Manhattan Distance: For each tile the number of grid units between its 

current location and its goal location are counted and the values for all 
tiles are summed up. (underestimate; too “loose”; not very powerful) 

2)   Felner, Ariel, Korf, Richard E., Hanan, Sarit, Additive Pattern 
Database Heuristics, Journal of Artificial Intelligence Research 22 
(2004) 279-318. The 78 Pattern Database heuristic takes a lot of memory 
but solves a random instance of the 15-puzzle within a few milliseconds 
on average. An optimal solution for the 80 moves cases takes a few 
seconds each. So, thousands of nodes considered instead of many 
billions. 

Note: many approx. heuristics (“conservative” / underestimates to goal) 
combined with search can still find  optimal solutions. 



State evaluation function (or utility  
value) is a very general and useful idea. 
Example: 
•  In chess, given a board, what would be the  
       perfect evaluation value that you would want to know?  
       (Assume the perspective of White player.) 
 
A: f(board) à {+1, 0, -1}, with +1 for guaranteed win for White, 
                                            0 draw under perfect play, and 
                                            -1 loss under perfect play. 
Perfect play: all powerful opponent. 
Given f, how would you play then? 
 
In practice, we only know (so far) of an approximation of f. 
     f(board) à [-1,+1]    (interval from -1 to +1) 
     based on “values” of chess pieces, e.g., pawn 1 point, rook 5 points. 
     Informally, board value gives “probability (?) of winning.” 
      
 



State evaluation function (or utility  
value) is a very general and useful idea. 
Examples: 
•  TD-Gammon backgammon player. Neural net 
       was trained to find approximately optimal state (board) 
       evaluation values (range [-1,+1]). (Tesauro 1995) 
 
•  “Robocopter” --- automated helicopter control; 
     trained state evaluation function.  
     State given by features, such as, 
     position, orientation, speed, and 
     rotors position and speed. Possible 
     actions change rotors speed and 
     position. Evaluation assigns value 
     in [-1,+1] to capture stability. 
 
 
        

(Abbeel, Coates, and Ng 2008) 



Example: Robotic assembly 

 
 
 
 
 
states?:        real-valued coordinates of robot joint angles 
                     parts of the object to be assembled 
actions?:      continuous motions of robot joints 
goal test?:    complete assembly 
path cost?:   time to execute 
 



Other example search tasks 
VLSI layout: positioning millions of components and connections on a 

chip to minimize area, circuit delays, etc. 
 
Robot navigation / planning 
 
Automatic assembly of complex objects 
 
Protein design: sequence of amino acids that will fold into the 3-

dimensional protein with the right properties. 
 
Literally thousands of combinatorial search / reasoning / parsing / 
matching problems can be formulated as search problems in exponential 
size state spaces. 
 



Search Techniques 



Searching for a (shortest / least cost) path to goal state(s). 

Search through the state space. 

We will consider search techniques that use an  
explicit search tree that is generated by the  
initial state + successor function. 

  
initialize (initial node) 
Loop 

 choose a node for expansion 
     according to strategy 
 goal node? à done 
 expand node with successor function 

 
    



Tree-search algorithms 

Basic idea: 
–  simulated exploration of state space by generating successors of 

already-explored states (a.k.a. ~ expanding states) 
 

Note: 1) Here we only check a node for possibly being a goal state, after we 
select the node for expansion.  
2) A “node” is a data structure containing state + additional info (parent 
node, etc. 

Fig. 3.7 R&N, p. 77 



Tree search example 
Node selected 
for expansion. 



Nodes added to tree. 



Selected for expansion. 

Added to tree. 

Note: Arad added (again) to tree! 
(reachable from Sibiu) 
 
Not necessarily a problem, but 
in Graph-Search, we will avoid 
this by maintaining an 
“explored” list. 



Graph-search 

Note:  
1) Uses “explored” set to avoid visiting already explored states. 
2) Uses “frontier” set to store states that remain to be explored and expanded. 
3) However, with eg uniform cost search, we need to make a special check when 
     node (i.e. state) is on frontier. Details later. 

Fig. 3.7 R&N, p. 77. See also exercise 3.13. 



Implementation: states vs. nodes 
A state is a --- representation of --- a physical configuration. 
 
