Reinforcement Learning, cont.

Models an agent trying to learn “what to do” /

“how to act” in a complex environment.

So far, we have seen passive learning
We learned utility values for a fixed world

with fixed transitions (no real “actions”)

Key issue: delayed rewards / feedback.
(R&N chapter 20.)

Example environment next page.

Slide CS472-2



Slide CS472—-3




Considered strategies:
(a) “Sampling” (Naive updating)

Problem: slow.

(b) “Calculation” / “Equation solving”

Problem: to many states.

(¢) “in between (a) and (b)”

(Temporal Difference Learning — TD learning)

good compromise of (a) & (b).

Slide CS472—4



Recap: Adaptive dynamic programming

Intuition:

Consider U(3, 3)
From figure we see that

U(3,3) =033 xU(4,3)+0.33 xU(2,3) +0.33 x U(3,2)
= 0.33 x 1.0 4+ 0.33 x 0.0886 4 0.33 x —0.4430

= (0.2152

Equation solving!!

Slide CS472-5



Recap: Temporal difference learning

When observing a transition from 7 to 7,
bring U(7) value closer to that of U(j)

Use update rule:

U(i) = U(1) + (R(1) + U(J) = U(1))

« 1s the learning rate parameter
rule is called the temporal-difference or TD

equation. (we take the difference between successive

states.)

Slide CS472-6



Issues:

What if environment is unknown?
What if agent can decide on actions?

How do we link this to game playing?

(discuss)

Slide CS472-7



Active Learning

Let M;'; denote the probability of reaching state

9 when excuting state ¢

Consider: M}, = 1 for exactly one value of j
for each given ¢ and a.

what are the utility values of the states in that case?”
This is e.g., the case in chess.

What is the “problem”?
Different in backgammon.

Slide CS472—-8



A rational agent will now optimize its expected utility.
We get:

U(i) = R(i) + max, >; MU(j)

Again, a weighted sum of the states you can reach.

Pick action with maximal expected return.

Slide CS472-9



Note: R(i), rewards in end states; ground the model.

Standard TD equation can still be used!

U(r) —U@)+a(R(e)+U(y) —U())

One more issue left .. ..

Slide CS472-10



How do we select actions?

How about: action with maximum expected utility?”

(Note: using current estimates.)

Purely rational.

What could be the problem?

Slide CS472-11



Issue: Exploration.
Always using optimal utility may get you stuck
in some strategy found early on and that works

reasonably well.

That way you don’t explore unknown, risky, but

possibly much better strategies.

(It’s like finding your way around in a new city

without exploring new many routes.)

Slide CS472—-12



Alternatives:

Pick random transitions.
Very effective in exploration but
bad for finding good utility values
“l.e., short paths”

We'll have to do something in between
1.e., a strategy that is encouraged
to explore unknown transitions
initially but later on converges to

maximal expected utility.

Pretty close to real life. :-)

Slide CS472-13



Let’s consider an environment to test
the tradeofts.

[t’s a stochastic environment (R&N section 17.1).

Action (“move”) succeeds with 80%

but with 20% fail; move perpendicular.
(10% left / 10% right)

Slide CS472-14



SlldeZ?S472 16 3



SlldeZ?S472 18 3



0.868

0.705 0.655 0.611 0.388

SlldeZ?S472 20 3




Note the optimal strategy.

Why does it make intuitive sense?

This strategy picks action with maximum

expected utility at each square.

But can we learn these utilities?

Slide CS472-21



Two strategies:

Random

Greedy

Do what’s best according to current

maximum expected utility:.

Slide CS472-22



As we might expect, with the random strategy
we learn the environment and utilities corresponding
to that strategy very well. (We explore the
the whole space. But, we “lose” a lot! (hit -1)

With the greedy strategy, we get a reasonable
overall strategy (hit “-1” not very often)

But, we don’t learn utilities very well.

We often get stuck in path along bottom (to left).

Slide CS472-24



We can fix the problem by chosing a strategy in between

random and greedy.

Basically uses an “exploration function”,
which takes into account N (a,), the number of times
action a has been tried in state 1.
It stears the search towards rarely tried actions.
After a while, when all actions in all states
have been tried, the function converges

to the standard utility function.

U™ (i) = R(i) +max, f(32; MU (j), N(a, j))

J

Slide CS472-25



So far, we’ve learned utilities and then implemented

some strategy for taking actions.
Why not learn directly “what to do in each state”?

Can be done. We'll learn the action-value function

Q(a, 1), which gives us the value of action a

in state ¢. Again, we normally take the
action with the highest () value.
Why not always?

Slide CS472-30



The relation between () values and utility is

straightforward:
U(t) = max,Q(a,1)

At equilibrium (analogous to equation for utilities):

Q(a,1) = R(i) + >; M max,Q(d', j)

Again, look at () values of states j as reached from 1.

Finally: TD Q-learning gives us:
Q(CL, Z) A Q(CL, Z) + O‘(R(Z) + MaXy/ [Q(alv ]) - Q(CL, Z)]

after a transition from 7 to j.

Slide CS472-31



0.5

&
=
E
B 0
>
=

O
&

1
=

20

Number of iterations

Slide CS472-33



RMSerror ——
Policy loss

[
c
o
a
-
A
O
9
S
o
S
@
%
=
Y

Number of epochs

Slide CS472-35



TD-learning raises an interesting issue:
Why not just “learn what to do” by exploring
and (Q) TD-learning?

Advantage: Need no model of environment.

(No knowledge representation!)

Current view: approach breaks down
when environment gets complex.

need to build some background model and use it.

(possibly in learning)

Slide CS472-36



Practice

TD-learning and ) TD learning as we’ve seen so far
work nicely for small state spaces
(up to approx. 1000 states).
Note we use an explicit table to represent

utility function.

Interesting spaces are much, much bigger!!

10°° for backgammon
10%°%° for automatic driving!
(input camera to actions)
Aside: how would reinforcement learning approach

differ from neural net approach we saw before?

Slide CS472-37



Solution

Two alternatives:

1) Use feature representation of states.
Maps many states into same set of features
(e.g. use 30 features to represent chess board.)
TD learning learns utility function

on those features (not of individual states). (problem?)

2) Use function approximation of real utility function.

Most used: use neural net to approximate and
learn function. Input neural net: state of world

(game); output: utility value. (problem?)

Slide CS472-38



These approaches give some of the best examples of

interesting learning applications.

For 1), we have Samuel’s checker player.

For 2), we have Tesauros’s backagammon player.

world champion level; (almost) pure self play!

Slide CS472-39



Fundamental Questions

Does good approx. utility (evaluation) function exist

for chess / for go?
Can we learn it?
Note: Tradeoff between learning and (minimax) search.

In fact, a good utility function based on features

has flavor of “pattern recognition”.

Patterns may be linked to deep strategies.

Reinforcement learning: Links problem solving and learning,.

Slide CS472-40