A node is a data structure constituting part of a search tree includes 

state, tree parent node, action (applied to parent), path cost (initial 
state to node) g(x), depth 

 
 
 
 
 
 
The Expand function creates new nodes, filling in the various fields 

and using the SuccessorFn of the problem to create the 
corresponding states. 

 

Fringe is the collection of nodes that have been generated but not (yet) 
expanded. Each node of the fringe is a leaf node.  



Implementation: general tree search 



Search strategies 

A search strategy is defined by picking the order of node expansion.  
 
Strategies are evaluated along the following dimensions: 

–  completeness: does it always find a solution if one exists? 
–  time complexity: number of nodes generated 
–  space complexity: maximum number of nodes in memory 
–  optimality: does it always find a least-cost solution? 

 
Time and space complexity are measured in terms of  

–  b: maximum branching factor of the search tree 
–  d: depth of the least-cost solution 
–  m: maximum depth of the state space (may be ∞) 

 



Uninformed search strategies 

Uninformed (blind) search strategies use only the 
information available in the problem definition: 

 

–  Breadth-first search 
–  Uniform-cost search 
–  Depth-first search 
–  Depth-limited search 
–  Iterative deepening search 
–  Bidirectional search 

 

Key issue: type of queue used for the fringe of the search tree 
(collection of tree nodes that have been generated but not yet  
expanded) 



Breadth-first search 

Expand shallowest unexpanded node. 
 
Implementation: 

–  fringe is a FIFO queue, i.e., new nodes go at end 
    (First In First Out queue.) 

 

Fringe queue:   <A> 

Select A from 
queue and expand. 

Gives 
<B, C> 



Queue:   <B, C> 

Select B from 
front, and expand. 
 
Put children at the 
end. 

Gives 
<C, D, E> 



Fringe queue:   <C, D, E> 



Fringe queue:   <D, E, F, G> 

Assuming no further children, queue becomes 
<E, F, G>, <F, G>, <G>, <>. Each time node checked 
for goal state. 



Properties of breadth-first search 

Complete? Yes (if b is finite) 
 
Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1) 
 
Space? O(bd+1) (keeps every node in memory; 
                          needed also to reconstruct soln. path) 
Optimal soln. found?  
       Yes (if  all step costs are identical) 
 
Space is the bigger problem (more than time) 
 

b: maximum branching factor of the search tree 
d: depth of the least-cost solution 

Note: check for  
goal only when 
node is expanded. 

Why? 
Depth d, goal 
may be last 
node (only 
checked when 
expanded.). 



Uniform-cost search 

Expand least-cost (of path to) unexpanded node  
       (e.g. useful for finding shortest path on map) 
Implementation: 

–  fringe = queue ordered by path cost 
 

Complete? Yes, if step cost ≥ ε  (>0) 
Time? # of nodes with g ≤ cost of optimal solution (C*), 

O(b(1+⎣C*/ ε⎦)  
Space? # of nodes with g ≤ cost of optimal solution,  
      O(b(1+⎣C*/ ε⎦)  
Optimal? Yes – nodes expanded in increasing order of g(n) 
Note: Some subtleties (e.g. checking for goal state).  
          See p 84 R&N. Also, next slide.  
 

g – cost of reaching a node 



Uniform-cost search 
Two subtleties: (bottom p. 83 Norvig) 
1)   Do goal state test, only when a node is selected for expansion. 
        (Reason: Bucharest may occur on frontier with a longer than 
        optimal path. It won’t be selected for expansion yet. Other nodes 
        will be expanded first, leading us to uncover a shorter path to 
        Bucharest. See also point 2). 
 
2) Graph-search alg. says “don’t add child node to frontier if already on 
     explored list or already on frontier.” BUT, child may give a shorter path 
     to a state already on frontier. Then, we need to modify the existing 
     node on frontier with the shorter path. See fig. 3.14 (else-if part). 



Depth-first search 
“Expand deepest unexpanded node” 
 
Implementation: 

–  fringe = LIFO queue, i.e., put successors at front (“push on stack”) 
    Last In First Out 

 
Fringe stack: 
          A 

Expanding A,  
gives stack: 
      B 
      C 
 
So, B next. 



Expanding B, 
gives stack: 
      D 
      E 
      C 
 
So, D next. 



Expanding D, 
gives stack: 
      H 
       I 
      E 
      C 
 
So, H next. 
etc. 







 
 



 
 











 
 



What is main advantage over breadth first search? 
 
 
What information is stored? How much storage required? 

The stack. O(depth  x branching). 



Properties of depth-first search 
Complete?  
 
 
 

Time? O(bm): bad if m is much larger than d 
–   but if solutions are dense, may be much faster than breadth-first 

 
Space?  
 
Guarantee that 
opt. soln. is found?  
 

Note: In “backtrack search” only one successor is generated  
à only O(m) memory is needed; also successor is modification of 
the current state, but we have to be able to undo each modification. 
More when we talk about Constraint Satisfaction Problems (CSP).  

b: max. branching factor of the search tree 
d: depth of the shallowest (least-cost) soln. 
m: maximum depth of state space 

No: fails in infinite-depth spaces, spaces with loops 
            Modify to avoid repeated states along path 

      à complete in finite spaces 

O(bm), i.e., linear space! 

No 

Note: Can also 
reconstruct soln. path 
from single stored 
branch. 



Iterative deepening search 
[here] 



Iterative deepening search l =0 



Iterative deepening search l =1 



Iterative deepening search l =2 



Iterative deepening search l =3 



Combine good memory requirements of depth-first with 
the completeness of breadth-first when branching factor is 
finite and is optimal when the path cost is a non-decreasing 

function of the depth of the node. 

Why would one do that? 

Idea was a breakthrough in game playing. All game 
tree search uses iterative deepening nowadays. What’s 
the added advantage in games? 

“Anytime” nature. 



Iterative deepening search 
 
Number of nodes generated in an iterative deepening search to depth 
d with branching factor b:  
 
 

NIDS = d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd  
 

Nodes generated in a breadth-first search with branching factor b:  
 

 NBFS = b1 + b2 + … + bd-2 + bd-1 + bd 
 
For b = 10, d = 5, 
 

–  NBFS= 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110 
 

–  NIDS = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456 
 
 

Looks quite wasteful, is it? 

Iterative deepening is the preferred uninformed search method 
when there is a large search space and the depth of the solution 

is not known. 

J 



Properties of iterative deepening search 

Complete? Yes 
(b finite) 
 
Time?  d b1 + (d-1)b2 + … + bd = O(bd) 
 
Space? O(bd) 
 
Optimal? Yes, if step costs identical 



Bidirectional Search 
•  Simultaneously: 

–  Search forward from start 
–  Search backward from the goal 

 Stop when the two searches meet. 
 
•  If branching factor = b in each direction, 
     with solution at depth d  

 è  only O(2 bd/2)= O(2 bd/2) 
 
•  Checking a node for membership in the other search tree can be done in constant 

time (hash table) 

•  Key limitations: 
 Space O(bd/2)  
 Also, how to search backwards can be an issue (e.g., in Chess)? What’s tricky? 
 Problem: lots of states satisfy the goal; don’t know which one is relevant. 

 

Aside: The predecessor of a node should be easily computable (i.e., actions 
are easily reversible). 



Repeated states Failure to detect repeated states can turn  
linear problem into an exponential one! 
 

Problems in which actions are reversible (e.g., routing problems or 
sliding-blocks puzzle). Also, in eg Chess; uses hash tables to check 
for repeated states. Huge tables 100M+ size but very useful. 

Don’t return  to parent node 
 
Don’t generate successor = node’s 
parent 
 
Don’t allow cycles 
 
Don’t revisit state 
 
Keep every visited state in memory! 
O(bd) (can be expensive) 
 

See Tree-Search vs. Graph-Search in Fig. 3.7 R&N. But need to 
be careful to maintain (path) optimality and completeness. 



Summary: General, uninformed search 
Original search ideas in AI where inspired by studies of human problem 

solving in, eg, puzzles, math, and games, but a great many AI tasks now 
require some form of search (e.g. find optimal agent strategy; active 
learning; constraint reasoning; NP-complete problems require search). 

 
Problem formulation usually requires abstracting away real-world details 

to define a state space that can feasibly be explored. 

Variety of uninformed search strategies 

Iterative deepening search uses only linear space and not much more time 
than other uninformed algorithms. 

 
Avoid repeating states / cycles. 


